Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.307
Filtrar
1.
Top Curr Chem (Cham) ; 382(2): 21, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829461

RESUMO

The molecular design and conformations of hole-transporting materials (HTM) have unravelled a strategy to enhance the performance of environmentally sustainable perovskite solar cells (PSC). Several attempts have been made and several are underway for improving the efficiency of PSCs by designing an efficient HTM, which is crucial to preventing corrosion, facilitating effective hole transportation, and preventing charge recombination. There is a need for a potential alternative to the current market-dominating HTM due to its high cost of production, dopant requirements, moisture sensitivity, and low stability. Among several proposed HTMs, molecules derived from thiophene exhibit unique behaviour, such as the interaction with under-coordinated Pb2+, thereby facilitating the passivation of surface defects in the perovskite layer. In addition, coupling a suitable side chain imparts a hydrophobic character, eventually leading to the development of a moisture-sensitive and highly stable PSC. Furthermore, thiophene-backboned polymers with ionic pendants have been employed as an interfacial layer between PSC layers, with the backbone facilitating efficient charge transfer. This perspective article comprehensively presents the design strategy, characterization, and function of HTMs associated with thiophene-derived molecules. Hence, it is observed that thiophene-formulated HTMs have an enhanced passivation effect, good performance in an open-circuit environment, longevity, humidity resistance, thermostability, good hole extraction, and mobility in a dopant-free condition. For a better understanding, the article provides a comparative description of the activity and function of thiophene-based small molecules and polymers and their effect on device performance.


Assuntos
Compostos de Cálcio , Óxidos , Energia Solar , Tiofenos , Titânio , Tiofenos/química , Compostos de Cálcio/química , Titânio/química , Óxidos/química , Fontes de Energia Elétrica , Polímeros/química
2.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844318

RESUMO

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Assuntos
Compostos de Amônio , Filtração , Manganês , Óxidos , Manganês/química , Óxidos/química , Compostos de Amônio/química , Filtração/métodos , Poluentes Químicos da Água/química , Permanganato de Potássio/química , Compostos de Manganês/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Potássio/química , Adsorção , Compostos Férricos/química , Compostos de Ferro
3.
J Nanobiotechnology ; 22(1): 310, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831378

RESUMO

Radiotherapy (RT), including external beam radiation therapy (EBRT) and radionuclide therapy (RNT), realizes physical killing of local tumors and activates systemic anti-tumor immunity. However, these effects need to be further strengthened and the difference between EBRT and RNT should be discovered. Herein, bacterial outer membrane (OM) was biomineralized with manganese oxide (MnO2) to obtain OM@MnO2-PEG nanoparticles for enhanced radio-immunotherapy via amplifying EBRT/RNT-induced immunogenic cell death (ICD) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. OM@MnO2-PEG can react with H2O2 and then gradually produce O2, Mn2+ and OM fragments in the tumor microenvironment. The relieved tumor hypoxia improves the radio-sensitivity of tumor cells, resulting in enhanced ICD and DNA damage. Mn2+ together with the DNA fragments in the cytoplasm activate the cGAS-STING pathway, further exhibiting a positive role in various aspects of innate immunity and adaptive immunity. Besides, OM fragments promote tumor antigen presentation and anti-tumor macrophages polarization. More importantly, our study reveals that OM@MnO2-PEG-mediated RNT triggers much stronger cGAS-STING pathway-involved immunotherapy than that of EBRT, owing to the duration difference of RT. Therefore, this study develops a powerful sensitizer of radio-immunotherapy and uncovers some differences between EBRT and RNT in the activation of cGAS-STING pathway-related anti-tumor immunity.


Assuntos
Membrana Externa Bacteriana , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Nucleotidiltransferases , Óxidos , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Proteínas de Membrana/metabolismo , Camundongos , Imunoterapia/métodos , Óxidos/química , Animais , Membrana Externa Bacteriana/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Transdução de Sinais , Humanos , Radioterapia/métodos , Nanopartículas/química , Biomineralização , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata
4.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
5.
Sci Rep ; 14(1): 10684, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724636

RESUMO

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.


Assuntos
Carvão Vegetal , Lolium , Compostos de Manganês , Metais Pesados , Óxidos , Poluentes do Solo , Óxido de Zinco , Lolium/metabolismo , Lolium/crescimento & desenvolvimento , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Óxidos/química , Metais Pesados/metabolismo , Óxido de Zinco/química , Compostos de Manganês/química , Compostos de Manganês/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nanopartículas/química , Disponibilidade Biológica , Solo/química
6.
Luminescence ; 39(5): e4750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733198

RESUMO

Ultra-high thermally stable Ca2MgWO6:xSm3+ (x = 0.5, 0.75, 1, 1.25, and 1.5 mol%) double perovskite phosphors were synthesized through solid-state reaction method. Product formation was confirmed by comparing the X-ray diffraction (XRD) patterns of the phosphors with the standard reference file. The structural, morphological, thermal, and optical properties of the prepared phosphor were examined in detail using XRD, Fourier transform infrared spectra, scanning electron microscopy, diffused reflectance spectra, thermogravimetric analysis (TGA), photoluminescence emission, and temperature-dependent PLE (TDPL). It was seen that the phosphor exhibited emission in the reddish region for the near-ultraviolet excitation with moderate Colour Rendering Index values and high colour purity. The optimized phosphor (x = 1.25 mol%) was found to possess a direct optical band gap of 3.31 eV. TGA studies showed the astonishing thermal stability of the optimized phosphor. Additionally, near-zero thermal quenching was seen in TDPL due to elevated phonon-assisted radiative transition. Furthermore, the anti-Stokes and Stokes emission peaks were found to be sensitive toward the temperature change and followed a Boltzmann-type distribution. All these marked properties will make the prepared phosphors a suitable candidate for multifield applications and a fascinating material for further development.


Assuntos
Luminescência , Substâncias Luminescentes , Samário , Temperatura , Compostos de Tungstênio , Compostos de Tungstênio/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Samário/química , Medições Luminescentes , Difração de Raios X , Compostos de Cálcio/química , Óxidos/química , Termogravimetria
7.
Biomed Mater ; 19(4)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697132

RESUMO

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Verde de Indocianina , Indóis , Compostos de Manganês , Óxidos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Fotoquimioterapia/métodos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Verde de Indocianina/química , Indóis/química , Animais , Compostos de Manganês/química , Humanos , Polímeros/química , Linhagem Celular Tumoral , Óxidos/química , Fármacos Fotossensibilizantes/química , Dióxido de Silício/química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Porosidade
8.
PeerJ ; 12: e17237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699192

RESUMO

Background: Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods: Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results: The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion: This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Indóis , Óxidos , Polímeros , Materiais Restauradores do Canal Radicular , Silicatos , Propriedades de Superfície , Polímeros/química , Indóis/química , Silicatos/química , Compostos de Cálcio/química , Óxidos/química , Materiais Restauradores do Canal Radicular/química , Compostos de Alumínio/química , Humanos , Combinação de Medicamentos , Microscopia Eletrônica de Varredura , Microscopia de Força Atômica/métodos , Microscopia Confocal , Teste de Materiais , Raiz Dentária/lesões , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/cirurgia
9.
Mikrochim Acta ; 191(6): 313, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717608

RESUMO

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 µF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.


Assuntos
Cobre , Éteres de Coroa , Eletrodos , Polímeros de Fluorcarboneto , Limite de Detecção , Compostos de Manganês , Óxidos , Potenciometria , Cobre/química , Polímeros de Fluorcarboneto/química , Óxidos/química , Compostos de Manganês/química , Humanos , Potenciometria/instrumentação , Potenciometria/métodos , Éteres de Coroa/química , Grafite/química
10.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740454

RESUMO

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Assuntos
Antioxidantes , Compostos de Manganês , Óxidos , Óxidos/química , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Compostos de Manganês/química , Colorimetria , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredução , Nanoestruturas/química , Catálise
11.
Biosens Bioelectron ; 258: 116354, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723331

RESUMO

Real-time monitoring of biological markers in sweat is a valuable tool for health assessment. In this study, we have developed an innovative wearable biosensor for precise analysis of glucose in sweat during physical activities. The sensor is based on a single-atom catalyst of platinum (Pt) uniformly dispersed on tricobalt tetroxide (Co3O4) nanorods and reduced graphene oxide (rGO), featuring a unique three-dimensional nanostructure and excellent glucose electrocatalytic performance with a wide detection range of 1-800 µM. Additionally, density functional theory calculations have revealed the synergetic role of Pt active sites in the Pt single-atom catalyst (Co3O4/rGO/Pt) in glucose adsorption and electron transfer, thereby enhancing sensor performance. To enable application in wearable devices, we designed an S-shaped microfluidic chip and a point-of-care testing (POCT) device, both of which were validated for effectiveness through actual use by volunteers. This research provides valuable insights and innovative approaches for analyzing sweat glucose using wearable devices, contributing to the advancement of personalized healthcare.


Assuntos
Técnicas Biossensoriais , Glucose , Grafite , Platina , Suor , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Suor/química , Platina/química , Humanos , Catálise , Glucose/análise , Grafite/química , Técnicas Eletroquímicas/instrumentação , Nanotubos/química , Limite de Detecção , Desenho de Equipamento , Óxidos/química
12.
J Nanobiotechnology ; 22(1): 264, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760771

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Compostos de Manganês , Nanopartículas , Óxidos , Temozolomida , Microambiente Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Animais , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanopartículas/química , Neoplasias Encefálicas/tratamento farmacológico , Óxidos/química , Óxidos/farmacologia , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Indóis/química , Indóis/farmacologia , Polímeros/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
13.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785698

RESUMO

Wastewater pipelines are present everywhere in urban areas. Wastewater is a preferable fuel for renewable electricity generation from microbial fuel cells. Here, we created an integrated microbial fuel cell pipeline (MFCP) that could be connected to wastewater pipelines and work as an organic content biosensor and energy harvesting device at domestic waste-treatment plants. The MFCP used a pipeline-like terracotta-based membrane, which provided structural support for the MFCP. In addition, the anode and cathode were attached to the inside and outside of the terracotta membrane, respectively. Co-MnO2 was used as a catalyst to improve the performance of the MFCP cathode. The experimental data showed a good linear relationship between wastewater chemical oxygen demand (COD) concentration and the MFCP output voltage in a COD range of 200-1900 mg/L. This result implies the potential of using the MFCP as a sensor to detect the organic content of the wastewater inside the wastewater pipeline. Furthermore, the MFCP can be used as a long-lasting sustainable energy harvester with a maximum power density of 400 mW/m2 harvested from 1900 mg/L COD wastewater at 25 °C.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletrodos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Eletricidade , Óxidos/química , Compostos de Manganês/química
14.
Biosensors (Basel) ; 14(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38785712

RESUMO

Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanoestruturas , Humanos , Óxidos/química , Níquel/química , Titânio/química , Óxido de Zinco/química , Metais/química , Cobre/análise , Cobre/química
15.
Acta Biomater ; 181: 402-414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734282

RESUMO

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Hipóxia Tumoral/efeitos dos fármacos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/química , Óxidos/química , Óxidos/farmacologia , Manganês/química , Manganês/farmacologia , Humanos , Feminino , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791115

RESUMO

Surface chemistry and bulk structure jointly play crucial roles in achieving high-performance supercapacitors. Here, the synergistic effect of surface chemistry properties (vacancy and phosphorization) and structure-derived properties (hollow hydrangea-like structure) on energy storage is explored by the surface treatment and architecture design of the nanostructures. The theoretical calculations and experiments prove that surface chemistry modulation is capable of improving electronic conductivity and electrolyte wettability. The structural engineering of both hollow and nanosheets produces a high specific surface area and an abundant pore structure, which is favorable in exposing more active sites and shortens the ion diffusion distance. Benefiting from its admirable physicochemical properties, the surface phosphorylated MnCo2O4.5 hollow hydrangea-like structure (P-MnCoO) delivers a high capacitance of 425 F g-1 at 1 A g-1, a superior capability rate of 63.9%, capacitance retention at 10 A g-1, and extremely long cyclic stability (91.1% after 10,000 cycles). The fabricated P-MnCoO/AC asymmetric supercapacitor achieved superior energy and power density. This work opens a new avenue to further improve the electrochemical performance of metal oxides for supercapacitors.


Assuntos
Capacitância Elétrica , Compostos de Manganês , Óxidos , Oxigênio , Compostos de Manganês/química , Óxidos/química , Oxigênio/química , Propriedades de Superfície , Nanoestruturas/química , Técnicas Eletroquímicas/métodos
17.
J Nanobiotechnology ; 22(1): 294, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807127

RESUMO

BACKGROUND: Ulcerative colitis (UC) is one chronic and relapsing inflammatory bowel disease. Macrophage has been reputed as one trigger for UC. Recently, phosphodiesterase 4 (PDE4) inhibitors, for instance roflumilast, have been regarded as one latent approach to modulating macrophage in UC treatment. Roflumilast can decelerate cyclic adenosine monophosphate (cAMP) degradation, which impedes TNF-α synthesis in macrophage. However, roflumilast is devoid of macrophage-target and consequently causes some unavoidable adverse reactions, which restrict the utilization in UC. RESULTS: Membrane vesicles (MVs) from probiotic Escherichia coli Nissle 1917 (EcN 1917) served as a drug delivery platform for targeting macrophage. As model drugs, roflumilast and MnO2 were encapsulated in MVs (Rof&MnO2@MVs). Roflumilast inhibited cAMP degradation via PDE4 deactivation and MnO2 boosted cAMP generation by activating adenylate cyclase (AC). Compared with roflumilast, co-delivery of roflumilast and MnO2 apparently produced more cAMP and less TNF-α in macrophage. Besides, Rof&MnO2@MVs could ameliorate colitis in mouse model and regulate gut microbe such as mitigating pathogenic Escherichia-Shigella and elevating probiotic Akkermansia. CONCLUSIONS: A probiotic-based nanoparticle was prepared for precise codelivery of roflumilast and MnO2 into macrophage. This biomimetic nanoparticle could synergistically modulate cAMP in macrophage and ameliorate experimental colitis.


Assuntos
Aminopiridinas , Benzamidas , AMP Cíclico , Ciclopropanos , Macrófagos , Compostos de Manganês , Óxidos , Probióticos , Animais , Aminopiridinas/farmacologia , Camundongos , AMP Cíclico/metabolismo , Probióticos/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Benzamidas/farmacologia , Benzamidas/química , Óxidos/farmacologia , Óxidos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/química , Colite/tratamento farmacológico , Colite/induzido quimicamente , Células RAW 264.7 , Escherichia coli/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças
18.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709640

RESUMO

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Assuntos
Regeneração Óssea , Desferroxamina , Magnésio , Células-Tronco Mesenquimais , Óxidos , Tantálio , Desferroxamina/química , Desferroxamina/farmacologia , Regeneração Óssea/efeitos dos fármacos , Tantálio/química , Animais , Óxidos/química , Óxidos/farmacologia , Magnésio/química , Magnésio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Camundongos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Angiogênese
19.
Luminescence ; 39(5): e4768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719590

RESUMO

In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV-Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.


Assuntos
Cobalto , Eletroquímica , Eletrodos , Nanocompostos , Níquel , Nanocompostos/química , Níquel/química , Cobalto/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Luminescência , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Fenômenos Magnéticos , Nanopartículas/química , Luz , Catálise , Óxidos/química , Azul de Metileno/metabolismo
20.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696240

RESUMO

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Assuntos
Substâncias Húmicas , Manganês , Oxirredução , Fenóis , Manganês/química , Fenóis/química , Ânions , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA