Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Glob Chang Biol ; 30(10): e17549, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39450939

RESUMO

In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open-top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N-15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH4 and N2O uptake after the plant dieback. With time, surface N2O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ -50%) and nitrification rates (~ -70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO3 - significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem-climate feedback.


Assuntos
Nitrogênio , Estações do Ano , Solo , Tundra , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Regiões Árticas , Groenlândia , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Biomassa , Mudança Climática , Plantas/metabolismo , Aquecimento Global , Isótopos de Nitrogênio/análise , Temperatura , Metano/metabolismo , Metano/análise
2.
Huan Jing Ke Xue ; 45(10): 6077-6085, 2024 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-39455151

RESUMO

The ammonia oxidation process driven by microorganisms is a dominant source for nitrous oxide (N2O) emissions. Here, we examined the influence of greenhouse vegetable planting ages on soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), which is of great significance for assessing the soil quality status and greenhouse gas transformations. A field study was conducted at different times (1, 5, 10, and 20 a) in greenhouse vegetable soils of Gaoyi, Hebei Province. Chemical analysis and Illumina NovaSeq high-throughput sequencing were used to analyze the soil physicochemical properties and community structures and diversity of AOA and AOB. The variation in AOA and AOB communities and the driving factors in greenhouse soils at different ages were also investigated. The results showed that the contents of total nitrogen, organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium first increased and then decreased with the prolongation of growth. The contents of nitrate nitrogen, ammonium nitrogen, and electrical conductivity first decreased and then increased with the prolongation of growth. The pH value of soils decreased with the prolongation of growth. The abundance and diversity index of AOA and AOB first decreased and then increased with the prolongation of growth. Nitrososphaeria, unclassified Thaumarchaeota, and Candidatus Nitrosocaldus were the dominant species of AOA, while Betaproteobacteria and Nitrosospira were the dominant species of AOB. The composition of the soil AOA community varied greatly compared to that of AOB with the prolongation of growth. Correlation analysis showed that the changes in soil nutrient factors had a significant correlation with AOA and AOB communities. Redundancy analysis indicated that ammonium nitrogen, alkali-hydrolyzable nitrogen, and nitrate nitrogen were key factors of AOA communities, while electrical conductivity, available potassium, and nitrate nitrogen were key factors for AOB. In summary, long-term planting of greenhouse vegetables significantly affected the abundance and composition of soil AOA and AOB communities. Our results provide a theoretical basis for further studies on the greenhouse gas transformation and microbial mechanisms of the nitrogen cycle in greenhouse soils.


Assuntos
Amônia , Archaea , Bactérias , Oxirredução , Microbiologia do Solo , Verduras , Archaea/metabolismo , Archaea/crescimento & desenvolvimento , Archaea/classificação , Amônia/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Verduras/crescimento & desenvolvimento , Solo/química , China , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Fatores de Tempo , Agricultura/métodos , Nitrogênio/metabolismo
3.
Environ Int ; 192: 109028, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39307007

RESUMO

The use of biochar to reduce the gas emissions from paddy soils is a promising approach. However, the manner in which biochar and soil microbial communities interact to affect CO2, CH4, and N2O emissions is not clearly understood, particularly when compared with other amendments. In this study, high-throughput sequencing, soil metabolomics, and quantitative real-time PCR were utilized to compare the effects of biochar (BC) and organic manure (OM) on soil microbial community structure, metabolomic profiles and functional genes, and ultimately CO2, CH4, and N2O emissions. Results indicated that BC and OM had opposite effects on soil CO2 and N2O emissions, with BC resulting in lower emissions and OM resulting in higher emissions, whereas BC, OM, and their combined amendments increased cumulative CH4 emissions by 19.5 %, 31.6 %, and 49.1 %, respectively. BC amendment increased the abundance of methanogens (Methanobacterium and Methanocella) and denitrifying bacteria (Anaerolinea and Gemmatimonas), resulting in an increase in the abundance of mcrA, amoA, amoB, and nosZ genes and the secretion of a flavonoid (chrysosplenetin), which caused the generation of CH4 and the reduction of N2O to N2, thereby accelerating CH4 emissions while reducing N2O emissions. Simultaneously, OM amendment increased the abundance of the methanogen Caldicoprobacter and denitrifying Acinetobacter, resulting in increased abundance of mcrA, amoA, amoB, nirK, and nirS genes and the catabolism of carbohydrates [maltotriose, D-(+)-melezitose, D-(+)-cellobiose, and maltotetraose], thereby enhancing CH4 and N2O emissions. Moreover, puerarin produced by Bacillus metabolism may contribute to the reduction in CO2 emissions by BC amendment, but increase in CO2 emissions by OM amendment. These findings reveal how BC and OM affect greenhouse gas emissions by modulating soil microbial communities, functional genes, and metabolomic profiles.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Esterco , Nitrogênio , Microbiologia do Solo , Solo , Esterco/microbiologia , Solo/química , Gases de Efeito Estufa/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/metabolismo , Microbiota , Metabolômica , Metano/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
4.
Environ Sci Technol ; 58(39): 17295-17303, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39291625

RESUMO

Nitrous oxide (N2O) is a potent greenhouse gas with various production pathways. N2O reductase (N2OR) is the primary N2O sink, but the distribution of its gene clades, typically nosZI and atypically nosZII, along urbanization gradients remains poorly understood. Here we sampled soils from forests, parks, and farmland across eight provinces in eastern China, using high-throughput sequencing to distinguish between two N2O-reducing bacteria clades. A deterministic process mainly determined assemblies of the nosZI communities. Homogeneous selection drove nosZI deterministic processes, and both homogeneous and heterogeneous selection influenced nosZII. This suggests nosZII is more sensitive to environmental changes than nosZI, with significant changes in community structure over time or space. Ecosystems with stronger anthropogenic disturbance, such as urban areas, provide diverse ecological niches for N2O-reducing bacteria (especially nosZII) to adapt to environmental fluctuations. Structural equation modeling (SEM) and correlation analyses revealed that pH significantly influences the community composition of both N2O-reducing bacteria clades. This study underscores urbanization's impact on N2O-reducing bacteria in urban soils, highlighting the importance of nosZII and survival strategies. It offers novel insights into the role of atypical denitrifiers among N2O-reducing bacteria, underscoring their potential ecological importance in mitigating N2O emissions from urban soils.


Assuntos
Bactérias , Óxido Nitroso , Microbiologia do Solo , Solo , Urbanização , Óxido Nitroso/metabolismo , Solo/química , Bactérias/metabolismo , China , Ecossistema
5.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1725-1734, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235032

RESUMO

Climate warming and drying has led to a sharp increase in nitrogen (N) emissions from the boreal peatland soils, but the underlying microbial-mediated mechanism is still unclear. We reviewed the responses of soil N transformation and emission in alpine peatland to temperature increases and water table changes, the interaction between soil anaerobic ammonia oxidation (Anammox) and NO3- dissimilatory reduction processes, and soil N2O production pathways and their contributions. There are several knowledge gaps. First, the amount of N loss in peatlands in alpine areas is seriously underestimated because most studies focused only on soil N2O emissions and ignored the release of N2. Second, the contribution of Anammox process to N2 emissions from peatlands is not quantified. Third, there is a lack of quantification of the relative contributions of Anammox, bacterial denitrification, and fungal co-denitrification processes to N2 loss. Finally, the decoupling mechanism of Anammox and NO3- reduction processes under a warming and drying climate scenario is not clear. Considering aforementioned shortages in previous studies, we proposed the directions and contents for future research. Through building an experimental platform with field warming and water level controlling, combining stable isotope, molecular biology, and metagenomics technology, the magnitude, composition ratio and main controlling factors of N emissions (N2O, NO, and N2) in boreal peatlands should be systematically investigated. The interaction among the main N loss processes in soils as well as the relative contributions of nitrification, anaerobic ammonia oxidation, and denitrification to N2O and N2 productions should be investigated and quantified. Furthermore, the sensitive microbial groups and the coupling between soil N transformations and microbial community succession should be clarified to reveal the microbiological mechanism underlying the responses of soil N turnover process to climate warming and drying.


