Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Sci Rep ; 14(1): 13976, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886511

RESUMO

Stroke is an acute cerebrovascular disease in which blood flow to the brain is suddenly disrupted, causing damage to nerve cells. It involves complex and diverse pathophysiological processes and the treatment strategies are also diverse. The treatment for patients with stroke and atrial fibrillation (AF) is aimed at suppressing thrombus formation and migration. However, information regarding the protein networking involved in different thrombus formation pathways in patients with AF and stroke is insufficient. We performed protein profiling of patients with ischemic stroke with and without AF to investigate the mechanisms of thrombus formation and its pathophysiological association while providing helpful information for treating and managing patients with AF. These two groups were compared to identify the protein networks related to thrombus formation in AF. We observed that patients with ischemic stroke and AF had activated inflammatory responses induced by C-reactive protein, lipopolysaccharide-binding protein, and alpha-1-acid glycoprotein 1. In contrast, thyroid hormones were increased due to a decrease in transthyretin and retinol-binding protein 4 levels. The mechanism underlying enhanced cardiac activity, vasodilation, and the resulting thrombosis pathway were confirmed in AF. These findings will play an essential role in improving the prevention and treatment of AF-related stroke.


Assuntos
Fibrilação Atrial , Trombose , Humanos , Fibrilação Atrial/metabolismo , Trombose/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Proteínas Sanguíneas/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/sangue , AVC Isquêmico/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos
2.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891898

RESUMO

The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (ßHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving ßHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the ßHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of ßHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. ßHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that ßHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation.


Assuntos
Ácido 3-Hidroxibutírico , Disfunção Cognitiva , AVC Isquêmico , Animais , Camundongos , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/complicações , Masculino , Modelos Animais de Doenças , Fator 2 Relacionado a NF-E2/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Trombose/metabolismo , Trombose/etiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891912

RESUMO

The utility of serum glial fibrillary acidic protein (GFAP) in acute ischemic stroke (AIS) has been extensively studied in recent years. Here, we aimed to assess its potential role as a cargo protein of extracellular vesicles (EVs) secreted by astrocytes (ADEVs) in response to brain ischemia. Plasma samples from eighteen AIS patients at 24 h (D1), 7 days (D7), and one month (M1) post-symptoms onset, and nine age, sex, and cardiovascular risk factor-matched healthy controls were obtained to isolate EVs using the Exoquick ULTRA EV kit. Subsets of presumed ADEVs were identified further by the expression of the glutamate aspartate transporter (GLAST) as a specific marker of astrocytes with the Basic Exo-Flow Capture kit. Western blotting has tested the presence of GFAP in ADEV cargo. Post-stroke ADEV GFAP levels were elevated at D1 and D7 but not M1 compared to controls (p = 0.007, p = 0.019, and p = 0.344, respectively). Significant differences were highlighted in ADEV GFAP content at the three time points studied (n = 12, p = 0.027) and between D1 and M1 (z = 2.65, p = 0.023). A positive correlation was observed between the modified Rankin Scale (mRS) at D7 and ADEV GFAP at D1 (r = 0.58, p = 0.010) and D7 (r = 0.57, p = 0.013), respectively. ADEV GFAP may dynamically reflect changes during the first month post-ischemia. Profiling ADEVs from peripheral blood could provide a new way to assess the central nervous system pathology.


Assuntos
Astrócitos , Vesículas Extracelulares , Proteína Glial Fibrilar Ácida , AVC Isquêmico , Humanos , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/sangue , Vesículas Extracelulares/metabolismo , Masculino , Feminino , AVC Isquêmico/metabolismo , AVC Isquêmico/sangue , Astrócitos/metabolismo , Projetos Piloto , Idoso , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/sangue , Estudos de Casos e Controles
4.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892459

RESUMO

The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia-reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery.


Assuntos
Eucommiaceae , Flavonoides , AVC Isquêmico , Estresse Oxidativo , Folhas de Planta , Animais , Ratos , Flavonoides/farmacologia , Eucommiaceae/química , Folhas de Planta/química , Células PC12 , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Sobrevivência Celular/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Ratos Sprague-Dawley , Malondialdeído/metabolismo
5.
Cells ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891071

RESUMO

Increasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear. Therefore, mice were subjected to ischemic stroke, and mCherry-labeled human MSCs (h-MSCs) were transplanted around the injured sites of nestin-GFP transgenic mice. Immunohistochemistry of brain sections revealed that many GFP+ cells were observed around the grafted sites rather than in the regions in the subventricular zone, suggesting that transplanted mCherry+ h-MSCs stimulated GFP+ locally activated endogenous iNSPCs. In support of these findings, coculture studies have shown that h-MSCs promoted the proliferation and neural differentiation of iNSPCs extracted from ischemic areas. Furthermore, pathway analysis and gene ontology analysis using microarray data showed that the expression patterns of various genes related to self-renewal, neural differentiation, and synapse formation were changed in iNSPCs cocultured with h-MSCs. We also transplanted h-MSCs (5.0 × 104 cells/µL) transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion. Compared with phosphate-buffered saline-injected controls, h-MSC transplantation displayed significantly improved neurological functions. These results suggest that h-MSC transplantation improves neurological function after ischemic stroke in part by regulating the fate of iNSPCs.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Neurais , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , AVC Isquêmico/terapia , AVC Isquêmico/metabolismo , Diferenciação Celular , Camundongos Transgênicos , Masculino , Proliferação de Células , Neurogênese , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 14(1): 13560, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866905

RESUMO

L1CAM-positive extracellular vesicles (L1EV) are an emerging biomarker that may better reflect ongoing neuronal damage than other blood-based biomarkers. The physiological roles and regulation of L1EVs and their small RNA cargoes following stroke is unknown. We sought to characterize L1EV small RNAs following stroke and assess L1EV RNA signatures for diagnosing stroke using weighted gene co-expression network analysis and random forest (RF) machine learning algorithms. Interestingly, small RNA sequencing of plasma L1EVs from patients with stroke and control patients (n = 28) identified micro(mi)RNAs known to be enriched in the brain. Weighted gene co-expression network analysis (WGCNA) revealed small RNA transcript modules correlated to diagnosis, initial NIH stroke scale, and age. L1EV RNA signatures associated with the diagnosis of AIS were derived from WGCNA and RF classification. These small RNA signatures demonstrated a high degree of accuracy in the diagnosis of AIS with an area under the curve (AUC) of the signatures ranging from 0.833 to 0.932. Further work is necessary to understand the role of small RNA L1EV cargoes in the response to brain injury, however, this study supports the utility of L1EV small RNA signatures as a biomarker of stroke.


Assuntos
Biomarcadores , Vesículas Extracelulares , AVC Isquêmico , Molécula L1 de Adesão de Célula Nervosa , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Feminino , Idoso , Biomarcadores/sangue , Pessoa de Meia-Idade , Aprendizado de Máquina , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo
7.
Exp Neurol ; 378: 114845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838802

RESUMO

BACKGROUND: Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE: To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS: We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION: Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.


Assuntos
Bibliometria , Inflamação , AVC Isquêmico , Mitocôndrias , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Mitocôndrias/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Animais
8.
Mol Med ; 30(1): 77, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840035

RESUMO

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Assuntos
Apoptose , Flavonoides , AVC Isquêmico , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Apoptose/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/etiologia , Células PC12 , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
9.
Redox Biol ; 74: 103234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861834

RESUMO

Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.


Assuntos
Astrócitos , AVC Isquêmico , Traumatismo por Reperfusão , Astrócitos/metabolismo , Astrócitos/patologia , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Humanos , Masculino , Glicogênio/metabolismo , Modelos Animais de Doenças , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transdução de Sinais , Autofagia
10.
Brain Res Bull ; 214: 110999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851436

RESUMO

Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.


Assuntos
Encéfalo , Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Astrócitos/metabolismo
11.
Crit Rev Immunol ; 44(6): 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848297

RESUMO

Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. Electroacupuncture (EA) has been shown to exert a neuroprotective effect in IS. However, its specific anti-IS mechanisms remain to be fully elucidated. By constructing a rat IS (middle cerebral artery occlusion, or MCAO) model and performing EA treatment, neurological deficit score, brain water content, and cerebral infarction were evaluated. ELISA was used to measure the levels of oxidative stress-related molecules (MDA, SOD, GSH, and CAT). Ferroptosis-related proteins (GPX4, SLC7A11, TfR1, L-ferritin, and hepcidin), neurological damage-related proteins (GFAP, Iba-1, and Nestin), α7nAChR, and mTOR pathway-related proteins (mTOR, p-mTOR, and SREBP1) in the rat brain penumbra were assessed by western blotting. Following EA treatment, neurological deficit scores, brain water content, cerebral infarction area, and GFAP, Iba-1, and Nestin expression were reduced. Additionally, EA treatment decreased MDA and increased SOD, GSH, and CAT. Moreover, the rats showed elevated GPX4 and SLC7A11 and lowered TfR1, L-ferritin, and hepcidin. In contrast, a7nAChR, mTOR, p-mTOR, and SREBP1 expression were upregulated. EA treatment inhibited OS and ferroptosis to exert a neuroprotective effect in IS, which might be realized via the activation of mTOR/SREBP1 signaling.


Assuntos
Eletroacupuntura , Ferroptose , AVC Isquêmico , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Ratos , Serina-Treonina Quinases TOR/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Modelos Animais de Doenças , Masculino , Humanos , Ratos Sprague-Dawley
12.
Redox Biol ; 73: 103169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692093

RESUMO

BACKGROUND: Inflammation and subsequent mitochondrial dysfunction and cell death worsen outcomes after revascularization in ischemic stroke. Receptor-interacting protein kinase 1 (RIPK1) activated dynamin-related protein 1 (DRP1) in a NLRPyrin domain containing 3 (NLRP3) inflammasome-dependent fashion and Hypoxia-Inducible Factor (HIF)-1α play key roles in the process. This study determined how phenothiazine drugs (chlorpromazine and promethazine (C + P)) with the hypothermic and normothermic modality impacts the RIPK1/RIPK3-DRP1 and HIF-1α pathways in providing neuroprotection. METHODS: A total of 150 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. 8 mg/kg of C + P was administered at onset of reperfusion. Infarct volumes, mRNA and protein expressions of HIF-1α, RIPK1, RIPK3, DRP-1, NLRP3-inflammation and cytochrome c-apoptosis were assessed. Apoptotic cell death, infiltration of neutrophils and macrophages, and mitochondrial function were evaluated. Interaction between RIPK1/RIPK3 and HIF-1α/NLRP3 were determined. In SH-SY5Y cells subjected to oxygen/glucose deprivation (OGD), the normothermic effect of C + P on inflammation and apoptosis were examined. RESULTS: C + P significantly reduced infarct volumes, mitochondrial dysfunction (ATP and ROS concentration, citrate synthase and ATPase activity), inflammation and apoptosis with and without induced hypothermia. Overexpression of RIPK1, RIPK3, DRP-1, NLRP3-inflammasome and cytochrome c-apoptosis were all significantly reduced by C + P at 33 °C and the RIPK1 inhibitor (Nec1s), suggesting hypothermic effect of C + P via RIPK1/RIPK3-DRP1pathway. When body temperature was maintained at 37 °C, C + P and HIF-1α inhibitor (YC-1) reduced HIF-1α expression, leading to reduction in mitochondrial dysfunction, NLRP3 inflammasome and cytochrome c-apoptosis, as well as the interaction of HIF-1α and NLRP3. These were also evidenced in vitro, indicating a normothermic effect of C + P via HIF-1α. CONCLUSION: Hypothermic and normothermic neuroprotection of C + P involve different pathways. The normothermic effect was mediated by HIF-1α, while hypothermic effect was via RIPK1/RIPK3-DRP1 signaling. This provides a theoretical basis for future precise exploration of hypothermic and normothermic neuroprotection.


Assuntos
Dinaminas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Inflamassomos , AVC Isquêmico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamassomos/metabolismo , Dinaminas/metabolismo , Dinaminas/genética , Ratos Sprague-Dawley , Fenotiazinas/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Neuroproteção , Humanos , Modelos Animais de Doenças , Hipotermia Induzida
13.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717643

RESUMO

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Assuntos
Anexina A1 , AVC Isquêmico , Microglia , Doenças Neuroinflamatórias , Sirtuínas , Animais , Masculino , Camundongos , Anexina A1/efeitos dos fármacos , Anexina A1/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Cell Rep Med ; 5(5): 101522, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38701781

RESUMO

Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.


Assuntos
AVC Isquêmico , Microglia , Doenças Neuroinflamatórias , Animais , Humanos , Masculino , Camundongos , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
15.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753217

RESUMO

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Assuntos
AVC Isquêmico , Microglia , NF-kappa B , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Microglia/metabolismo , NF-kappa B/metabolismo , Humanos , Quinases Associadas a rho/metabolismo , Animais , Proteína rhoA de Ligação ao GTP/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/imunologia , AVC Isquêmico/patologia , Transdução de Sinais/fisiologia , Polaridade Celular/fisiologia , Polaridade Celular/efeitos dos fármacos
16.
Sci Rep ; 14(1): 10201, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702399

RESUMO

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico , Receptores CCR4 , Linfócitos T Reguladores , Animais , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Microglia/metabolismo , Microglia/imunologia , Masculino , Camundongos Endogâmicos C57BL , Quimiocinas/metabolismo
17.
CNS Neurosci Ther ; 30(5): e14741, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702940

RESUMO

AIMS: Despite the success of single-cell RNA sequencing in identifying cellular heterogeneity in ischemic stroke, clarifying the mechanisms underlying these associations of differently expressed genes remains challenging. Several studies that integrate gene expression and gene expression quantitative trait loci (eQTLs) with genome wide-association study (GWAS) data to determine their causal role have been proposed. METHODS: Here, we combined Mendelian randomization (MR) framework and single cell (sc) RNA sequencing to study how differently expressed genes (DEGs) mediating the effect of gene expression on ischemic stroke. The hub gene was further validated in the in vitro model. RESULTS: We identified 2339 DEGs in 10 cell clusters. Among these DEGs, 58 genes were associated with the risk of ischemic stroke. After external validation with eQTL dataset, lactate dehydrogenase B (LDHB) is identified to be positively associated with ischemic stroke. The expression of LDHB has also been validated in sc RNA-seq with dominant expression in microglia and astrocytes, and melatonin is able to reduce the LDHB expression and activity in vitro ischemic models. CONCLUSION: Our study identifies LDHB as a novel biomarker for ischemic stroke via combining the sc RNA-seq and MR analysis.


Assuntos
AVC Isquêmico , L-Lactato Desidrogenase , Melatonina , Análise da Randomização Mendeliana , Análise de Sequência de RNA , Animais , Humanos , Estudo de Associação Genômica Ampla/métodos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Análise da Randomização Mendeliana/métodos , Locos de Características Quantitativas , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Camundongos
18.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743904

RESUMO

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Assuntos
Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Infarto da Artéria Cerebral Média/metabolismo , Homeostase/fisiologia , Acidente Vascular Cerebral/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Zinco/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Potássio/metabolismo , Cobre/metabolismo , Íons/metabolismo
19.
PLoS One ; 19(5): e0303213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753710

RESUMO

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Tretinoína , Proteína de Morte Celular Associada a bcl , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
20.
Biomed Pharmacother ; 175: 116715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739993

RESUMO

Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.


Assuntos
Proteínas de Ancoragem à Quinase A , AVC Isquêmico , Humanos , Proteínas de Ancoragem à Quinase A/metabolismo , AVC Isquêmico/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA