Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.799
Filtrar
1.
PLoS One ; 19(6): e0303702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833454

RESUMO

Nile tilapia (Oreochromis niloticus) is valued in aquaculture because of its quick development and ability to thrive in various environments. Myxosporeans are among the fish parasites that affect fish productivity, as they impact fish growth and reproduction, resulting in large fish deaths in farms and hatcheries. This study has been focused on morpho-molecular identification for the myxosporean parasites infecting Nile tilapia from three governorates in Egypt and assessment of gene expression of different cytokines (Interleukin-1ßeta (IL-1ß), major histocompatibility complex class II (MHC-II), and clusters of differentiation 4 (CD-4) and 8 (CD-8)) in tissues. Additionally, this work aimed to correlate the developed histopathological alterations and inflammatory reactions in gills with immunohistochemical expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α). Finally, the infected fish's cortisol levels and blood glucose were assessed. Results of BLAST sequence analysis of the 18S rRNA for the collected protozoans confirmed Myxobolus agolus, M. brachysporus, M. tilapiae, and Henneguya species. The molecular characterization of the immunological status of gills revealed marked upregulation of different inflammatory cytokines in the gills of infected fish. There was a significantly increased serum cortisol and glucose level in infected fish compared with control, non-infected ones. Severe histopathological alterations were observed in the infected fish gills, associated with increased expression of iNOS and TNF-α and related to myxosporean infection. The present study provides new insights into oxidative stress biomarkers in Nile tilapia infected with Myxosporeans and elucidates the gill's immune status changes as a portal of entry for protozoa that contribute to tissue damage.


Assuntos
Ciclídeos , Doenças dos Peixes , Brânquias , Myxozoa , Doenças Parasitárias em Animais , Animais , Brânquias/parasitologia , Brânquias/patologia , Brânquias/imunologia , Ciclídeos/parasitologia , Ciclídeos/imunologia , Ciclídeos/genética , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/patologia , Myxozoa/fisiologia , Biomarcadores , Imuno-Histoquímica , Citocinas/metabolismo , Egito , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
2.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879332

RESUMO

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Assuntos
Carpas , Ivermectina , NF-kappa B , Óxido Nítrico , Resveratrol , Transdução de Sinais , Animais , Carpas/metabolismo , NF-kappa B/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resveratrol/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo
3.
Front Immunol ; 15: 1411930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881891

RESUMO

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Assuntos
Células de Kupffer , Camundongos Knockout , Proteínas de Ligação a RNA , Sepse , Animais , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Sepse/imunologia , Sepse/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Manose , Interleucina-6/metabolismo
4.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717567

RESUMO

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Assuntos
Interleucina-6 , Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Hepatopatia Gordurosa não Alcoólica , Fator de Necrose Tumoral alfa , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino , Adulto , Interleucina-6/sangue , Interleucina-6/genética , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo , Estresse Oxidativo/genética , Estudos de Casos e Controles , Malondialdeído/sangue
5.
Nutrients ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794644

RESUMO

Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-κB, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Deficiência de Magnésio , Magnésio , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Deficiência de Magnésio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Magnésio/metabolismo , NF-kappa B/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Endotélio Vascular/metabolismo
6.
Int Immunopharmacol ; 135: 112333, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805907

RESUMO

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.


Assuntos
Arginase , Hipersensibilidade Alimentar , Macrófagos , Camundongos Endogâmicos BALB C , Palaemonidae , Tropomiosina , Animais , Tropomiosina/imunologia , Hipersensibilidade Alimentar/imunologia , Camundongos , Macrófagos/imunologia , Arginase/metabolismo , Palaemonidae/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Lectinas de Ligação a Manose/metabolismo , Feminino , Receptor de Manose , Jejuno/imunologia , Jejuno/patologia , Células Cultivadas , Histamina/metabolismo , Ativação de Macrófagos
7.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759536