Assuntos
Mudança Climática , Aquecimento Global , Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/análise , Nitrogênio/metabolismo , Ecossistema , Secas , Óxido Nitroso/análise , Óxido Nitroso/metabolismo
6.
J Hazard Mater ; 479: 135673, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217949

RESUMO

Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.


Assuntos
Antibacterianos , Ciprofloxacina , Desnitrificação , Microbiologia do Solo , Poluentes do Solo , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Poluentes do Solo/metabolismo , Desnitrificação/efeitos dos fármacos , Antibacterianos/farmacologia , Óxido Nitroso/metabolismo , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Nitrificação/efeitos dos fármacos
7.
J Environ Manage ; 369: 122357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232327

RESUMO

A large amount of greenhouse gas nitrous oxide (N2O) will be produced during the biological nitrogen removal process for organic wastewater of low C/N ratio. One of the effective methods to solve this problem is to incorporate inexpensive carbon source. In this study, raw wastewater (RW) from pig farm, that was not anaerobically digested, was utilized as exogenous carbon in both A/O and SBR aerobic reactor to treat liquid digestate with high ammonia nitrogen and low C/N ratio. The results showed that N2O emission in SBR was higher than that of A/O process under the same nitrogen load. The N2O conversion in the biological nitrogen removal process was investigated by the strategy of integrating stable isotope method and metagenomics. The δO18-N2O, δN15-N2O, and SP values of the SBR were closer to the denitrification values of Ammonia-Oxidizing Bacteria (AOB) than those of A/O. The abundance of AOB in the SBR reactor was higher than that in the A/O reactor, while the abundance of denitrifying bacteria was lower. The amoA/B/C gene abundance in the SBR was greater than that in the A/O, and the NOS gene abundance was the opposite. The results indicated that both AOB denitrification and bacterial denitrification led to the increase of N2O emissions of the SBR.


Assuntos
Amônia , Bactérias , Desnitrificação , Nitrogênio , Óxido Nitroso , Águas Residuárias , Águas Residuárias/química , Amônia/metabolismo , Bactérias/metabolismo , Óxido Nitroso/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Oxirredução
8.
J Environ Manage ; 369: 122389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241602

RESUMO

Nitrate-dependent anaerobic methane oxidation (Nitrate-DAMO) is a novel and sustainable process that removes both nitrogen and methane. Previously, the metabolic pathway of Nitrate-DAMO has been intensively studied with some results. However, the production and consumption of nitrous oxide (N2O) in the Nitrate-DAMO system were widely disregarded. In this study, a Nitrate-DAMO system was used to investigate the effect of operational parameters (C/N ratio, pH, and temperature) on N2O accumulation, and the optimal operating conditions were determined (C/N = 3, pH = 6.5, and temperature = 20 °C). In this study, an enzyme kinetic model was used to fit the nitrate nitrogen degradation and the nitrous oxide production and elimination under different operating conditions. The thermodynamic model of N2O production and elimination in the system also has been constructed. Multiple linear regression analysis found that pH was the most important factor influencing N2O accumulation. The Metagenomics sequencing results showed that alkaline pH promoted the abundance of Nor genes and denitrifying bacteria, which were significantly and positively correlated with N2O emissions. And alkaline pH also promoted the production of Mdo genes related to the N2O-driven AOM reaction, indicating that part of the N2O was consumed by denitrifying bacteria and the other part was consumed by the N2O-driven AOM reaction. These findings reveal the mechanism of N2O production and consumption in DAMO systems and provide a theoretical basis for reducing N2O production and greenhouse gas emissions in actual operation.


Assuntos
Metano , Nitratos , Óxido Nitroso , Óxido Nitroso/metabolismo , Nitratos/metabolismo , Cinética , Metano/metabolismo , Oxirredução , Anaerobiose , Nitrogênio/metabolismo , Desnitrificação , Bactérias/metabolismo
9.
mBio ; 15(10): e0034724, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39207169

RESUMO

DPANN archaea have characteristically small cells and unique genomes that were long overlooked in diversity surveys. Their reduced genomes often lack essential metabolic pathways, requiring symbiotic relationships with other archaeal and bacterial hosts for survival. Yet a long-standing question remains, what is the advantage of maintaining ultrasmall cells. A recent study by Zhang et al. examined genomes of DPANN archaea from marine oxygen deficient zones (ODZs) (I. H. Zhang, B. Borer, R. Zhao, S. Wilbert, et al., mBio 15:e02918-23, 2024, https://doi.org/10.1128/mbio.02918-23). Surprisingly, these genomes contain a broad array of metabolic pathways including genes predicted to be involved in nitrous oxide (N2O) reduction. However, N2O levels are likely too low in ODZs to make this metabolically feasible. Modeling co-localization of DPANN archaea (N2O consumers) with other larger cells (N2O producers) demonstrates that N2O uptake rates can be optimized by maximizing the producer-to-consumer size ratio and proximity of consumer cells to producers. This may explain why such a diversity of archaea maintain extremely small cell sizes.


Assuntos
Archaea , Genoma Arqueal , Simbiose , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Redes e Vias Metabólicas/genética , Óxido Nitroso/metabolismo
10.
Nature ; 633(8029): 365-370, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169192

RESUMO

The nitrogen isotopic composition of sedimentary rocks (δ15N) can trace redox-dependent biological pathways and early Earth oxygenation1,2. However, there is no substantial change in the sedimentary δ15N record across the Great Oxidation Event about 2.45 billion years ago (Ga)3, a prominent redox change. This argues for a temporal decoupling between the emergence of the first oxygen-based oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 2.45 Ga (ref. 3). The transition between both states shows strongly positive δ15N values (10-50‰) in rocks deposited between 2.8 Ga and 2.6 Ga, but their origin and spatial extent remain uncertain4,5. Here we report strongly positive δ15N values (>30‰) in the 2.68-Gyr-old shallow to deep marine sedimentary deposit of the Serra Sul Formation6, Amazonian Craton, Brazil. Our findings are best explained by regionally variable extents of ammonium oxidation to N2 or N2O tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was operating at 2.7 Ga. Molecular oxygen production probably shifted the redox potential so that an intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in surface waters. We propose to name this period, when strongly positive nitrogen isotopic compositions are superimposed on the usual range of Precambrian δ15N values, the Nitrogen Isotope Event. We suggest that it marks the earliest steps of the biogeochemical reorganizations that led to the Great Oxidation Event.


Assuntos
Archaea , Sedimentos Geológicos , Ciclo do Nitrogênio , Nitrogênio , Oxigênio , Compostos de Amônio/metabolismo , Compostos de Amônio/análise , Atmosfera/química , Brasil , Sedimentos Geológicos/química , História Antiga , Nitrogênio/metabolismo , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Oxirredução , Oxigênio/metabolismo , Oxigênio/análise , Fotossíntese , Archaea/metabolismo , Nitratos/análise , Nitratos/metabolismo , Biologia Marinha
11.
Nat Commun ; 15(1): 7298, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181870

RESUMO

Denitrification - a key process in the global nitrogen cycle and main source of the greenhouse gas N2O - is intricately controlled by O2. While the transition from aerobic respiration to denitrification is well-studied, our understanding of denitrifier communities' responses to cyclic oxic/anoxic shifts, prevalent in natural and engineered systems, is limited. Here, agricultural soil is exposed to repeated cycles of long or short anoxic spells (LA; SA) or constant oxic conditions (Ox). Surprisingly, denitrification and N2O reduction rates are three times greater in Ox than in LA and SA during a final anoxic incubation, despite comparable bacterial biomass and denitrification gene abundances. Metatranscriptomics indicate that LA favors canonical denitrifiers carrying nosZ clade I. Ox instead favors nosZ clade II-carrying partial- or non-denitrifiers, suggesting efficient partnering of the reduction steps among organisms. SA has the slowest denitrification progression and highest accumulation of intermediates, indicating less functional coordination. The findings demonstrate how adaptations of denitrifier communities to varying O2 conditions are tightly linked to the duration of anoxic episodes, emphasizing the importance of knowing an environment's O2 legacy for accurately predicting N2O emissions originating from denitrification.


Assuntos
Bactérias , Desnitrificação , Óxido Nitroso , Oxigênio , Microbiologia do Solo , Solo , Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/genética , Solo/química , Ciclo do Nitrogênio
12.
PLoS One ; 19(8): e0307774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093909

RESUMO

Raising attentions have focused on how to alleviate greenhouse gas (GHG) emissions from orchard system while simultaneously increase fruit production. Microalgae-based biofertilizer represents a promising resource for improving soil fertility and higher productivity. However, the effects of microalgae application more especially live microalgae on GHG emissions are understudied. In this study, fruit yield and quality, GHG emissions, as well as soil organic carbon and nitrogen fractions were examined in a hawthorn orchard, under the effects of live microalgae-based biofertilizer applied at three doses and two modes. Compared with conventional fertilization, microalgae improved hawthorn yield by 15.7%-29.6% with a maximal increment at medium dose by root application, and significantly increased soluble and reducing sugars contents at high dose. While microalgae did not increase GHG emissions except for nitrous oxide at high dose by root application, instead it significantly increased methane uptake by 1.5-2.3 times in root application. In addition, microalgae showed an increasing trend in soil organic carbon content, and significantly increased the contents of soil dissolved organic carbon and microbial biomass carbon, as well as soil ammonium nitrogen and dissolved organic nitrogen at medium dose with root application. Overall, the results indicated that the live microalgae could be used as a green biofertilizer for improving fruit yield without increasing GHG emissions intensity and the comprehensive greenhouse effect, in particular at medium dose with root application. We presume that if lowering chemical fertilizer rates, application of the live microalgae-based biofertilizer may help to reduce nitrous oxide emissions without compromising fruit yield and quality.


Assuntos
Crataegus , Fertilizantes , Frutas , Gases de Efeito Estufa , Microalgas , Nitrogênio , Solo , Fertilizantes/análise , Gases de Efeito Estufa/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Solo/química , Nitrogênio/análise , Nitrogênio/metabolismo , Crataegus/crescimento & desenvolvimento , Carbono/análise , Carbono/metabolismo , Biomassa , Metano/análise , Metano/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo
13.
J Environ Manage ; 367: 121960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111009

RESUMO

Substituting mineral fertilizer with manure or a combination of organic amendments plus beneficial soil microorganisms (bio-manure) in agriculture is a standard practice to mitigate N2O and NO emissions while enhancing crop performance and nitrogen use efficiency (NUE). Here, we conducted a greenhouse trial for three consecutive vegetable growth seasons for Spinach, Coriander herb, and Baby bok choy to reveal the response of N2O and NO emissions, NUE, and vegetable quality index (VQI) to fertilization strategies. Strategies included solely chemical nitrogen fertilizer (CN), 20 (M1N4) and 50% (M1N1) substitution with manure, 20 (BM1N4) and 50% (BM1N1) substitution with bio-manure, and no fertilization as a control and were organized in a completely randomized design (n = 3). Manure decreased N2O emissions by 24-45% and bio-manure by 44-53% compared to CN. Manure reduced NO emissions by 28-41% and bio-manure by 55-63%. Bio-manure increased NUE by 0.04-31% and yields by 0.05-61% while improving VQI, attributed to yield growth and reduced vegetable NO3- contents. Improvement of root growth was the main factor that explained the rise of NUE; NUE declined with the increase of N2O emissions, showing the loss of vegetable performance under conditions when denitrification processes prevailed. Under the BM1N1, the highest VQI and the lowest yield-scaled N-oxide emissions were observed, suggesting that substitution with bio-manure can improve vegetable quality and mitigate N-oxide emissions. These findings indicate that substituting 50% of mineral fertilizer with bio-manure can effectively improve NUE and VQI and mitigate N-oxides in intensive vegetable production.


Assuntos
Fertilizantes , Esterco , Nitrogênio , Solo , Verduras , Verduras/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fertilizantes/análise , Solo/química , Agricultura/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismo
14.
Sci Total Environ ; 949: 175265, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102953

RESUMO

Nitrous oxide (N2O) is a greenhouse gas that could accumulate during the heterotrophic denitrification process. In this study, the effects of different chemical oxygen demand to nitrogen ratio (COD/N) on N2O production and electron competition was investigated. The electron competition was intensified with the decrease of electron supply, and Nos had the best electron competition ability. The model simulation results indicated that the degradation of NOx-Ns was a combination of diffusion and biological degradation. As reaction proceeding, N2O could accumulate inside biofilm. A thinner biofilm and a longer hydraulic retention time (HRT) might be an effective way to control N2O emission. The application of mathematical model is an opportunity to gain deep understanding of substrate degradation and electron competition inside biofilm.


Assuntos
Biofilmes , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Óxido Nitroso , Óxido Nitroso/metabolismo , Nitrogênio/metabolismo , Desnitrificação , Reatores Biológicos , Elétrons , Eliminação de Resíduos Líquidos/métodos , Poluentes Atmosféricos , Modelos Teóricos
15.
J Hazard Mater ; 479: 135602, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191010

RESUMO

Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.


Assuntos
Bactérias , Desnitrificação , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Rios/microbiologia , Rios/química , Bactérias/metabolismo , Bactérias/genética , Sedimentos Geológicos/microbiologia , Reatores Biológicos/microbiologia , Filogenia , Biofilmes , Carbono/metabolismo , Carbono/química , Oxirredução
16.
Appl Environ Microbiol ; 90(9): e0217723, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39136491

RESUMO

This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE: This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.


Assuntos
Metagenoma , Óxido Nitroso , Águas Residuárias , Óxido Nitroso/metabolismo , Águas Residuárias/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Genoma Bacteriano , Eliminação de Resíduos Líquidos , Dinamarca , Filogenia
17.
J Environ Manage ; 368: 122139, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146653

RESUMO

Rice cultivation boasts a rich historical legacy, serving as the primary sustenance for over 50% of the global population. However, the cultivation process gives rise to the emission of methane (CH4) and nitrous oxide (N2O), two potent greenhouse gases. Notably, the global warming potential (GWP) of CH4 and N2O surpasses CO2 by 27-30 times and 273 times over 100 years, respectively. Addressing this environmental challenge necessitates exploring technical approaches and management strategies to curb gas emissions while sustaining rice yields. Several critical factors have been identified and analyzed for their potential to mitigate greenhouse gas production during rice cultivation. These include water management, fertilizer management, biochar application, cultivar selection, straw management, modified planting methods, and integration of new energy machinery. A comprehensive understanding and implementation of these methods can contribute significantly to achieving a dual objective: reducing emissions and maintaining optimal rice yields. Looking ahead, a synergistic integration of these diverse methods and management approaches holds promise for more effective results. Furthermore, the intricate water networks associated with rice cultivation should be carefully considered in the overall strategy. By adopting a holistic approach that addresses both emission reduction and sustainable water usage, the future of rice cultivation can be shaped to align with environmental stewardship and food security.


Assuntos
Agricultura , Aquecimento Global , Gases de Efeito Estufa , Metano , Oryza , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Metano/metabolismo , Metano/biossíntese , Agricultura/métodos , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Fertilizantes
18.
Huan Jing Ke Xue ; 45(8): 4923-4931, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168708

RESUMO

Denitrification driven by bacteria and fungi is the main source of nitrous oxide (N2O) emissions from paddy soil. It is generally believed that biochar reduces N2O emissions by influencing the bacterial denitrification process, but the relevant mechanism of its impact on fungal denitrification is still unclear. In this study, the long-term straw carbonization returning experimental field in Changshu Agricultural Ecological Experimental Base of the Chinese Academy of Sciences was taken as the object. Through indoor anaerobic culture and molecular biology technology, the relative contributions of bacteria and fungi to denitrifying N2O production in paddy soil and the related microorganism mechanism were studied under different long-term biochar application amounts (blank, 2.25 t·hm-2, and 22.5 t·hm-2, respectively, expressed by BC0, BC1, and BC10). The results showed that compared with that in BC0, biochar treatment significantly reduced N2O emission rate, denitrification potential, and cumulative N2O emissions, and the contribution of bacterial denitrification was greater than that of fungal denitrification in all three treatments. Among them, the relative contribution rate of bacterial denitrification in BC10 (62.9%) was significantly increased compared to BC0 (50.8%), whereas the relative contribution rate of fungal denitrification in BC10 (37.1%) was significantly lower than that in BC0 (49.2%). The application of biochar significantly increased the abundance of bacterial denitrification functional genes (nirK, nirS, and nosZ) but reduced the abundance of fungal nirK genes. The contribution rate of fungal denitrification was significantly positively correlated with the N2O emission rate and negatively correlated with soil pH, TN, SOM, and DOC. Biochar may have inhibited the growth of denitrifying fungi by increasing pH and carbon and nitrogen content, reducing the abundance of related functional genes, thereby weakening the reduction ability of NO to N2O during fungal denitrification process. This significantly reduces the contribution rate of N2O production during the fungal denitrification process and the denitrification N2O emissions from paddy soil. This study helps to broaden our understanding of the denitrification process in paddy soil and provides a theoretical basis for further regulating fungal denitrification N2O emissions.


Assuntos
Bactérias , Carvão Vegetal , Desnitrificação , Fungos , Óxido Nitroso , Oryza , Microbiologia do Solo , Óxido Nitroso/metabolismo , Carvão Vegetal/química , Fungos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Solo/química , Fertilizantes
19.
J Sci Food Agric ; 104(14): 8823-8836, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38980001

RESUMO

BACKGROUND: Relay intercropping of maize and soybean can improve land productivity. However, the mechanism behind N2O emissions in this practice remains unclear. A two-factor randomized block field trial was conducted to reveal the mechanism of N2O emissions in a full additive maize-soybean relay intercropping. Factor A was three cropping systems - that is, monoculture maize (Zea mays L.), monoculture soybean (Glycine max L. Merr.) and maize-soybean relay intercropping. Factor B was different N supply, containing no N, reduced N and conventional N. Differences in N2O emissions, soil properties, rhizosphere bacterial communities and yield advantage were evaluated. RESULTS: The land equivalent ratio was 1.55-2.44, and the cumulative N2O emission ( C E N 2 O ) was notably lower by 60.2% in intercropping than in monoculture, respectively. Reduced N declined C E N 2 O without penalty on the yield advantages. The relay intercropping shifted soil properties - for example, soil organic matter, total N, NH 4 + and protease activity - and improved the soil microorganism community - for example, Proteobacteria and Acidobacteria. Intercropping reduced C E N 2 O by directly suppressing nirS- and amoA-regulated N2O generation during soil N cycling, or nirS- and amoA-mediated soil properties shifted to reduce C E N 2 O indirectly. Reduced N directly reduced C E N 2 O by decreasing soil N content and reducing soil microorganism activities to alleviate N2O produced in soil N cycling. CONCLUSION: Conducting a full additive maize-soybean relay intercropping with reduced nitrogen supply provides a way to alleviate N2O emissions without the penalty on the yield advantage by changing rhizosphere bacterial communities and soil N cycling. © 2024 Society of Chemical Industry.


Assuntos
Bactérias , Glycine max , Nitrogênio , Óxido Nitroso , Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Produção Agrícola/métodos , Agricultura/métodos , Rizosfera
20.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990962

RESUMO

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Assuntos
Biodiversidade , Carbono , Gases de Efeito Estufa , Plantas , Solo , Solo/química , Gases de Efeito Estufa/análise , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Ecossistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Metano/metabolismo , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...