Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.126
Filtrar
1.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125062

RESUMO

This study aims to extract phenolic-enriched compounds, specifically oleuropein, luteoloside, and hydroxytyrosol, from olive leaves using ball milling-assisted extraction (BMAE). Response surface methodology (RSM) and the Box-Behnken design (BBD) were used to evaluate the effects of the temperature, solvent-to-solid ratio, and milling speed on extraction recovery. The contents of the extract were determined by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) and converted to recoveries to evaluate the extraction efficiency. The optimal extraction conditions for oleuropein, luteoloside, and hydroxytyrosol were identified. Oleuropein had a recovery of 79.0% ± 0.9% at a temperature of 56.4 °C, a solvent-to-solid ratio of 39.1 mL/g, and a milling speed of 429 rpm. Luteoloside's recovery was 74.6% ± 1.2% at 58.4 °C, 31.3 mL/g, and 328 rpm. Hydroxytyrosol achieved 43.1% ± 1.3% recovery at 51.5 °C, 32.7 mL/g, and 317 rpm. The reason for the high recoveries might be that high energy ball milling could reduce the sample size further, breaking down the cell walls of olive leaves, to enhance the mass transfer of these components from the cell to solvent. BMAE is displayed to be an efficient approach to extracting oleuropein, luteoloside, and hydroxytyrosol from olive leaves, which is easy to extend to industrial production.


Assuntos
Glucosídeos Iridoides , Olea , Fenóis , Extratos Vegetais , Folhas de Planta , Olea/química , Folhas de Planta/química , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/análise , Extratos Vegetais/química , Glucosídeos Iridoides/química , Cromatografia Líquida de Alta Pressão/métodos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/isolamento & purificação , Iridoides/química , Iridoides/isolamento & purificação , Espectrometria de Massas , Solventes/química
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125618

RESUMO

Caffeic acid phenethyl ester (CAPE) is a phenolic natural product with a wide range of biological activities, including anticancer activity; however, the ester group of CAPE is metabolically labile. The corresponding amide, CAPA, has improved metabolic stability but limited anticancer activity relative to CAPE. We report the synthesis using flow and on-water Wittig reaction approaches of five previously reported and five novel CAPA analogues. All of these analogues lack the reactive catechol functionality of CAPA and CAPE. Cytotoxicity studies of CAPE, CAPA, and these CAPA analogues in HeLa and BE(2)-C cells were carried out. Surprisingly, we found that CAPA is cytotoxic against the neuroblastoma BE(2)-C cell line (IC50 = 12 µM), in contrast to the weak activity of CAPA against HeLa cells (IC50 = 112 µM), and the literature reports of the absence of activity for CAPA against a variety of other cancer cell lines. One novel CAPA analogue, 3f, was identified as having cytotoxic activity similar to CAPE in HeLa cells (IC50 = 63 µM for 3f vs. 32 µM for CAPE), albeit with lower activity against BE(2)-C cells (IC50 = 91 µM) than CAPA. A different CAPA analogue, 3g, was found to have similar effects against BE(2)-C cells (IC50 = 92 µM). These results show that CAPA is uniquely active against neuroblastoma cells and that specific CAPA analogues that are predicted to be more metabolically stable than CAPE can reproduce CAPA's activity against neuroblastoma cells and CAPE's activity against HeLa cells.


Assuntos
Antineoplásicos , Ácidos Cafeicos , Álcool Feniletílico , Humanos , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/síntese química , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Álcool Feniletílico/química , Álcool Feniletílico/síntese química , Água/química , Linhagem Celular Tumoral , Amidas/farmacologia , Amidas/química , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Pharm ; 661: 124434, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972523

RESUMO

There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.


Assuntos
Antioxidantes , Estabilidade de Medicamentos , Permeabilidade , Álcool Feniletílico , Absorção Cutânea , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacocinética , Álcool Feniletílico/administração & dosagem , Animais , Suínos , Absorção Cutânea/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Pele/metabolismo , Hidrogéis/química , Administração Cutânea , Porco Miniatura , Creme para a Pele/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Ácido Ascórbico/química
4.
Food Microbiol ; 123: 104585, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038891

RESUMO

In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.


Assuntos
Cerveja , Fermentação , Hanseniaspora , Odorantes , Saccharomyces cerevisiae , Cerveja/microbiologia , Cerveja/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Hanseniaspora/metabolismo , Hanseniaspora/crescimento & desenvolvimento , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Etanol/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Acetatos/metabolismo , Técnicas de Cocultura , Álcool Feniletílico/análogos & derivados
5.
Microb Cell Fact ; 23(1): 203, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030609

RESUMO

BACKGROUND: Over the last two decades, hybridization has been a powerful tool used to construct superior yeast for brewing and winemaking. Novel hybrids were primarily constructed using at least one Saccharomyces cerevisiae parent. However, little is known about hybrids used for other purposes, such as targeted flavor production, for example, 2-phenylethanol (2-PE). 2-PE, an aromatic compound widely utilised in the food, cosmetic, and pharmaceutical industries, presents challenges in biotechnological production due to its toxic nature. Consequently, to enhance productivity and tolerance to 2-PE, various strategies such as mutagenesis and genetic engineering are extensively explored to improved yeast strains. While biotechnological efforts have predominantly focused on S. cerevisiae for 2-PE production, other Saccharomyces species and their hybrids remain insufficiently described. RESULTS: To address this gap, in this study, we analysed a new interspecies yeast hybrid, II/6, derived from S. uvarum and S. kudriavzevii parents, in terms of 2-PE bioconversion and resistance to its high concentration, comparing it with the parental strains. Two known media for 2-PE biotransformation and three different temperatures were used during this study to determine optimal conditions. In 72 h batch cultures, the II/6 hybrid achieved a maximum of 2.36 ± 0.03 g/L 2-PE, which was 2-20 times higher than the productivity of the parental strains. Our interest lay not only in determining whether the hybrid improved in productivity but also in assessing whether its susceptibility to high 2-PE titers was also mitigated. The results showed that the hybrid exhibited significantly greater resistance to the toxic product than the original strains. CONCLUSIONS: The conducted experiments have confirmed that hybridization is a promising method for modifying yeast strains. As a result, both 2-PE production yield and tolerance to its inhibitory effects can be increased. Furthermore, this strategy allows for the acquisition of non-GMO strains, alleviating concerns related to additional legislative requirements or consumer acceptance issues for producers. The findings obtained have the potential to contribute to the development of practical solutions in the future.


Assuntos
Álcool Feniletílico , Saccharomyces , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Saccharomyces/genética , Saccharomyces/metabolismo , Fermentação , Hibridização Genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pichia
6.
Molecules ; 29(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39064992

RESUMO

Utilizing Density Functional Theory (DFT) calculations at the B3LYP/QZVP level and incorporating the Conductor-like Polarizable Continuum Model (C-PCM) for solvation, the thermodynamic and chemical activity properties of 21-(hydroxymethoxy)henicosadecaenal, identified in cultured freshwater pearls from the mollusk Hyriopsis cumingii, have been elucidated. The study demonstrates that this compound releases formaldehyde, a potent antimicrobial agent, through dehydrogenation and deprotonation processes in both hydrophilic and lipophilic environments. Moreover, this polyenal exhibits strong anti-reductant properties, effectively scavenging free radicals. These critical properties classify the pearl-derived ingredient as a natural multi-functional compound, serving as a coloring, antiradical, and antimicrobial agent. The 2-(hydroxymethoxy)vinyl (HMV) moiety responsible for the formaldehyde release can be transferred to other compounds, thereby enhancing their biological activity. For instance, tyrosol (4-(2-hydroxyethyl)phenol) can be modified by substituting the less active 2-hydroxyethyl group with the active HMV one, and hinokitiol (4-isopropylotropolone) can be functionalized by attaching this moiety to the tropolone ring. A new type of meso-carrier, structurally modeled on pearls, with active substances loaded both in the layers and the mineral part, has been proposed.


Assuntos
Álcool Feniletílico , Tropolona , Tropolona/análogos & derivados , Tropolona/química , Tropolona/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Formaldeído/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Estrutura Molecular , Termodinâmica
7.
Nat Commun ; 15(1): 5683, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971825

RESUMO

Bacteria within mature biofilms are highly resistant to antibiotics than planktonic cells. Oxygen limitation contributes to antibiotic resistance in mature biofilms. Nitric oxide (NO) induces biofilm dispersal; however, low NO levels stimulate biofilm formation, an underexplored process. Here, we introduce a mechanism of anaerobic biofilm formation by investigating the antibiofilm activity of tyrosol, a component in wine. Tyrosol inhibits E. coli and Pseudomonas aeruginosa biofilm formation by enhancing NO production. YbfA is identified as a target of tyrosol and its downstream targets are sequentially determined. YbfA activates YfeR, which then suppresses the anaerobic regulator FNR. This suppression leads to decreased NO production, elevated bis-(3'-5')-cyclic dimeric GMP levels, and finally stimulates anaerobic biofilm formation in the mature stage. Blocking YbfA with tyrosol treatment renders biofilm cells as susceptible to antibiotics as planktonic cells. Thus, this study presents YbfA as a promising antibiofilm target to address antibiotic resistance posed by biofilm-forming bacteria, with tyrosol acting as an inhibitor.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Óxido Nítrico , Álcool Feniletílico , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Óxido Nítrico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Anaerobiose/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores
8.
Food Res Int ; 191: 114710, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059960

RESUMO

Table olives are among the most popular fermented foods and cv. Chalkidiki green table olives are particularly popular in both Greek and international markets. This work aimed at comparatively investigating the effect of processing method on the production of Spanish-style and natural cv. Chalkidiki green olives during fermentation and 12-month storage in brines with different chloride salts composition (NaCl, KCl, CaCl2) at industrial scale. All delivered products were safe with satisfactory color and texture characteristics. Employment of UPLC-HRMS revealed differences in metabolites' profile of polar extracts from olives and brines between the processing methods. Τhe application of alkali treatment drastically decreased the content of hydroxytyrosol and tyrosol in drupes, still an essential amount (1037-2012 and 385-885 mg/kg dry flesh, respectively) of these health-promoting phenolic compounds was retained in all products, even after storage. Noteworthy, fermentation of natural olives in brine (5 % NaCl) yielded in products with significantly lower Na levels in olive flesh (1.7 g/100 g), followed by Spanish-style olives fermented in low (4 %) and high (8 %) NaCl brines (2.7 and 5.2 g Na/100 g, respectively), supporting the efforts toward the establishment of table olives as functional food. Moreover, maslinic and oleanolic acids content was 1.5-2-fold higher in the natural table olives compared to the Spanish-style ones owing to the detrimental effect of alkali treatments. The processing method did not exert a differential effect on α-tocopherol content of olives. Sensory analysis indicated that all the final products were acceptable by consumers, with a slight preference for Spanish-style green olives fermented in brines with 50 % lower NaCl content. Present findings could be beneficial to the ongoing endeavor directed for the establishment of table olives as a source of bioactive compounds that concerns both industrial and scientific communities.


Assuntos
Fermentação , Armazenamento de Alimentos , Valor Nutritivo , Olea , Olea/química , Armazenamento de Alimentos/métodos , Manipulação de Alimentos/métodos , Álcool Feniletílico/análise , Álcool Feniletílico/análogos & derivados , Humanos , Sais/química , Frutas/química , Alimentos Fermentados/análise , Fenóis/análise , Inocuidade dos Alimentos
9.
Sci Rep ; 14(1): 15666, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977845

RESUMO

Inter-cellular signaling, referred to as quorum sensing (QS), regulates the production of virulence factors in numerous gram-negative bacteria, such as the human pathogens Pseudomonas aeruginosa and Chromobacterium violaceum. QS inhibition may provide an opportunity for the treatment of bacterial infections. This represents the initial study to examine the antibiofilm and antivirulence capabilities of rose absolute and its primary component, phenylethyl alcohol. QS inhibition was assessed by examining extracellular exopolysaccharide synthesis, biofilm development, and swarming motility in P. aeruginosa PAO1, along with violacein production in C. violaceum ATCC 12472. Molecular docking analysis was conducted to explore the mechanism by which PEA inhibits QS. Our results indicate that rose absolute and PEA caused decrease in EPS production (60.5-33.5%), swarming motility (94.7-64.5%), and biofilm formation (98.53-55.5%) in the human pathogen P. aeruginosa PAO1. Violacein production decreased by 98.1% and 62.5% with an absolute (0.5 v/v %) and PEA (2 mM). Moreover, the molecular docking analysis revealed a promising competitive interaction between PEA and AHLs. Consequently, this study offers valuable insights into the potential of rose absolute and PEA as inhibitors of QS in P. aeruginosa and C. violaceum.


Assuntos
Biofilmes , Chromobacterium , Simulação de Acoplamento Molecular , Álcool Feniletílico , Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Chromobacterium/efeitos dos fármacos , Chromobacterium/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Álcool Feniletílico/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Indóis/farmacologia , Indóis/metabolismo
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1011-1019, 2024 Jul 06.
Artigo em Chinês | MEDLINE | ID: mdl-39034785

RESUMO

Objective: To investigate the effects and possible mechanisms of caffeic acid phenethyl ester (CAPE) on the replication, amplification, and fibre formation of prions (PrPSc). Methods: The CCK8 assay was used to detect the cell viability of the prion-infected cell model SMB-S15 after CAPE treatment for 3 days and 7 days and the maximum safe concentration of CAPE for SMB-S15 was obtained. The cells were treated with a concentration within a safe range, and the content of PrPSc in the cells before and after CAPE treatment was analyzed by western blot. Protein misfolding cycle amplification (PMCA) and western blot were used to assess changes in PrPSc level in amplification products following CAPE treatment. Real-time-quaking induced conversion assay (RT-QuIC) technology was employed to explore the changes in fibril formation before and after CAPE treatment. The binding affinity between CAPE and murine recombinant full-length prion protein was determined using a molecular interaction assay. Results: CCK8 cell viability assay results demonstrated that treatment with 1 µmol/L CAPE for 3 and 7 days did not exhibit statistically significant differences in cell viability compared to the control group (all P<0.05). However, when the concentration of CAPE exceeded 1 µmol/L, a significant reduction in cell viability was observed in cells treated with CAPE for 3 and 7 days, compared to the control group (all P<0.05). Thus, 1 µmol/L was determined as the maximum safe concentration of CAPE treatment for SMB-S15 cells. The western blot results revealed that treatment with CAPE for both 3 and 7 days led to a detectable reduction in the levels of PrPSc in SMB-S15 cells (all P<0.05). The products of PMCA experiments were assessed using western blot. The findings revealed a significant decrease in the levels of PrPSc (relative grey value) in the PMCA amplification products of adapted-strains SMB-S15, 139A, and ME7 following treatment with CAPE, as compared to the control group (all P<0.05). The RT-QuIC experimental results demonstrated a reduction in fibril formation (as indicated by ThT peak values) in CAPE-treated mouse-adapted strains 139A, ME7, and SMB-S15, as well as in SMB-S15 cells infected with prions. Furthermore, CAPE exhibited varying degrees of inhibition towards different seed fibrils formation, with statistically significant differences observed (all P<0.05). Notably, CAPE exhibited a more pronounced inhibitory effect on ME7 seed fibrils. Molecular interaction analyses demonstrated significant binding between CAPE and murine recombinant prion protein, and the association constant was (2.92±0.41)×10-6 mol/L. Conclusions: CAPE inhibits PrPSc replication, amplification, and fibril formation in vitro possibly due to specific interactions with the prion protein at the molecular level.


Assuntos
Ácidos Cafeicos , Álcool Feniletílico , Animais , Ácidos Cafeicos/farmacologia , Camundongos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas PrPSc/metabolismo , Príons , Linhagem Celular , Proteínas Priônicas/metabolismo
11.
Microb Pathog ; 193: 106763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925344

RESUMO

Increasing incidences of fungal infections and prevailing antifungal resistance in healthcare settings has given rise to an antifungal crisis on a global scale. The members of the genus Candida, owing to their ability to acquire sessile growth, are primarily associated with superficial to invasive fungal infections, including the implant-associated infections. The present study introduces a novel approach to combat the sessile/biofilm growth of Candida by fabricating nanofibers using a nanoencapsulation approach. This technique involves the synthesis of tyrosol (TYS) functionalized chitosan gold nanocomposite, which is then encapsulated into PVA/AG polymeric matrix using electrospinning. The FESEM, FTIR analysis of prepared TYS-AuNP@PVA/AG NF suggested the successful encapsulation of TYS into the nanofibers. Further, the sustained and long-term stability of TYS in the medium was confirmed by drug release and storage stability studies. The prepared nanomats can absorb the fluid, as evidenced by the swelling index of the nanofibers. The growth and biofilm inhibition, as well as the disintegration studies against Candida, showed 60-70 % biofilm disintegration when 10 mg of TYS-AuNP@PVA/AG NF was used, hence confirming its biological effectiveness. Subsequently, the nanofibers considerably reduced the hydrophobicity index and ergosterol content of the treated cells. Considering the challenges associated with the inhibition/disruption of fungal biofilm, the fabricated nanofibers prove their effectiveness against Candida biofilm. Therefore, nanocomposite-loaded nanofibers have emerged as potential materials that can control fungal colonization and could also promote healing.


Assuntos
Antifúngicos , Biofilmes , Candida , Ouro , Goma Arábica , Nanopartículas Metálicas , Nanofibras , Álcool Feniletílico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ouro/química , Ouro/farmacologia , Nanofibras/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Álcool Feniletílico/química , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Goma Arábica/química , Goma Arábica/farmacologia , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Testes de Sensibilidade Microbiana , Álcool de Polivinil/química , Liberação Controlada de Fármacos , Prata/farmacologia , Prata/química , Ergosterol/química , Interações Hidrofóbicas e Hidrofílicas
12.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893586

RESUMO

Hemerocallis L. possesses abundant germplasm resources and holds significant value in terms of ornamental, edible, and medicinal aspects. However, the quality characteristics vary significantly depending on different varieties. Selection of a high-quality variety with a characteristic aroma can increase the economic value of Hemerocallis flowers. The analytic hierarchy process (AHP) is an effective decision-making method for comparing and evaluating multiple characteristic dimensions. By applying AHP, the aromatic character of 60 varieties of Hemerocallis flowers were analyzed and evaluated in the present study. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile components in Hemerocallis flowers. Thirteen volatile components were found to contribute to the aroma of Hemerocallis flowers, which helps in assessing their potential applications in essential oil, aromatherapy, and medical treatment. These components include 2-phenylethanol, geraniol, linalool, nonanal, decanal, (E)-ß-ocimene, α-farnesene, indole, nerolidol, 3-furanmethanol, 3-carene, benzaldehyde and benzenemethanol. The varieties with better aromatic potential can be selected from a large amount of data using an AHP model. This study provides a comprehensive understanding of the characteristics of the aroma components in Hemerocallis flowers, offers guidance for breeding, and enhances the economic value of Hemerocallis flowers.


Assuntos
Flores , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Microextração em Fase Sólida/métodos , Flores/química , Odorantes/análise , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/análise , Óleos Voláteis/química , Óleos Voláteis/análise , Sesquiterpenos/análise , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Álcool Feniletílico/química , Alcenos , Indóis
13.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891778

RESUMO

Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1ß, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.


Assuntos
Ácidos e Sais Biliares , Mucosa Intestinal , Estresse Oxidativo , Álcool Feniletílico , Animais , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Suínos , Ácidos e Sais Biliares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
14.
Sci Rep ; 14(1): 14546, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914695

RESUMO

Caffeic acid phenethyl ester (CAPE) and its derivatives exhibit considerable effects against hepatocellular carcinoma (HCC), with unquestioned safety. Here we investigated CAPE derivative 1' (CAPE 1') monotherapy to HCC, compared with sorafenib. HCC Bel-7402 cells were treated with CAPE 1', the IC50 was detected using CCK-8 analysis, and acute toxicity testing (5 g/kg) was performed to evaluate safety. In vivo, tumor growth after CAPE 1' treatment was evaluated using an subcutaneous tumor xenograft model. Five groups were examined, with group 1 given vehicle solution, groups 2, 3, and 4 given CAPE 1' (20, 50, and 100 mg/kg/day, respectively), and group 5 given sorafenib (30 mg/kg/day). Tumor volume growth and tumor volume-to-weight ratio were calculated and statistically analyzed. An estimated IC50 was 5.6 µM. Acute toxicity tests revealed no animal death or visible adverse effects with dosage up to 5 g/kg. Compared to negative controls, CAPE 1' treatment led to significantly slower increases of tumor volume and tumor volume-to-weight. CAPE 1' and sorafenib exerted similar inhibitory effects on HCC tumors. CAPE 1' was non-inferior to sorafenib for HCC treatment, both in vitro and in vivo. It has great potential as a promising drug for HCC, based on effectiveness and safety profile.


Assuntos
Antineoplásicos , Ácidos Cafeicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Álcool Feniletílico , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino
15.
Sci Rep ; 14(1): 14624, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918541

RESUMO

Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.


Assuntos
Autofagia , Ácidos Cafeicos , Neoplasias do Colo , Oxaliplatina , Álcool Feniletílico , Humanos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Autofagia/efeitos dos fármacos , Oxaliplatina/farmacologia , Ácidos Cafeicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células HCT116 , Sinergismo Farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
16.
J Agric Food Chem ; 72(27): 15293-15300, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940657

RESUMO

Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes. To prevent cross-reactions and protein expression burden caused by multiple enzymes expressed in a single cell, the designed enzymatic cascade was divided into two modules and catalyzed in a stepwise manner. The first module (FM) assisted the assembly of 3,4-dihydroxybenzaldehyde and l-threonine into (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, and the second module (SM) entailed converting (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid into hydroxytyrosol. Each module was cloned into Escherichia coli BL21 (DE3) and engineered in parallel by fine-tuning enzyme expression, resulting in two engineered whole-cell catalyst modules, BL21(FM01) and BL21(SM13), capable of converting 30 mM 3,4-dihydroxybenzaldehyde to 28.7 mM hydroxytyrosol with a high space-time yield (0.88 g/L/h). To summarize, the current study proposes a simple and effective approach for biosynthesizing hydroxytyrosol from low-cost substrates and thus has great potential for industrial applications.


Assuntos
Biocatálise , Escherichia coli , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Benzaldeídos/química , Benzaldeídos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
17.
Food Chem Toxicol ; 190: 114818, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880467

RESUMO

Testicular heat stress disrupts spermiogenesis and damages testicular tissue. The study aims to assess 3,4-dihydroxyphenylglycol (DHPG) and hydroxytyrosol (HT) from olive oil as antioxidants to reduce heat-induced testicular damage. Seven groups of 35 male rats were used. Group I got normal saline. Group 2 had HS (43 °C for 20 min/day) and normal saline for 60 days. Groups 3-7 had HS and DHPG/HT doses (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT). The evaluation included tests on testicular tissue, sperm quality, oxidative status, gene activity, and fertility after 60 days. After DHPG and HT treatment, sperm motility, viability, and plasma membrane functionality, as well as levels of total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), and Bcl-2 gene expression, and in vivo fertility indexes increased. Meanwhile, abnormal morphology and DNA damage decreased, along with levels of glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA), and Bax, caspase-3, and caspase-9 gene expression, compared to the HS group. The study found that DHPG and HT have a more substantial synergistic effect when used together, improving reproductive health.


Assuntos
Metoxi-Hidroxifenilglicol , Álcool Feniletílico , Motilidade dos Espermatozoides , Testículo , Animais , Masculino , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ratos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Antioxidantes/farmacologia , Espermatozoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Ratos Wistar , Reprodução/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Superóxido Dismutase/metabolismo
18.
Sci Rep ; 14(1): 14582, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918455

RESUMO

Volatile organic compounds (VOCs) are metabolites pivotal in determining the aroma of various products. A well-known VOC producer of industrial importance is Saccharomyces cerevisiae, partially responsible for flavor of beers and wines. We identified VOCs in beers produced by yeast strains characterized by improved aroma obtained in UV-induced mutagenesis. We observed significant increase in concentration of compounds in strains: 1214uv16 (2-phenylethyl acetate, 2- phenylethanol), 1214uv31 (2-ethyl henxan-1-ol), 1214uv33 (ethyl decanoate, caryophyllene). We observed decrease in production of 2-phenyethyl acetate in strain 1214uv33. Analysis of intracellular metabolites based on 1H NMR revealed that intracellular phenylalanine concentration was not changed in strains producing more phenylalanine related VOCs (1214uv16 and 1214uv33), so regulation of this pathway seems to be more sophisticated than is currently assumed. Metabolome analysis surprisingly showed the presence of 3-hydroxyisobutyrate, a product of valine degradation, which is considered to be absent in S. cerevisiae. Our results show that our knowledge of yeast metabolism including VOC production has gaps regarding synthesis pathways for individual metabolites and regulation mechanisms. Detailed analysis of 1214uv16 and 1214uv33 may enhance our knowledge of the regulatory mechanisms of VOC synthesis in yeast, and analysis of strain 1214uv31 may reveal the pathway of 2-ethyl henxan-1-ol biosynthesis.


Assuntos
Cerveja , Metaboloma , Mutação , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cerveja/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Fermentação , Fenilalanina/metabolismo , Fenilalanina/análise , Metabolômica/métodos , Acetatos
19.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1694-1710, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914486

RESUMO

2-phenylethanol (2-PE), an aromatic alcohol with a rose fragrance, is the second most widely used flavoring substance in the world. It is widely used in the cosmetic, food, and pharmaceutical industries. This paper introduces the chemical synthesis methods of 2-PE and the synthetic pathways in plants and microorganisms, summarizes the strategies to improve the microbial synthesis of 2-PE, reviews the research progress in de novo synthesis of 2-PE in microorganisms, and makes an outlook on the research prospects, aiming to provide a theoretical basis for the industrial production of 2-PE.


Assuntos
Álcool Feniletílico , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/síntese química , Microbiologia Industrial , Aromatizantes/síntese química , Aromatizantes/metabolismo , Bactérias/metabolismo , Plantas/metabolismo
20.
Reprod Domest Anim ; 59(6): e14588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822558

RESUMO

Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 µg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 µg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 µg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.


Assuntos
Antioxidantes , Galinhas , Criopreservação , Álcool Feniletílico , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Masculino , Criopreservação/veterinária , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Antioxidantes/farmacologia , Análise do Sêmen/veterinária , Crioprotetores/farmacologia , Malondialdeído/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...