Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.463
Filtrar
1.
BMC Ophthalmol ; 24(1): 409, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300402

RESUMO

BACKGROUND: Human amniotic membrane (AM) transplantation has been applied to treat ocular surface diseases, including corneal trauma. The focus of much deliberation is to balance the mechanical strength of the amniotic membrane, its resistance to biodegradation, and its therapeutic efficacy. It is commonly observed that the crosslinked human decellularized amniotic membranes lose the functional human amniotic epithelial cells (hAECs), which play a key role in curing the injured tissues. METHODS AND RESULTS: In this study, we crosslinked human decellularized amniotic membranes (dAM) with genipin and re-planted the hAECs onto the genipin crosslinked AM. The properties of the AM were evaluated based on optical clarity, biodegradation, cytotoxicity, and ultrastructure. The crosslinked AM maintained its transparency. The color of crosslinked AM deepened with increasing concentrations of genipin. And the extracts from low concentrations of genipin crosslinked AM had no toxic effect on human corneal epithelial cells (HCECs), while high concentrations of genipin exhibited cytotoxicity. The microscopic observation and H&E staining revealed that 2 mg/mL genipin-crosslinked dAM (2 mg/mL cl-dAM) was more favorable for the attachment, migration, and proliferation of hAECs. Moreover, the results of the CCK-8 assay and the transwell assay further indicated that the living hAECs' tissue-engineered amniotic membranes could facilitate the proliferation and migration of human corneal stromal cells (HCSCs) in vitro. CONCLUSIONS: In conclusion, the cl-dAM with living hAECs demonstrates superior biostability and holds significant promise as a material for ocular surface tissue repair in clinical applications.


Assuntos
Âmnio , Proliferação de Células , Epitélio Corneano , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Epitélio Corneano/citologia , Células Cultivadas , Doenças da Córnea/cirurgia , Iridoides/farmacologia , Células Epiteliais
2.
Taiwan J Obstet Gynecol ; 63(5): 755-758, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39266160

RESUMO

OBJECTIVE: We present low-level mosaic trisomy 14 at amniocentesis. CASE REPORT: A 37-year-old, gravida 2, para 1, woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. This pregnancy was conceived by in vitro fertilization and embryo transfer (IVF-ET). Amniocentesis revealed a karyotype of 47,XX,+14 [4]/46,XX [27], consistent with 12.9% mosaicism for trisomy 14. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr (1-22, X) × 2 with no genomic imbalance. Prenatal ultrasound findings were unremarkable. She was referred for genetic counseling at 21 weeks of gestation and was offered expanded non-invasive prenatal testing (NIPT) which was positive for trisomy 14. At 24 weeks of gestation, she underwent repeat amniocentesis which revealed a karyotype of 47,XX,+14 [2]/46,XX [26], consistent with 7% mosaicism for trisomy 14. The parental karyotypes were normal. Simultaneous aCGH analysis on the DNA extracted from uncultured amniocytes revealed no genomic imbalance. Polymorphic marker analysis excluded uniparental disomy (UPD) 14. Interphase fluorescence in situ hybridization (FISH) analysis on 104 uncultured amniocytes detected no trisomy 14 cell. At 35 weeks of gestation, a 2315-g phenotypically normal baby was delivered. The umbilical cord and placenta had the karyotype of 46, XX (40/40 cells). aCGH analysis on the DNA extracted from peripheral blood and buccal mucosal cells at the age of three months revealed no genomic imbalance. The neonate was normal in phenotype and development during postnatal follow-ups. CONCLUSIONS: Low-level mosaic trisomy 14 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 14 cell line and a favorable fetal outcome.


Assuntos
Amniocentese , Cromossomos Humanos Par 14 , Hibridização Genômica Comparativa , Mosaicismo , Trissomia , Dissomia Uniparental , Humanos , Gravidez , Feminino , Mosaicismo/embriologia , Trissomia/diagnóstico , Trissomia/genética , Adulto , Dissomia Uniparental/diagnóstico , Dissomia Uniparental/genética , Cromossomos Humanos Par 14/genética , Recém-Nascido , Teste Pré-Natal não Invasivo/métodos , Nascido Vivo/genética , Âmnio/citologia , Resultado da Gravidez/genética , Cariotipagem/métodos
3.
Front Immunol ; 15: 1459489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290694

RESUMO

Introduction: Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods: The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results: 11ß-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11ß-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11ß-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion: There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Âmnio , Fibroblastos , Glucocorticoides , Inflamação , Parto , Humanos , Animais , Feminino , Gravidez , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Âmnio/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo , Citocinas/metabolismo , Regeneração , Lipopolissacarídeos , Células Cultivadas , Nascimento Prematuro/imunologia , Hidrocortisona
4.
Mol Med ; 30(1): 138, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232672

RESUMO

BACKGROUND: Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. METHODS: An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. RESULTS: GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). CONCLUSIONS: GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.


Assuntos
Acetilgalactosamina , Movimento Celular , Transição Epitelial-Mesenquimal , Ruptura Prematura de Membranas Fetais , Galectinas , Transdução de Sinais , Cicatrização , Humanos , Ruptura Prematura de Membranas Fetais/metabolismo , Acetilgalactosamina/metabolismo , Acetilgalactosamina/análogos & derivados , Galectinas/metabolismo , Gravidez , Células Epiteliais/metabolismo , Linhagem Celular , Estresse Oxidativo , Feminino , Âmnio/metabolismo , Âmnio/citologia , Proliferação de Células , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Exp Clin Transplant ; 22(7): 576-578, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39223817

RESUMO

We report the successful reconstruction of suture exposure with the oral mucosal graft in a patient with suture exposure after transscleral-sutured posterior chamber intraocular lens implantation. The 70-year-old patient had a history of vitreoretinal surgery and transscleral-sutured posterior chamber intraocular lens implantation after complicated cataract surgery. He was referred to our department because of suture exposure. The best-corrected visual acuity was 20/2000 OD and 20/50 OS. We observed exposed PC9 sutures from both the nasal and temporal conjunctiva in the right eye. The patient showed appearance of scleromalacia in the same regions, so scleral flap surgery was not considered. Despite both tenoplasty and amniotic membrane transplant procedures, exposure could not be controlled. Instead, the patient received oral (buccal) mucosal graft transplant to the resistant exposure areas. A single layer of protective amniotic membrane was transplanted over the buccal mucosal graft. This method resulted in effective control of the exposed area. In conclusion, an oral mucosal graft can be used in many ocular pathologies that require conjunctival reconstruction because of the simplicity of tissue excision from the mucosa, allowing adequate tissue excision, durability of the obtained tissue, and ease of use. Our case report highlights that resistant transscleral-sutured posterior chamber intraocular lens suture exposure can be successfully managed with oral mucosal grafting.


Assuntos
Implante de Lente Intraocular , Mucosa Bucal , Técnicas de Sutura , Acuidade Visual , Humanos , Masculino , Implante de Lente Intraocular/efeitos adversos , Idoso , Mucosa Bucal/transplante , Resultado do Tratamento , Esclera/cirurgia , Esclera/transplante , Âmnio/transplante , Lentes Intraoculares , Extração de Catarata
6.
Transl Vis Sci Technol ; 13(9): 10, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39235403

RESUMO

Purpose: Pterygium is an ocular surface disease characterized by the invasion of fibrovascular tissue from the bulbar conjunctiva to the cornea and is associated with abnormal tear function caused by changes in tear composition and osmolarity. In this study, the effect of two different surgical techniques to remove primary pterygium: conjunctival autograft surgery (CAG) and amniotic membrane transplantation (AMT), on changes in MUC2 and MUC5AC tear mucins concentration were evaluated. Methods: Forty-four patients (>18 years old) with primary unilateral pterygium (> 1.0 mm long, measured from the limbus to the apex on the cornea) were randomly enrolled, and assigned to the AMT or CAG group by using the permuted block technique. Patients with systemic inflammatory diseases or other eye comorbidities were excluded from the study. Tear break-up time (TBUT) and best-corrected visual acuity (BCVA) assessments were performed before surgery and at 1, 3, and 6 months after surgery. Tears were collected concurrently with the clinical evaluations, and MUC2 and MUC5AC concentrations were subsequently measured by means of ELISA. Results: At 6 months after CAG or AMT, TBUT and BCVA were significantly lower (P < 0.05) in comparison with the baseline values in the study subjects. The tear mucin concentrations of both MUC2 and MUC5AC were significantly higher (P < 0.0001) in patients with pterygium before any surgical procedure than in healthy individuals. The concentration of MUC2 increased at 1 and 3 months after CAG surgery and decreased at 6 months; however, the MUC2 concentration decreased on the AMT group in all time point measurements. Interestingly, the MUC5AC concentration significantly increased at 1 month after AMT or CAG and then decreased at 3 and 6 months after surgery. Finally, an inverse correlation was found between both MUC2 and MUC5AC tear mucins concentration and the TBUT. Conclusions: These results suggest that pterygium excision via both CAG or AMT changes the concentrations of the tear mucins MUC2 and MUC5AC during the evaluated times, and these changes could affect tear film stability and clinical recovery after pterygium treatment. Translational Relevance: The tear film stability during pterygium excision was evaluated to determine adequate treatments.


Assuntos
Âmnio , Túnica Conjuntiva , Mucina-5AC , Mucina-2 , Pterígio , Lágrimas , Humanos , Masculino , Pterígio/cirurgia , Pterígio/metabolismo , Feminino , Pessoa de Meia-Idade , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/transplante , Mucina-2/metabolismo , Lágrimas/metabolismo , Âmnio/transplante , Âmnio/metabolismo , Seguimentos , Mucina-5AC/metabolismo , Idoso , Adulto , Autoenxertos , Acuidade Visual , Ensaio de Imunoadsorção Enzimática , Transplante Autólogo/métodos , Estudos Prospectivos
7.
PLoS One ; 19(8): e0309063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39159152

RESUMO

During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.


Assuntos
Decídua , Membranas Extraembrionárias , Nascimento Prematuro , Transcriptoma , Feminino , Humanos , Gravidez , Decídua/metabolismo , Membranas Extraembrionárias/metabolismo , Nascimento Prematuro/genética , Ruptura Prematura de Membranas Fetais/genética , Ruptura Prematura de Membranas Fetais/metabolismo , Nascimento a Termo/genética , Âmnio/metabolismo , Âmnio/citologia , Adulto , Córion/metabolismo , Perfilação da Expressão Gênica
8.
FASEB J ; 38(16): e70004, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39190010

RESUMO

Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-ß1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.


Assuntos
Âmnio , Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Miócitos de Músculo Liso , Animais , Âmnio/citologia , Âmnio/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Coelhos , Humanos , Hidrogéis/química , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo , Matriz Extracelular/metabolismo , Ovinos , Células Cultivadas , Engenharia Tecidual/métodos
9.
Med J Malaysia ; 79(Suppl 4): 68-71, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39215418

RESUMO

INTRODUCTION: Gastric perforation is a rare occurrence, particularly in neonates. This is an emergency case in this population. The incidence of spontaneous gastric perforation in neonates is 1:2900 live births, with high mortality and morbidity rates. The primary treatment is surgical debridement and repair of the perforation, which has a high incidence of anastomotic leakage. At present, there is a plethora of studies investigating the efficacy of human dried amniotic membrane (H-DAM) technology in promoting wound healing. Consequently, researchers sought to ascertain whether there were differences in the number of adhesion and abscess classifications for the macroscopic evaluation of gastric perforation repair with HDAM as a biomaterial in New Zealand white rabbits. MATERIAL AND METHODS: A total of 30 male New Zealand rabbits underwent laparotomy and gastric perforation. These animals were then divided into three groups, with each group comprising 10 rabbits. Group 1 underwent primary repair, group 2 underwent omental patch repair, and group 3 underwent H-DAM patch repair. The rabbits were euthanised on the 7th day and the adhesion score and abscess classification were evaluated. RESULT: A total of 30 samples of rabbits were homogeneous. On macroscopic evaluation, it was found that the H-DAM had the lowest mean adhesion score and the lowest incidence of abscess formation compared to all other groups. CONCLUSIONS: It can be concluded that the utilisation of HDAM as a biomaterial patch in the treatment of gastric perforation in the rabbit model did not result in any instances of leakage, adhesion or infection.


Assuntos
Âmnio , Cicatrização , Animais , Coelhos , Âmnio/transplante , Masculino , Humanos , Materiais Biocompatíveis
10.
J Wound Care ; 33(8): 612-616, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39140406

RESUMO

There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.


Assuntos
Âmnio , Engenharia Tecidual , Cicatrização , Humanos , Âmnio/transplante , Ferimentos e Lesões/terapia , Medicina Regenerativa/métodos
11.
An Acad Bras Cienc ; 96(suppl 1): e20231139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140521

RESUMO

Tendons, complex fibrous structures, are subjected to great tensions, which can give rise to the so-called tendinopathies. This study aimed to evaluate photobiomodulation and human Amniotic Membrane applied as single or combined therapies to treat induced Achilles tendon lesions. Seventy-five rats were divided into five groups (n=15): C- control Sham surgery; I- tendon injury; LA- tendon injury treated with photobiomodulation; AM- tendon injury treated with Amniotic Membrane; LAM- tendon injury + photobiomodulation and Amniotic Membrane, subdivided into three groups (n=5) with analysis at 3, 7, and 14 days. The tendon injuries were made with a 20 g weight released from a mini guillotine onto the ankle in dorsiflexion. AM and LAM groups received an Amniotic Membrane fragment while LA and LAM groups received transcutaneous photobiomodulation, using a 660 nm wavelength laser. The inflammatory cells showed statistical differences between groups C and I (p<0.05), I and AM (p<0.01), I and LA (p<0.05), and I and LAM (p<0.01). Both photobiomodulation and Amniotic Membrane were shown to enhance tendon repair, and the association of photobiomodulation plus Amniotic Membrane was the most effective treatment. We conclude that the association of photobiomodulation plus Amniotic Membrane was effective in accelerating and improving the tendon regeneration process.


Assuntos
Tendão do Calcâneo , Âmnio , Terapia com Luz de Baixa Intensidade , Ratos Wistar , Traumatismos dos Tendões , Animais , Terapia com Luz de Baixa Intensidade/métodos , Âmnio/transplante , Âmnio/efeitos da radiação , Traumatismos dos Tendões/terapia , Traumatismos dos Tendões/radioterapia , Tendão do Calcâneo/lesões , Tendão do Calcâneo/efeitos da radiação , Ratos , Cicatrização/efeitos da radiação , Cicatrização/fisiologia , Masculino , Humanos , Modelos Animais de Doenças
12.
J Mater Chem B ; 12(36): 8977-8992, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39140678

RESUMO

Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.


Assuntos
Âmnio , Ouro , Animais , Ovinos , Ouro/química , Âmnio/química , Âmnio/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/citologia , Nanopartículas Metálicas/química , Células Cultivadas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Tamanho da Partícula
13.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201288

RESUMO

The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs. Our findings indicate that substrates like FCF can enhance the early development of focal adhesions (FAs), leading to the activation and propagation of mechanotransduction signals. This is primarily achieved through FAK autophosphorylation and YAP1 nuclear translocation pathways. Remarkably, inhibiting FAK autophosphorylation negated the observed changes. Proteome analysis further confirmed the central role of FAs in mechanotransduction propagation in CSFs cultured on FCF. This analysis also highlighted complex signaling pathways, including chromatin epigenetic modifications, in response to fibrillar substrates. Overall, our research highlights the potential pathways through which CSFs undergo behavioral changes when exposed to fibrillar substrates, identifying FAs as essential mechanotransducers.


Assuntos
Substância Própria , Fibroblastos , Adesões Focais , Mecanotransdução Celular , Humanos , Adesões Focais/metabolismo , Fibroblastos/metabolismo , Substância Própria/citologia , Substância Própria/metabolismo , Fosforilação , Matriz Extracelular/metabolismo , Células Cultivadas , Proteínas de Sinalização YAP/metabolismo , Colágenos Fibrilares/metabolismo , Âmnio/citologia , Âmnio/metabolismo , Quinase 1 de Adesão Focal/metabolismo
14.
Elife ; 122024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051990

RESUMO

Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.


Assuntos
Âmnio , Proteínas Morfogenéticas Ósseas , Regulação da Expressão Gênica no Desenvolvimento , Âmnio/metabolismo , Âmnio/embriologia , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Animais , Transdução de Sinais , Perfilação da Expressão Gênica , Diferenciação Celular , Feminino , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Células-Tronco Pluripotentes/metabolismo , Gravidez
15.
J Wound Care ; 33(Sup7): S4-S14, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38973638

RESUMO

OBJECTIVE: Diabetic foot ulcers (DFUs) continue to challenge wound care practitioners. This prospective, multicentre, randomised controlled trial (RCT) evaluated the effectiveness of a dehydrated Amnion Chorion Membrane (dACM) (Organogenesis Inc., US) versus standard of care (SoC) alone in complex DFUs in a challenging patient population. METHOD: Subjects with a DFU extending into dermis, subcutaneous tissue, tendon, capsule, bone or joint were enrolled in a 12-week trial. They were allocated equally to two treatment groups: dACM (plus SoC); or SoC alone. The primary endpoint was frequency of wound closure determined by a Cox analysis that adjusted for duration and wound area. Kaplan-Meier analysis was used to determine median time to complete wound closure (CWC). RESULTS: The cohort comprised 218 patients, and these were split equally between the two treatment groups with 109 patients in each. A Cox analysis showed that the estimated frequency of wound closure for the dACM plus SoC group was statistically superior to the SoC alone group at week 4 (12% versus 8%), week 6 (22% versus 11%), week 8 (31% versus 21%), week 10 (42% versus 27%) and week 12 (50% versus 35%), respectively (p=0.04). The computed hazard ratio (1.48 (confidence interval: 0.95, 2.29) showed a 48% greater probability of wound closure in favour of the dACM group. Median time to wound closure for dACM-treated ulcers was 84 days compared to 'not achieved' in the SoC-treated group (i.e., ≥50% of SoC-treated DFUs failed to heal by week 12; p=0.04). CONCLUSION: In an adequately powered DFU RCT, dACM increased the frequency, decreased the median time, and improved the probability of CWC when compared with SoC alone. dACM demonstrated beneficial effects in DFUs in a complex patient population. DECLARATION OF INTEREST: This study was funded by Organogenesis Inc., US. JC serves as a consultant and speaker for Organogenesis. RDD serves as a speaker for Organogenesis. OMA and MLS serve as consultants for Organogenesis. The authors have no other conflicts of interest to declare.


Assuntos
Âmnio , Córion , Pé Diabético , Padrão de Cuidado , Cicatrização , Humanos , Pé Diabético/terapia , Feminino , Âmnio/transplante , Masculino , Córion/transplante , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Resultado do Tratamento , Adulto , Curativos Biológicos
16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000065

RESUMO

Photochemical sealing of a nerve wrap over the repair site isolates and optimizes the regenerating nerve microenvironment. To facilitate clinical adoption of the technology, we investigated photosealed autologous tissue in a rodent sciatic nerve transection and repair model. Rats underwent transection of the sciatic nerve with repair performed in three groups: standard microsurgical neurorrhaphy (SN) and photochemical sealing with a crosslinked human amnion (xHAM) or autologous vein. Functional recovery was assessed at four-week intervals using footprint analysis. Gastrocnemius muscle mass preservation, histology, and nerve histomorphometry were evaluated at 120 days. Nerves treated with a PTB-sealed autologous vein improved functional recovery at 120 days although the comparison between groups was not significantly different (SN: -58.4 +/- 10.9; XHAM: -57.9 +/- 8.7; Vein: -52.4 +/- 17.1). Good muscle mass preservation was observed in all groups, with no statistical differences between groups (SN: 69 +/- 7%; XHAM: 70 +/- 7%; Vein: 70 +/- 7%). Histomorphometry showed good axonal regeneration in all repair techniques. These results demonstrate that peripheral nerve repair using photosealed autologous veins produced regeneration at least equivalent to current gold-standard microsurgery. The use of autologous veins removes costs and foreign body concerns and would be readily available during surgery. This study illustrates a new repair method that could restore normal endoneurial homeostasis with minimal trauma following severe nerve injury.


Assuntos
Regeneração Nervosa , Nervo Isquiático , Animais , Ratos , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/cirurgia , Nervo Isquiático/fisiologia , Humanos , Âmnio , Transplante Autólogo/métodos , Músculo Esquelético , Recuperação de Função Fisiológica , Masculino , Procedimentos Neurocirúrgicos/métodos , Veias/cirurgia
17.
Gynecol Endocrinol ; 40(1): 2382818, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39039858

RESUMO

Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.


Assuntos
Âmnio , Células Epiteliais , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/terapia , Feminino , Células Epiteliais/transplante , Âmnio/citologia , Âmnio/transplante
18.
PeerJ ; 12: e17616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952966

RESUMO

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Cordão Umbilical , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Humanos , Cordão Umbilical/citologia , Feminino , Tecido Adiposo/citologia , Células Cultivadas , Vilosidades Coriônicas/fisiologia , Âmnio/citologia , Diferenciação Celular
19.
Compend Contin Educ Dent ; 45(7): e1-e4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029967

RESUMO

With increased awareness, both in the dental literature and by the general public, of peri-implant disease, a growing trend in dentistry is to save teeth with a "questionable" periodontal prognosis. This prospective study involving such patients was designed to evaluate the effects of combining a bioactive barrier and graft, not on the socket but to augment adjacent periodontal conditions on teeth with severe periodontal bone loss at the time of extraction of an adjacent tooth. Fifteen patients were selected; teeth were extracted, ground, prepared with a pH 11 cleanser, partially demineralized, and made into a graft. This mixture was used to augment socket volume and perform periodontal regenerative surgery. The graft was covered with a bioactive amnion-chorion barrier membrane. Bioactive membranes can stimulate host cells in the surrounding gingival and periosteal tissues to accelerate site closure and healing, simultaneously exerting positive effects on the underlying bone and graft material not observed to the same extent with other membranes. This can improve healing and site regeneration as shown clinically and radiographically in this report. Use of these bioactive barrier membrane and dentin graft materials may have additive effects and provide stimulus for conversion to host bone after site healing. The combination of an amnion-chorion membrane with autologous dentin graft appears to maximize the benefits of the individual materials, improving guided tissue regeneration results and the prognoses of periodontally involved teeth.


Assuntos
Âmnio , Córion , Dentina , Extração Dentária , Humanos , Âmnio/transplante , Prognóstico , Estudos Prospectivos , Córion/transplante , Pessoa de Meia-Idade , Feminino , Adulto , Masculino , Perda do Osso Alveolar/cirurgia , Regeneração Tecidual Guiada Periodontal/métodos , Idoso
20.
Biomed Microdevices ; 26(3): 32, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963644

RESUMO

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.


Assuntos
Líquido Amniótico , Membranas Extraembrionárias , Dispositivos Lab-On-A-Chip , Humanos , Líquido Amniótico/citologia , Membranas Extraembrionárias/citologia , Membranas Extraembrionárias/metabolismo , Âmnio/citologia , Âmnio/metabolismo , Sobrevivência Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Movimento (Física) , Estresse Oxidativo , Modelos Biológicos , Sistemas Microfisiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...