RESUMO

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Assuntos
Cromo , Colo , Mucina-2 , Níquel , Animais , Cromo/toxicidade , Níquel/toxicidade , Camundongos , Colo/efeitos dos fármacos , Colo/patologia , Mucina-2/genética , Mucina-2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Perfilação da Expressão Gênica , Masculino , Digestão/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Transcriptoma/efeitos dos fármacos , Ocludina/metabolismo , Ocludina/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
8.
J Ethnopharmacol ; 332: 118374, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38789093

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY: The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS: We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS: In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS: In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Melaninas , Picrasma , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Picrasma/química , Antioxidantes/farmacologia , Melaninas/metabolismo , Etanol/química , Células HaCaT , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
9.
Microb Pathog ; 192: 106719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810768

RESUMO

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Polissacarídeos , Vírus da Gastroenterite Transmissível , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Células RAW 264.7 , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Antivirais/farmacologia , Rizoma/química , Interleucina-1beta/metabolismo , Peso Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Linhagem Celular , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Monossacarídeos , Óxido Nítrico/metabolismo , Fatores Imunológicos/farmacologia
10.
Redox Biol ; 73: 103191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762951

RESUMO

Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.


Assuntos
Heme , Inflamação , Lipopolissacarídeos , Macrófagos , Óxido Nítrico , Humanos , Heme/metabolismo , Animais , Óxido Nítrico/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fosforilação Oxidativa/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos
11.
Biomolecules ; 14(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38672406

RESUMO

Peroxidative damage to human spermatozoa has been shown to be the primary cause of male infertility. The possible role of nitric oxide (NO) in affecting sperm motility, capacitation, and acrosome reaction has been reported, too. The overproduction of NO by the enzyme inducible nitric oxide synthase (iNOS) could be responsible as it has been implicated in the pathogenesis of many diseases. There have been many studies on regulating iNOS function in various tissues, especially by protein-protein interaction; however, no study has looked for iNOS-interacting proteins in the human testis. Here, we have reported the identification of two proteins that interact with iNOS. We initially undertook a popular yeast two-hybrid assay to screen a human testis cDNA library in yeast using an iNOS-peptide fragment (amino acids 181-335) as bait. We verified our data using the mammalian chemiluminescent co-IP method; first, employing the same peptide and, then, a full-length protein co-expressed in HEK293 cells in addition to the candidate protein. In both cases, these two protein partners of iNOS were revealed: (a) sperm acrosome-associated 7 protein and (b) retinoblastoma tumor-suppressor binding protein.


Assuntos
Óxido Nítrico Sintase Tipo II , Testículo , Técnicas do Sistema de Duplo-Híbrido , Humanos , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Testículo/metabolismo , Células HEK293 , Ligação Proteica
12.
Redox Biol ; 72: 103166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685170

RESUMO

S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.


Assuntos
Miocárdio , Processamento de Proteína Pós-Traducional , Proteína com Valosina , Animais , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Oxirredução , Estresse Oxidativo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética
13.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R552-R566, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586887

RESUMO

Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in ß-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of ß-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates ß-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in ß-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is ß-cell selective, as the actions of nitric oxide in non-ß-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that ß-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.


Assuntos
Proteínas Reguladoras de Apoptose , Regulação da Expressão Gênica , Células Secretoras de Insulina , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Ratos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Membrana , Heme Oxigenase-1
14.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636736

RESUMO

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Assuntos
Aeromonas hydrophila , Arginase , Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Mitocôndrias , Óxido Nítrico , Animais , Aeromonas hydrophila/fisiologia , Arginase/genética , Arginase/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Óxido Nítrico/metabolismo , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina
15.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636716

RESUMO

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Assuntos
Fluoruracila , Hematopoese , Células-Tronco Hematopoéticas , Mitocôndrias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Transdução de Sinais , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fluoruracila/farmacologia , Hematopoese/genética , Óxido Nítrico/metabolismo , Regeneração , Camundongos Knockout , Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL
16.
Vet Immunol Immunopathol ; 271: 110752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579442

RESUMO

Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.


Assuntos
Galinhas , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo I , Zimosan , Animais , Zimosan/farmacologia , Lipopolissacarídeos/farmacologia , Galinhas/imunologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Masculino , Indazóis/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo
17.
Benef Microbes ; 15(3): 331-341, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677715

RESUMO

This study investigated the anti-inflammatory effects of cell-free supernatant of Lactococcus lactis IDCC 2301 on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Expression of inflammatory mediators and cytokines, and the production of nitric oxide (NO) and prostaglandin E2 (PGE2) were qualitatively analysed. The expression of signal transductors in inflammatory cascades was quantified by western blot. Treatment with cell-free supernatant of L. lactis IDCC 2301 significantly decreased the mRNA expression levels of tumour necrosis factor (TNF-α) and interleukins including IL-1ß and IL-6. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were also remarkably reduced in LPS-induced macrophages after the treatment. Furthermore, L. lactis IDCC 2301 reduced the levels of both dephosphorylated and phosphorylated forms of nuclear factor-kappa B (NF-κB), IκB-α, extracellular signal-regulated kinases (ERK), c-Jun amino-terminal kinases (JNK), and p38 in LPS-induced RAW 264.7 cells. Therefore, L. lactis IDCC 2301 shows anti-inflammatory activity by suppressing the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways.


Assuntos
Anti-Inflamatórios , Lactococcus lactis , Lipopolissacarídeos , Macrófagos , NF-kappa B , Óxido Nítrico , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Citocinas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dinoprostona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
18.
PLoS One ; 19(3): e0299294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451983

RESUMO

Dendritic cell (DC) activation is marked by key events including: (I) rapid induction and shifting of metabolism favoring glycolysis for generation of biosynthetic metabolic intermediates and (II) large scale changes in gene expression including the upregulation of the antimicrobial enzyme inducible nitric oxide synthase (iNOS) which produces the toxic gas nitric oxide (NO). Historically, acute metabolic reprogramming and NO-mediated effects on cellular metabolism have been studied at specific timepoints during the DC activation process, namely at times before and after NO production. However, no formal method of real time detection of NO-mediated effects on DC metabolism have been fully described. Here, using Real-Time Extracellular Flux Analysis, we experimentally establish the phenomenon of an NO-dependent mitochondrial respiration threshold, which shows how titration of an activating stimulus is inextricably linked to suppression of mitochondrial respiration in an NO-dependent manner. As part of this work, we explore the efficacy of two different iNOS inhibitors in blocking the iNOS reaction kinetically in real time and explore/discuss parameters and considerations for application using Real Time Extracellular Flux Analysis technology. In addition, we show, the temporal relationship between acute metabolic reprogramming and NO-mediated sustained metabolic reprogramming kinetically in single real-time assay. These findings provide a method for detection of NO-mediated metabolic effects in DCs and offer novel insight into the timing of the DC activation process with its associated key metabolic events, revealing a better understanding of the nuances of immune cell biology.


Assuntos
Óxido Nítrico , Respiração , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regulação para Cima
19.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538595

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Assuntos
Toxoplasma , Vacúolos , Animais , Humanos , Camundongos , Interferons/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/metabolismo , Vacúolos/metabolismo
20.
Exp Parasitol ; 260: 108723, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432406

RESUMO

Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1ß,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 µg/mL while no significant impact on metabolic activity was observed at 80 µg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1ß, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1ß, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.


Assuntos
Anexinas , Arginase , Equinococose , Echinococcus granulosus , Macrófagos , Óxido Nítrico Sintase Tipo II , Animais , Echinococcus granulosus/genética , Echinococcus granulosus/imunologia , Camundongos , Macrófagos/parasitologia , Macrófagos/metabolismo , Células RAW 264.7 , Arginase/metabolismo , Arginase/genética , Equinococose/parasitologia , Equinococose/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Anexinas/genética , Anexinas/metabolismo , Cães , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Citocinas/metabolismo , Citocinas/genética , RNA Mensageiro/metabolismo , Ensaio de Imunoadsorção Enzimática , Western Blotting , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA