Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.082
Filtrar
1.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747964

RESUMO

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óxido de Zinco , Óxido de Zinco/química , Água/química , Óleos/química
2.
Sci Rep ; 14(1): 10566, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719873

RESUMO

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Assuntos
Amoxicilina , Antibacterianos , Luz , Nanoestruturas , Catálise , Antibacterianos/química , Nanoestruturas/química , Amoxicilina/química , Poluentes Químicos da Água/química , Cobre/química , Óxido de Zinco/química , Dióxido de Silício/química , Purificação da Água/métodos
3.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735931

RESUMO

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Assuntos
Ouro , Grafite , Estresse Oxidativo , Pontos Quânticos , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Ouro/química , Grafite/química , Óxido de Zinco/química , Animais , Pontos Quânticos/química , Camundongos , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Elétrons
4.
Pak J Pharm Sci ; 37(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741394

RESUMO

The current study was proposed to evaluate the mortal impacts of either alone or mixed treatments of zinc oxide nanoparticles (ZnO NPs) and mureer or Senecio glaucus L. plant (SP) on spleen tissue via immunological and histological studies and to estimate the likely immunomodulatory effect of gallic acid (GA) for 30 days in rats. Rats were classified into eight groups with orally treated: Control, GA (100mg/kg), ZnO NPs (150mg/kg), SP (400mg/kg), GA+ZnO NPs (100,150mg/kg), GA+SP (100,400mg/kg), ZnONPs+SP (150,400mg/kg) and GA+ZnONPs+SP (100,150,400mg/kg). Interleukin-6 (IL-6) level was measured using an enzyme-linked immunoassay (ELISA). Also, the pro-apoptotic protein (caspase-3) expression was estimated using an immunohistochemistry assay. Our data revealed that ZnO NPs and SP triggered a significant increase in the levels of IL-6 and total lipids (TL) and the activity of lactate dehydrogenase (LDH), (p<0.001). Furthermore, they overexpressed caspase-3 and caused lymphoid depletion. They revealed that the immunotoxic outcome of mixed treatment was more than the outcome of the alone treatment. However, GA restored the spleen damage from these adverse results. Finally, this study indicated that ZnO NPs and SP might be immunotoxic and splenotoxic agents; however, GA may be displayed as an anti-inflammatory and splenic-protective agent.


Assuntos
Anti-Inflamatórios , Caspase 3 , Ácido Gálico , Interleucina-6 , Baço , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/toxicidade , Ácido Gálico/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Anti-Inflamatórios/farmacologia , Interleucina-6/metabolismo , Ratos , Caspase 3/metabolismo , Masculino , Nanopartículas , Nanopartículas Metálicas , Ratos Wistar , Extratos Vegetais/farmacologia , Imuno-Histoquímica
5.
ACS Appl Mater Interfaces ; 16(19): 24410-24420, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709954

RESUMO

Sonophotodynamic antimicrobial therapy (SPDAT) is recognized as a highly efficient biomedical treatment option, known for its versatility and remarkable healing outcomes. Nevertheless, there is a scarcity of sonophotosensitizers that demonstrate both low cytotoxicity and exceptional antibacterial effectiveness in clinical applications. In this paper, a novel ZnO nanowires (NWs)@TiO2-xNy core-sheath composite was developed, which integrates the piezoelectric effect and heterojunction to build dual built-in electric fields. Remarkably, it showed superb antibacterial effectiveness (achieving 95% within 60 min against S. aureus and ∼100% within 40 min against E. coli, respectively) when exposed to visible light and ultrasound. Due to the continuous interference caused by light and ultrasound, the material's electrostatic equilibrium gets disrupted. The modification in electrical properties facilitates the composite's ability to attract bacterial cells through electrostatic forces. Moreover, Zn-O-Ti and Zn-N-Ti bonds formed at the interface of ZnO NWs@TiO2-xNy, further enhancing the dual internal electric fields to accelerate the excited carrier separation to generate more reactive oxygen species (ROS), and thereby boosting the antimicrobial performance. In addition, the TiO2 layer limited Zn2+ dissolution into solution, leading to good biocompatibility and low cytotoxicity. Lastly, we suggest a mechanistic model to offer practical direction for the future development of antibacterial agents that are both low in toxicity and high in efficacy. In comparison to the traditional photodynamic therapy systems, ZnO NWs@TiO2-xNy composites exhibit super piezo-photocatalytic antibacterial activity with low toxicity, which shows great potential for clinical application as an antibacterial nanomaterial.


Assuntos
Antibacterianos , Escherichia coli , Nanofios , Staphylococcus aureus , Titânio , Óxido de Zinco , Titânio/química , Titânio/farmacologia , Titânio/efeitos da radiação , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nanofios/química , Catálise , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Humanos , Luz , Camundongos , Animais
6.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760761

RESUMO

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Assuntos
Exposição por Inalação , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Masculino , Feminino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Tamanho da Partícula , Administração por Inalação , Dano ao DNA , Ratos , Ensaio Cometa , Ratos Wistar , Reprodução/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
7.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732196

RESUMO

The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials.


Assuntos
Celulose , Etanol , Umidade , Nanopartículas , Óxido de Zinco , Celulose/química , Óxido de Zinco/química , Etanol/química , Nanopartículas/química , Nanocompostos/química
8.
Sci Rep ; 14(1): 10684, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724636

RESUMO

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.


Assuntos
Carvão Vegetal , Lolium , Compostos de Manganês , Metais Pesados , Óxidos , Poluentes do Solo , Óxido de Zinco , Lolium/metabolismo , Lolium/crescimento & desenvolvimento , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Óxidos/química , Metais Pesados/metabolismo , Óxido de Zinco/química , Compostos de Manganês/química , Compostos de Manganês/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nanopartículas/química , Disponibilidade Biológica , Solo/química
9.
Chemosphere ; 358: 142184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697569

RESUMO

Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.


Assuntos
Estresse Oxidativo , Poliquetos , Protetores Solares , Animais , Poliquetos/efeitos dos fármacos , Poliquetos/fisiologia , Poliquetos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Protetores Solares/toxicidade , Óxido de Zinco/toxicidade , Minerais , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Raios Ultravioleta
10.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700700

RESUMO

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Pinças Ópticas , Prata , Óxido de Zinco , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
11.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710736

RESUMO

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Assuntos
Antibacterianos , Antineoplásicos , Nanoestruturas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Processos Fotoquímicos , Fotólise
12.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691183

RESUMO

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Assuntos
Chumbo , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Óxido de Zinco , Chumbo/química , Óxido de Zinco/química , Rodaminas/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Recuperação e Remediação Ambiental/métodos , Química Verde , Nanoestruturas/química
13.
Cryo Letters ; 45(2): 100-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557988

RESUMO

BACKGROUND: Nanotechnology can benefit livestock industries, especially through postharvest semen manipulation. Zinc oxide nanoparticles (Np-ZnO) are potentially an example. OBJECTIVE: To investigate how the addition of zinc oxide nanoparticles (Np-ZnO) affected the characteristics of post-thawed goat semen. MATERIALS AND METHODS: Seminal pools from four Saanen bucks were used. Semen was diluted in Tris-egg yolk extender, supplemented with Np-ZnO (0, 50, 100 or 200 ug/mL), frozen and stored in liquid nitrogen (-196 degree C), and thawed in a water bath (37 degree C / 30 s). Semen samples were evaluated for sperm kinetics by computer-assisted sperm analysis (CASA), and assessed for other functional properties by epifluorescence microscopy, such as plasma membrane integrity (PMi), acrosomal membrane integrity (ACi) and mitochondrial membrane potential (MMP). RESULTS: For total motility (TM), the group treated with 200 ug/mL Np-ZnO was superior to the control. In straight-line velocity (VSL), the control was better than the group containing 200 ug/mL of Np-ZnO. For average path velocity (VAP), the control was higher than with 100 ug/mL Np-ZnO. For linearity (LIN), the control was higher than with 200 µg/mL Np-ZnO. In straightness (STR), the control and 100 µg/mL Np-ZnO were higher than with 200 ug/mL Np-ZnO. In wobble (WOB), the control was better than the 50 µg/mL Np-ZnO treatment. In PMi, ACi and MMP no significant differences were found. CONCLUSION: The addition of Np-ZnO (200 ug/mL) to the goat semen freezing extender improved the total motility of cells, whilst negatively affecting sperm kinetics. https://doi.org/10.54680/fr24210110512.


Assuntos
Preservação do Sêmen , Óxido de Zinco , Animais , Masculino , Congelamento , Sêmen , Óxido de Zinco/farmacologia , Cabras , Crioprotetores/farmacologia , Criopreservação/veterinária , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Espermatozoides
14.
Int J Nanomedicine ; 19: 2995-3007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559446

RESUMO

Background: In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods: ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results: ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 µg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 µg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion: ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Otite Média , Infecções Estafilocócicas , Óxido de Zinco , Humanos , Staphylococcus aureus , Radical Hidroxila , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Otite Média/tratamento farmacológico , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
15.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Environ Monit Assess ; 196(5): 428, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573523

RESUMO

Carbonaceous materials produced from agricultural waste (palm kernel shell) by pyrolysis can be a proper type of low-cost adsorbent for wide uses in radioactive effluent treatment. In this context, the as-produced bio-char (labeled as PBC) and its sub-driven sulfuric acid and zinc oxide activated carbons (labeled as PBC-SA, and PBC-Zn respectively) were employed as adsorbents for uranium sorption from aqueous solution. Various analytical techniques, including SEM (Scanning Electron Microscopy), EXD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FTIR (Fourier Transform Infrared Spectroscopy), and Zeta potential, provide insights into the material characteristics. Kinetic and isotherm investigations illuminated that the sorption process using the three sorbents is nicely fitted with Pseudo-second-order-kinetic and Langmuir isotherm models. The picked data display that the equilibrium time was 60 min, and the maximum sorption capacity was 9.89, 16.8, and 21.9 mg/g for PBC, PBC-SA, and PBC-Zn respectively, which reflects the highest affinity for zinc oxide, activated bio-char, among the three adsorbents, for uranium taking out from radioactive wastewater. Sorption thermodynamics declare that the sorption of U(VI) is an exothermic, spontaneous, and feasible process. About 92% of the uranium-loaded PBC-Zn sorbent was eluted using 1.0 M CH3COONa sodium ethanoate solution, and the sorbent demonstrated proper stability for 5 consecutive sorption/desorption cycles.


Assuntos
Urânio , Óxido de Zinco , Carvão Vegetal , Monitoramento Ambiental , Termodinâmica
17.
J Indian Soc Pedod Prev Dent ; 42(1): 28-36, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616424

RESUMO

BACKGROUND: Chemomechanical debridement is insufficient to disinfect all bacteria from the root canals of primary teeth, and obturation of canals with an appropriate material thus acquires excellent importance and remains a critical step in the ultimate success of pulpectomy. AIM: The aim of the study was to compare and evaluate Endoflas, Metapex, and a mixture of calcium hydroxide (CH) and zinc oxide (ZnO) as obturating materials (OMs) in primary mandibular second molars. MATERIALS AND METHODS: Seventy-five mandibular second primary molars requiring pulpectomies were identified in children aged 4-8 years. They were randomly allocated to the three treatment groups according to the type of OM received using the block randomization technique. After the completion of chemomechanical debridement, the canals were filled with Endoflas, Metapex, and CH-ZnO mixture, respectively. The intergroup clinical and radiographic comparison was made based on Coll and Sadrian criteria to decipher their clinical performance at 1, 3, and 6 months. RESULTS: No statistically significant differences between the groups were observed at any evaluation time interval (P > 0.05). At 6 months, the clinical success rates were 95.2% in Endoflas, 96% in Metapex, and 95.8% in the CH and ZnO mixture groups, respectively. The materials, however, behaved differently in different clinical situations. CONCLUSION: Based on the observations, all three OMs showed similar clinical success in maintaining tooth functioning, but their use can be restricted to indications. However, prospective studies with longer follow-ups with more stringent eligibility criteria are required to reach more definitive conclusions.


Assuntos
Pulpectomia , Óleos de Silicone , Óxido de Zinco , Criança , Humanos , Estudos Prospectivos , Óxido de Zinco/uso terapêutico , Hidróxido de Cálcio/uso terapêutico
18.
ACS Appl Mater Interfaces ; 16(15): 19411-19420, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588486

RESUMO

Zinc oxide (ZnO) is a widely employed material for enhancing the performance of cellulose-based triboelectric nanogenerators (C-TENGs). Our study provides a novel chemical interpretation for the improved output efficiency of ZnO in C-TENGs. C-TENGs exhibit excellent flexibility and integration, achieving a maximum open-circuit voltage (Voc) of 210 V. The peak power density is 54.4 µW/cm2 with a load resistance of 107 Ω, enabling the direct powering of 191 light-emitting diodes with the generated electrical output. Moreover, when deployed as self-powered sensors, C-TENGs exhibit prolonged operational viability and responsiveness, adeptly discerning bending and motion induced by human interaction. The device's sensitivity, flexibility, and stability position it as a promising candidate for a diverse array of energy-harvesting applications and advanced healthcare endeavors. Specifically, envisaging sensitized wearable sensors for human activities underscores the multifaceted potential of C-TENGs in enhancing both energy-harvesting technologies and healthcare practices.


Assuntos
Óxido de Zinco , Humanos , Fenômenos Físicos , Movimento (Física) , Celulose , Atividades Humanas
19.
Artigo em Inglês | MEDLINE | ID: mdl-38619314

RESUMO

The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Sulfametoxazol , Antibacterianos/química , Óxido de Zinco/química , Oxigênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química
20.
Plant Cell Rep ; 43(4): 110, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564104

RESUMO

KEY MESSAGE: Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.


Assuntos
Aquaporinas , Cajanus , Óxido de Zinco , Óxido de Zinco/farmacologia , Genes Reguladores , Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA