Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.102
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850815

RESUMO

This study aimed to develop novel nanoparticles that can serve as an excellent oil-in-water (O/W) Pickering stabilizer. The polysaccharide-protein complex nanoparticles (PPCNs-20 and PPCNs-40) were prepared at different ultrasonication amplitudes (20 % and 40 %, respectively) from the polysaccharide-protein complexes (PPCs) which were extracted from the residue of Clitocybe squamulose. Compared with PPCs and PPCNs-20, the PPCNs-40 exhibited dispersed blade and rod shape, smaller average size, and larger zeta potential, which indicated significant potential in O/W Pickering emulsion stabilizers. Subsequently, PPCNs-40 stabilized Pickering emulsions were characterized at different concentrations, pHs, and oil phase contents. The average size, micromorphology, rheological properties, and storage stability of the emulsions were improved as the concentration of PPCNs-40, the ratio of the soybean oil phase and pH value increased. Pickering emulsions showed the best stability when the concentration of PPCNs-40 was 3 wt%, and the soybean oil fraction was 30 % under both neutral and alkaline conditions. The emulsions demonstrated shear thinning and gelation behavior. These findings have implications for the use of eco-friendly nanoparticles as stabilizers for Pickering emulsions and provide strategies for increasing the added value of C. squamulosa.


Assuntos
Emulsões , Nanopartículas , Polissacarídeos , Água , Emulsões/química , Nanopartículas/química , Polissacarídeos/química , Água/química , Reologia , Tamanho da Partícula , Concentração de Íons de Hidrogênio , Óleos/química
2.
Ultrason Sonochem ; 107: 106936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834000

RESUMO

This study focuses on developing a water-in-oil-in-water (W1/O/W2) double emulsion system using high-intensity ultrasound (HIU)-treated pea protein isolate (HIU-PPI) and pectin to encapsulate Lactobacillus plantarum (L. plantarum). The effects of ultrasound treatment on pea protein isolate (PPI) characteristics such as solubility, particle size, emulsification, surface hydrophobicity, and surface free sulfhydryl group were examined, determining optimal HIU processing conditions was 400 W for 10 min. The developed W1/O/W2 double emulsion system based on HIU-PPI demonstrated effective encapsulation and protection of L. plantarum, especially at the HIU-PPI concentration of 4 %, achieving an encapsulation efficiency of 52.65 %. Incorporating both HIU-PPI and pectin as emulsifiers increased the particle size and significantly enhanced the emulsion's viscosity. The highest bacterial encapsulation efficiency of the emulsion, 59.94 %, was attained at a HIU to pectin concentration ratio of 3:1. These emulsions effectively encapsulate and protect L. plantarum, with the concentration of HIU-PPI being a critical factor in enhancing probiotic survival under simulated gastrointestinal digestion. However, the concurrent utilization of pectin and HIU-PPI as emulsifiers did not provide a notable advantage compared to the exclusive use of HIU-PPI in enhancing probiotic viability during in vitro simulated digestion. This research offers valuable perspectives for the food industry on harnessing environmentally friendly, plant-based proteins as emulsifiers in probiotic delivery systems. It underscores the potential of HIU-modified pea protein and pectin in developing functional food products that promote the health benefits of probiotics.


Assuntos
Emulsões , Lactobacillus plantarum , Proteínas de Ervilha , Pectinas , Proteínas de Ervilha/química , Pectinas/química , Tamanho da Partícula , Água/química , Ondas Ultrassônicas , Sonicação , Solubilidade , Probióticos/química , Óleos/química , Interações Hidrofóbicas e Hidrofílicas
3.
Water Sci Technol ; 89(11): 3093-3103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877632

RESUMO

Hydraulic oil leaks during mechanical maintenance, resulting in flushing wastewater contaminated with dispersed nano-oil droplets. In this study, 75 mg L-1 of polysilicate aluminum ferric (PSAF) was stirred at 350 rpm and the optimal chemical oxygen demand (COD) removal was 71%. The increase of PSAF led to more hydrolysis of Fe, and 1,175 cm-1 hydroxyl bridged with negative oil droplets. At the same molar concentration, PSAF hydrolyzes cationic metals more rapidly than polymeric aluminum chloride (PAC). PSAF forms flocs of smaller complex structures with greater bridging. The Al-O and Si-O peaks occurred at 611 and 1,138 cm-1, indicating the formation of Si-O-Fe and Si-O-Al bonds on the flocs surface. Higher stirring speeds did not change the free energy of the flocs surface γTot, mainly because the decrease in the van der Waals force (γLW) offset the increase of Lewis acid-base force (γAB). Preserving the non-polar surface, in summary, owing to its bridging abilities and affinity for non-polar surfaces, PSAF demonstrates superior efficiency over PAC in capturing and removing oil droplets.


Assuntos
Compostos Férricos , Compostos Férricos/química , Alumínio/química , Óleos/química , Propriedades de Superfície , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
4.
Se Pu ; 42(6): 581-589, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845519

RESUMO

Oils and fats are commonly used in the pharmaceutical industry as solvents, emulsifiers, wetting agents, and dispersants, and are an important category of pharmaceutical excipients. Fatty acids with unique compositions are important components of oil pharmaceutical excipients. The Chinese Pharmacopoeia provides clear descriptions of the fatty acid types and limits suitable for individual oil pharmaceutical excipient. An unqualified fatty acid composition or content may indicate adulteration or deterioration. The fatty acid composition, as a key indicator for the identification and adulteration evaluation of oil pharmaceutical excipients, can directly affect the quality and safety of oil pharmaceutical excipients and preparations. Gas chromatography is the most widely used technique for fatty acid analysis, but it generally requires derivatization, which affects quantitative accuracy. Supercritical fluid chromatography (SFC), an environmentally friendly technique with excellent separation capability, offers an efficient method for detecting fatty acids without derivatization. Unlike other chromatographic methods, SFC does not use nonvolatile solvents (e. g., water) as the mobile phase, rendering it compatible with an evaporative light-scattering detector (ELSD) for enhanced detection sensitivity. However, the fatty acids in oil pharmaceutical excipients exist in the free and bound forms, and the low content of free fatty acids in these oil pharmaceutical excipients not only poses challenges for their detection but also complicates the determination of characteristic fatty acid compositions and contents. Moreover, the compositions and ratios of fatty acids are influenced by environmental factors, leading to interconversion between their two forms. In this context, saponification provides a simpler and faster alternative to derivatization. Saponification degrades oils and fats by utilizing the reaction between esters and an alkaline solution, ultimately releasing the corresponding fatty acids. Because this method is more cost effective than derivatization, it is a suitable pretreatment method for the detection of fatty acids in oil pharmaceutical excipients using the SFC-ELSD approach. In this study, we employed SFC-ELSD to simultaneously determine six fatty acids, namely, myristic acid, palmitic acid, stearic acid, arachidic acid, docosanoic acid, and lignoceric acid, in oil pharmaceutical excipients. Saponification of the oil pharmaceutical excipients using sodium hydroxide methanol solution effectively avoided the bias in the determination of fatty acid species and contents caused by the interconversion of fatty acids and esters. The separation of the six fatty acids was achieved within 12 min, with good linearity within their respective mass concentration ranges. The limits of detection and quantification were 5-10 mg/L and 10-25 mg/L, respectively, and the spiked recoveries were 80.93%-111.66%. The method proved to be sensitive, reproducible, and stable, adequately meeting requirements for the analysis of fatty acids in oil pharmaceutical excipients. Finally, the analytical method was successfully applied to the determination of six fatty acids in five types of oil pharmaceutical excipients, namely, corn oil, soybean oil, coconut oil, olive oil, and peanut oil. It can be combined with principal component analysis to accurately differentiate different types of oil pharmaceutical excipients, providing technical support for the rapid identification and quality control of oil pharmaceutical excipients. Thus, the proposed method may potentially be applied to the analysis of complex systems adulterated with oil pharmaceutical excipients.


Assuntos
Cromatografia com Fluido Supercrítico , Excipientes , Ácidos Graxos , Ácidos Graxos/análise , Ácidos Graxos/química , Cromatografia com Fluido Supercrítico/métodos , Excipientes/análise , Excipientes/química , Espalhamento de Radiação , Luz , Óleos/química , Óleos/análise
5.
Int J Biol Macromol ; 272(Pt 2): 132937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848834

RESUMO

Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.


Assuntos
Emulsões , Óleos , Proteínas , Água , Emulsões/química , Adsorção , Água/química , Óleos/química , Proteínas/química , Tamanho da Partícula , Propriedades de Superfície , Reologia , Molhabilidade
7.
Methods Mol Biol ; 2817: 45-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907146

RESUMO

Single-cell proteomic analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems' heterogeneous populations. Mass spectrometry (MS)-based proteomics is a promising alternative for quantitative single-cell proteomics. Various techniques are continually evolving to address the challenges of limited sample material, detection sensitivity, and throughput constraints. In this chapter, we describe a nanoliter-scale glass-oil-air-droplet (gOAD) chip engineered for heat tolerance, which combines droplet-based microfluidics and shotgun proteomic analysis techniques to enable multistep sample pretreatment.


Assuntos
Vidro , Proteômica , Análise de Célula Única , Proteômica/métodos , Análise de Célula Única/métodos , Análise de Célula Única/instrumentação , Vidro/química , Humanos , Óleos/química , Espectrometria de Massas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Ar , Proteoma/análise , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Microfluídica/métodos , Microfluídica/instrumentação
8.
Food Res Int ; 187: 114435, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763682

RESUMO

Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.


Assuntos
Emulsões , Géis , Emulsões/química , Géis/química , Água/química , Óleos/química
9.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747964

RESUMO

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óxido de Zinco , Óxido de Zinco/química , Água/química , Óleos/química
10.
Int J Biol Macromol ; 268(Pt 2): 131977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692540

RESUMO

The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.


Assuntos
Emulsificantes , Emulsões , Temperatura , Emulsificantes/química , Emulsões/química , Óleos/química , Água/química , Sais/química , Metacrilatos/química , Quitosana/química
11.
Food Chem ; 451: 139404, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714112

RESUMO

Models predicting lipid oxidation in oil-in-water (O/W) emulsions are a requirement for developing effective antioxidant solutions. Existing models do, however, not include explicit equations that account for composition and structural features of O/W emulsions. To bridge this gap, a mechanistic kinetic model for lipid oxidation in emulsions is presented, describing the emulsion as a one-dimensional three phase (headspace, water, and oil) system. Variation in oil droplet sizes, overall surface area of oil/water interface, oxidation of emulsifiers, and the presence of catalytic transition metals were accounted for. For adequate predictions, the overall surface area of oil/water interface needs to be determined from the droplet size distribution obtained by dynamic and static light scattering (DLS, SLS). The kinetic model predicted well the formation of oxidation products in both mono- and polydisperse emulsions, with and without presence of catalytic transition metals.


Assuntos
Emulsões , Lipídeos , Oxirredução , Polissorbatos , Emulsões/química , Cinética , Polissorbatos/química , Lipídeos/química , Água/química , Tamanho da Partícula , Modelos Químicos , Óleos/química
12.
Int J Biol Macromol ; 269(Pt 2): 132138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718998

RESUMO

Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.


Assuntos
Dióxido de Carbono , Poliésteres , Poliésteres/química , Adsorção , Dióxido de Carbono/química , Óleos/química , Poliuretanos/química , Cinética
13.
Int J Biol Macromol ; 269(Pt 2): 132175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729497

RESUMO

Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.


Assuntos
Celulose , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Nanofibras , Óleos , Água , Emulsões/química , Nanofibras/química , Óleos/química , Água/química , Celulose/química , Propriedades de Superfície , Biodegradação Ambiental , Mananas/química
14.
Food Res Int ; 186: 114374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729731

RESUMO

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Assuntos
Ácido Clorogênico , Emulsificantes , Emulsões , Ergosterol , Tamanho da Partícula , Água , Ergosterol/química , Emulsões/química , Emulsificantes/química , Água/química , Ácido Clorogênico/química , Viscosidade , Antioxidantes/química , Óleos/química , Concentração de Íons de Hidrogênio
15.
Langmuir ; 40(21): 11239-11250, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751154

RESUMO

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.


Assuntos
Águas Residuárias , Adsorção , Águas Residuárias/química , Poluentes Químicos da Água/química , Alginatos/química , Celulose/química , Óleos/química , Biodegradação Ambiental , Polímeros/química
16.
Int J Biol Macromol ; 270(Pt 1): 132035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705316

RESUMO

The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.


Assuntos
Antibacterianos , Galactanos , Hidrogéis , Mananas , Nanopartículas Metálicas , Gomas Vegetais , Prata , Galactanos/química , Gomas Vegetais/química , Prata/química , Mananas/química , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Nanopartículas Metálicas/química , Hidrogéis/química , Águas Residuárias/química , Purificação da Água/métodos , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Óleos/química
17.
Nanotechnology ; 35(35)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38806006

RESUMO

Artificially synthesized DNA is involved in the construction of a library of oil tracers due to their unlimited number and no-biological toxicity. The strategy of the construction is proposed by oleophilic Silica-encapsulated DNA nanoparticles, which offers fresh thinking in developing novel tracers, sensors, and molecular machines in engineering & applied sciences based on artificially synthesized DNA blocks.


Assuntos
DNA , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , DNA/química , Nanopartículas/química , Óleos/química
18.
ACS Appl Mater Interfaces ; 16(22): 29198-29209, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785397

RESUMO

Patchouli oil has exhibited remarkable efficacy in the treatment of colitis. However, its volatility and potential irritancy are often drawbacks when extensively used in clinical applications. Oil gel is a semisolid and thermoreversible system that has received extensive interest for its solubility enhancement, inhibition of bioactive component recrystallization, and the facilitation of controlled bioactive release. Therefore, we present a strategy to develop an oil gel formulation that addresses this multifaceted problem. Notably, a patchouli oil gel formulation was designed to solidify and trap patchouli oil into a spatially stable crystal-particle structure and colonic released delivery, which has an advantage of the stable structure and viscosity. The patchouli oil gel treatment of zebrafish with colitis improved goblet cells and decreased macrophages. Additionally, patchouli oil gel showed superior advantages for restoring the tissue barrier. Furthermore, our investigative efforts unveiled patchouli oil's influence on TRP channels, providing evidence for its potential role in mechanisms of anti-inflammatory action. While the journey continues, these preliminary revelations provide a robust foundation for considering the adoption of patchouli oil gel as a pragmatic intervention for managing colitis.


Assuntos
Colite , Géis , Peixe-Zebra , Animais , Géis/química , Colite/tratamento farmacológico , Colite/patologia , Colite/induzido quimicamente , Sistemas de Liberação de Medicamentos , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Óleos/química
19.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564658

RESUMO

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Assuntos
Reagentes de Ligações Cruzadas , Expressão Gênica , Globulinas , Hypocreales , Monofenol Mono-Oxigenase , Proteínas Recombinantes , Proteínas de Soja , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Reagentes de Ligações Cruzadas/isolamento & purificação , Reagentes de Ligações Cruzadas/metabolismo , Hypocreales/classificação , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Hypocreales/metabolismo , Globulinas/química , Globulinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Eletroporação , Celulose , Sulfato de Amônio , Cromatografia em Gel , Precipitação Fracionada , Emulsões/química , Emulsões/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estabilidade Proteica , Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas , Óleos/química , Água/química
20.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667763

RESUMO

Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.


Assuntos
Ácidos Docosa-Hexaenoicos , Ésteres , Lipase , Microalgas , Estramenópilas , Ácidos Docosa-Hexaenoicos/química , Lipase/metabolismo , Lipase/química , Estramenópilas/química , Microalgas/química , Ésteres/química , Enzimas Imobilizadas/química , Proteínas Fúngicas , Biomassa , Óleos de Peixe/química , Lipídeos/química , Óleos/química , Organismos Aquáticos , Ácidos Graxos/química , Ácidos Graxos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...