RESUMO
BACKGROUND: There is insufficient clinical and microbiological evidence to support the use of diode laser and air-polishing with erythritol as supplements to scaling and root planning(SRP). The aim of the current study is to evaluate the clinical and microbiologic efficacy of erythritol subgingival air polishing and diode laser in treatment of periodontitis. METHODS: The study encompassed twenty-four individuals seeking periodontal therapy and diagnosed with stage I and stage II periodontitis. Eight patients simply underwent SRP. Eight more patients had SRP followed by erythritol subgingival air polishing, and eight patients had SRP followed by diode laser application. At baseline and six weeks, clinical periodontal parameters were measured, including Plaque Index (PI), Gingival Index (GI), periodontal Probing Depth (PPD), and Clinical Attachment Level (CAL). The bacterial count of Aggregatibacter actinomycetemcomitans(A.A), Porphyromonas gingivalis (P.G) was evaluated at different points of time. RESULTS: The microbiological assessment revealed significant differences in the count of A.A. between the laser and erythritol groups immediately after treatment, indicating a potential impact on microbial levels. However, the microbial levels showed fluctuations over the subsequent weeks, without statistically significant differences. Plaque indices significantly decreased post-treatment in all groups, with no significant inter-group differences. Gingival indices decreased, and the laser group showed lower values than erythritol and control groups. PPD and CAL decreased significantly across all groups, with the laser group exhibiting the lowest values. CONCLUSION: The supplementary use of diode laser and erythritol air polishing, alongside SRP, represents an expedited periodontal treatment modality. This approach leads to a reduction in bacteria and improvement in periodontal health. TRIAL REGISTRATION: This clinical trial was registered on Clinical Trials.gov (Registration ID: NCT06209554) and released on 08/01/2024.
Assuntos
Aggregatibacter actinomycetemcomitans , Carga Bacteriana , Índice de Placa Dentária , Raspagem Dentária , Eritritol , Lasers Semicondutores , Índice Periodontal , Porphyromonas gingivalis , Aplainamento Radicular , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Abrasão Dental por Ar/métodos , Carga Bacteriana/efeitos dos fármacos , Raspagem Dentária/métodos , Eritritol/uso terapêutico , Seguimentos , Lasers Semicondutores/uso terapêutico , Perda da Inserção Periodontal/terapia , Perda da Inserção Periodontal/microbiologia , Bolsa Periodontal/terapia , Bolsa Periodontal/microbiologia , Periodontite/microbiologia , Periodontite/terapia , Periodontite/tratamento farmacológico , Porphyromonas gingivalis/isolamento & purificação , Porphyromonas gingivalis/efeitos dos fármacos , Aplainamento Radicular/métodos , Resultado do TratamentoRESUMO
Background: Different methods for removing dental carious lesions exist, including conventional rotary caries removal and new advanced technology like polymer-based burs, chemomechanical agents, air abrasion, and laser. Objectives: This study shows the differences in features of dentin (smear layer, patency of dentinal tubules, surface irregularities, intertubular micro porosities, and exposed dentinal tubules) among different types of caries removal techniques. Materials and Methods: An in vitro study was done on 60 primary molars with occlusal class I active caries. Teeth were divided into three groups according to a method of caries removal (G1: chemomechanical, G2: mechanical with a smart bur, and G3: air-abrasion). After complete caries excavation, the teeth were examined under a scanning electronic microscope (SEM) with the power of magnification 4,000x and 8,000x to show the morphological dentinal features with SEM microphotographs. Data obtained was analyzed using the SPSS program where Fisher exact, Kruskal-Wallis and multiple Wilcoxon sum rank tests were used. The level of significance is when the p-value is less than 0.05. Results: Generally, SEM showed the highest ratio of score 1 of smear layer presence, surface irregularities, and microporosity in all groups in both magnifications. The patency of tubules showed the highest ratio of score 1 in G1, scores 2 in both G2 and G3 in magnification 4,000x, while 8,000x there was the highest ratio of its score 1 in G1 and G2 while the G3 has score 2 as the highest score. The exposed dentinal tubules showed the highest ratio in G1 in score 3, in G2 in score 2, and in G3 in score 1 in magnification 4,000x, while 8,000x there was the highest ratio of its score 2 in both G1 and G3 while the G3 has highest score 1. The study with magnification 4,000x showed a significant difference (S) among three groups in exposed dentinal tubules with a p-value (0.012), and there was S between chemomechanical and smart, chemomechanical and air-abrasions groups with a p-value (0.041, 0.001 subsequentially). Other dentin features showed non-significant differences (NS) among or between groups in both magnifications (4,000x, 8,000x). Conclusions: All groups were effective in removing caries and can successfully treat young, scared or stressed patients. All methods of caries removal produce clinically parametric changes in the residual dentin.
Assuntos
Cárie Dentária , Dentina , Microscopia Eletrônica de Varredura , Dente Molar , Cárie Dentária/terapia , Cárie Dentária/patologia , Humanos , Dente Molar/cirurgia , Técnicas In Vitro , Abrasão Dental por Ar/métodos , Preparo da Cavidade Dentária/métodos , Preparo da Cavidade Dentária/instrumentação , Propriedades de SuperfícieRESUMO
OBJECTIVE: To evaluate the influence of air-abrasion of enamel with three different desensitizing powders on the whitening effect of a bleaching gel containing 40% H2O2, which was used for in-office tooth bleaching. MATERIALS AND METHODS: Forty human incisors, extracted and prepared, were acquired for this study and subsequently randomized into four groups (n = 10). The control group specimens underwent no pretreatment prior to the bleaching procedure, whereas the remaining three groups underwent air abrasion using distinct desensitizing powders; (a) Sylc, which contains bioglass 45S5; (b) BioMinF, which contains calcium phospho-fluoro-silicate glass; and (c) MI Pearls, which contains nano-hydroxyapatite, 1 h preceding the Opalescence Boost PF 40% bleaching procedure. Color measurements were conducted using a double-beam UV-Vis spectrophotometer at four distinct time points (prior to bleaching, 24 h, 15 days, and 30 days post-bleaching). RESULTS: Tooth color change outcomes revealed that there were no statistically significant results with respect to the interaction of the two criteria (treatments and time) (p = 0.990). Additionally, there were no statistically significant results with respect to the main effects of treatments (p = 0.385), while there were statistically significant effects with respect to the time criterion (p = 0.013). CONCLUSIONS: The use of the tested desensitizing powders prior the bleaching procedure did not affect the tooth color change induced by the tested bleaching agent. CLINICAL SIGNIFICANCE: Tooth color change and whiteness are not affected by air-abrasion desensitizing treatments when applied prior to in-office bleaching procedures.
Assuntos
Clareamento Dental , Humanos , Clareamento Dental/métodos , Abrasão Dental por Ar/métodos , Dessensibilizantes Dentinários/uso terapêutico , Peróxido de HidrogênioRESUMO
OBJECTIVES: The study aimed to evaluate the debonding resistance of three different endocrown designs on molar teeth, using three different zirconia surface pretreatments. MATERIAL AND METHOD: Ninety human mandibular first molars were divided into three main groups: endocrowns without ferrule, with 1 mm ferrule, and with 2 mm ferrule. The subgroups were defined by their surface pretreatment method used (n = 15): 50 µm alumina air-particle abrasion, silica coating using 30 µm Cojet™ particles, and Zircos-E® etching. The endocrowns were fabricated using multilayer zirconia ceramic, cemented with self-adhesive resin cement, and subjected to 5000 thermocycles (5-55°C) before debonding. The data obtained were analyzed using a two-way ANOVA. RESULTS: All test specimens survived the thermocyclic aging. The results indicated that both the preparation design and the surface treatment had a significant impact on the resistance to debonding of the endocrowns (p < .001). The 2 mm ferrule followed by the 1 mm ferrule designs exhibited the highest debonding resistance, both were superior to the endocrown without ferrule. Zircos-E® etching and silica coating yielded comparable debonding resistance, which were significantly higher than alumina air-particle abrasion. All endocrowns demonstrated a favorable failure mode. CONCLUSIONS: All designs and surface treatments showed high debonding resistance for a single restoration. However, ferrule designs with Zircos-E® etching or silica coating may represent better clinical options compared to the nonferrule design or alumina airborne-particle abrasion. Nonetheless, further research, including fatigue testing and evaluations with different luting agents is recommended.
Assuntos
Óxido de Alumínio , Dióxido de Silício , Propriedades de Superfície , Zircônio , Óxido de Alumínio/química , Humanos , Dióxido de Silício/química , Zircônio/química , Dente Molar , Teste de Materiais , Abrasão Dental por Ar/métodos , Cimentos de Resina/química , Corrosão Dentária/métodos , Análise do Estresse Dentário , Planejamento de Prótese DentáriaRESUMO
BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.
Assuntos
Benzofenonas , Colagem Dentária , Porcelana Dentária , Análise do Estresse Dentário , Cetonas , Teste de Materiais , Polietilenoglicóis , Polímeros , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Colagem Dentária/métodos , Condicionamento Ácido do Dente/métodos , Ácidos Sulfúricos , Cerâmica/química , Abrasão Dental por Ar/métodos , Óxido de Alumínio , Facetas Dentárias , Corrosão Dentária/métodos , HumanosRESUMO
OBJECTIVES: Peri-implant mucositis is a biofilm-related, reversible inflammatory disease that can evolve into peri-implantitis if not adequately treated. The aim of the present randomized controlled clinical trial was to evaluate the efficacy of air-abrasive powder as compared to chlorhexidine (CHX) for the treatment of peri-implant mucositis, in terms of clinical and patient-reported outcomes (PROMs) and occurrence of peri-implantitis 12 months after treatment. METHODS: In the control group, full-mouth calculus and plaque removal was performed with ultrasound and manual devices, and a 1.0% CHX gel was applied; in the test group, supra- and subgingival biofilm removal was performed using erythritol powder with a dedicated nozzle and calculus removal was performed with ultrasonic instruments if needed. Bleeding and plaque indexes, peri-implant probing depth and tissue level were measured at 1 week, and 1, 3, 6 and 12 months after treatment, while PROMs were evaluated up to 7 days after treatment. RESULTS: Among 80 included implants, 70 were analysed at 12 months follow-up (30 in the test group, 40 in the control group, and 20 subjects). Success rates (implant-level) in terms of bleeding index were significantly different between the test (96.7%) and control group (92.5%); as for PROMs, only taste sensation was significantly better in the test group. The test group was significantly correlated to the smallest changes in peri-implant probing depth between baseline and 3 months. CONCLUSIONS: The study showed that both treatment strategies are effective. This suggests that the use of air-abrasive powders could be used as an alternative biofilm removal method instead of adjunctive treatments with antiseptics.
Assuntos
Clorexidina , Eritritol , Peri-Implantite , Pós , Humanos , Eritritol/uso terapêutico , Eritritol/administração & dosagem , Masculino , Feminino , Clorexidina/uso terapêutico , Clorexidina/administração & dosagem , Pessoa de Meia-Idade , Peri-Implantite/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Resultado do Tratamento , Idoso , Índice Periodontal , Anti-Infecciosos Locais/uso terapêutico , Anti-Infecciosos Locais/administração & dosagem , Implantes Dentários/efeitos adversos , Índice de Placa Dentária , Abrasão Dental por Ar/métodos , Adulto , Cálculos Dentários/terapiaRESUMO
PURPOSE: To compare the shear-bond-strength (SBS) of a highly-filled-flowable composite (HFFC) and a paste-type composite for indirect composite repair and to evaluate the effect of different surface treatments (ST), concerning the composite repair protocol. METHODS: Eighty-four 5 × 5 × 2 mm cylindrical specimens were prepared using Gradia Plus and SR Nexco indirect composite materials. The samples were thermocycled 5,000 times. According to the ST, the samples were divided into three groups (control, bur, and air-abrasion). After ST, the sample subgroups were divided into two sub-groups according to the repair material: paste-type composite and HFFC (n = 7). Another 5,000 cycles of aging were performed. SBS values were measured with a universal testing machine (Shimadzu, Japan). Shapiro-Wilk, 3-way ANOVA, and Tukey HSD test were used to evaluate data (P < 0.05). RESULTS: ST was considered significant for SBS (P < 0.001). The mean values were (13.9 ± 5.7), (17.0 ± 6.4), (20.4 ± 4.9) MPa for the control, bur and phosphoric acid, and air-abrasion groups, respectively. The surface treatment and repair material interaction was considered significant for SBS (P = 0.044). The highest mean bond strength (24.5 ± 4.5 MPa) was observed for the interaction of SR Nexco, air-abrasion ST, and HFFC repair. CONCLUSION: Repairing with HFFC following air abrasion might enhance the SBS for indirect composite restorations.
Assuntos
Abrasão Dental por Ar , Colagem Dentária , Abrasão Dental por Ar/métodos , Colagem Dentária/métodos , Propriedades de Superfície , Resinas Compostas , Japão , Teste de Materiais , Resistência ao CisalhamentoRESUMO
OBJECTIVE: This scoping review aims to assess the influence of air abrasion with aluminum oxide and bioactive glass on dentin bond strength. MATERIALS AND METHODS: An electronic search was conducted in three databases (PubMed, Cochrane Library, and Embase), on March 3rd, 2023, with previously identified MeSH Terms. A total of 1023 records were screened. Exclusion criteria include primary teeth, air abrasion of a substrate other than sound dentin, use of particles apart from aluminum oxide or bioactive glass, and studies in which bond strength was not assessed. RESULTS: Out of the 1023 records, title and abstract screening resulted in the exclusion of 895 and 67 studies, respectively, while full-text analysis excluded another 25 articles. In addition, 5 records were not included, as full texts could not be obtained after requesting the authors. Two cross-references were added. Thus, 33 studies were included in this review. It is important to emphasize the absence of standardization of air abrasion parameters. According to 63.6% of the studies, air abrasion does not influence dentin bond strength. Moreover, 30.3% suggest improving bonding performance, and 6.1% advocate a decrease. CONCLUSIONS: Air abrasion with aluminum oxide does not enhance or impair dentin bond strength. The available data on bioactive glass are limited, which hinders conclusive insights. CLINICAL SIGNIFICANCE: Dentin air abrasion is a widely applied technique nowadays, with numerous clinical applications. Despite the widespread adoption of this procedure, its potential impact on bonding performance requires a thorough analysis of the existing literature.
Assuntos
Colagem Dentária , Dentina , Propriedades de Superfície , Dentina/efeitos dos fármacos , Colagem Dentária/métodos , Humanos , Abrasão Dental por Ar/métodos , Óxido de Alumínio/químicaRESUMO
INTRODUCTION: This research investigated the topographical features and phase transformation of high-translucent monolithic zirconia after different surface conditioning methods. METHODS: Zirconia slabs were divided into six groups according to surface treatment method. Group I: etched with hydrofluoric acid (HF); Group II: etched with an experimental acid solution (EAS); Group III: melt-etched with ammonium hydrogen difluoride (AHD); Group IV: air abrasion (AB); Group V: etched with EAS after air abrasion (AB+EAS); Group VI: melt-etched with AHD after air abrasion (AB+AHD). Surface topographies of specimens were documented by scanning electron microscopy (SEM). Tetragonal-to-monoclinic phase transformation was detected by X-ray diffraction and surface evaluation of zirconia specimens; surface roughness and contact angle measurements were performed. The data were statistically analyzed by the Kruskal- Wallis test and post hoc tests (P⟨0.05). RESULTS: The acid-etched zirconia groups (Group I, II, and III) showed the lowest contact angle and surface roughness values (P⟨0.05), while the air abrasion groups (Group IV, V, VI) showed the highest. The SEM images also supported these results. CONCLUSION: Within the limitations of this in vitro study, treating the monolithic zirconia surfaces with EAS or AHD after air abrasion may be recommended to alter the zirconia surfaces.
Assuntos
Abrasão Dental por Ar , Materiais Dentários , Teste de Materiais , Abrasão Dental por Ar/métodos , Propriedades de Superfície , Zircônio , Microscopia Eletrônica de Varredura , CerâmicaRESUMO
Peri-implant diseases have become one of the notable biological complications of postrehabilitation with implant-supported restorations. Effective modalities for decontamination of biofilm deposits around implant surfaces are critical for resolution of the inflammation. Air polishing is one of the recommended clinical methods for treating peri-implant diseases. This systematic review assessed clinical evidence on efficacy of using air polishing technology for the management of peri-implant diseases, including peri-implant mucositis and peri-implantitis. Four electronic databases from January 1990 to December 2022 were searched to identify the relative human randomized clinical trials that applied air polishing for nonsurgical and surgical treatment of peri-implant mucositis and peri-implantitis. Twelve articles were selected. For treating peri-implant mucositis, air polishing showed a comparable effect to ultrasonic scaling in the reduction of bleeding on probing (BOP) and probing pocket depth (PPD). The nonsurgical approach of air polishing in treating peri-implantitis varied in the reduction of BOP, PPD, and clinical attachment level (CAL) in evaluated studies. Air polishing in the surgical treatment of peri-implantitis was comparable to mechanical cleaning, implantoplasty, and the use of Ti-brush, in regards to the significant reduction of BOP, PPD, and CAL, as well as the improvement of the bone level between baseline and follow-ups. The standardized mean difference with a 95% confidence interval of the studied parameters was estimated using the random effect model; however, statistical differences were not detected between air polishing and comparative modalities in the treatment of peri-implantitis. Within the limitations of this review, the application of air polishing did not result in more favorable outcomes in the treatment of peri-implant diseases compared to other modalities.
Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Peri-Implantite/terapia , Abrasão Dental por Ar/métodos , Polimento Dentário/métodos , Estomatite , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Aim: This study aims to evaluate the effect of different surface treatments of monolithic zirconia on the bond strength of resin to zirconia and, to explore alternative methods to improve this bonding. Settings and Design: In-Vitro study. Materials and Methods: Fifty rectangular sintered blocks of Yttria-stabilized Tetragonal Zirconia Polycrystal ceramics of dimensions were milled and sintered. These specimens were further divided into five groups (control, air abrasion, etching with primer application, air abrasion with primer application and novel glass infiltrated zirconia surface group), containing 10 samples each. The specimens were analyzed for surface roughness, tensile bond strength to resin cements, and adhesive and cohesive mode of failures. Statistical Analysis Used: ANOVA and Post-Hoc Tukey test was perform to evaluate the significant differences in the mean values of the groups. Results: Air-abraded samples showed the highest surface roughness (4.95 ± 0.65) (P < 0.05). The group with air abrasion followed by primer application showed the highest tensile bond strength (7.12 ± 0.69) (P < 0.05). The lowest surface roughness (0.638 ± 0.8093) and tensile bond strength (2.03 ± 0.58) was seen in samples that were subjected to etchant treatment followed by application of methacryloyloxydecyl di-hydrogen phosphate (MDP) primer. The changes in comparison to the control group were statistically insignificant (P > 0.05). Except Groups A (control) and C (etchant followed by primer), all other groups showed a cohesive failure. Conclusion: Air abrasion of the zirconia surface with 50 µm alumina particles increases the surface roughness without damaging the surface. Air abrasion followed by MDP primer application is the recommended method of surface treatment to achieve superior bonding. Glass infiltration also showed promising results in terms of tensile bond strength.
Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Abrasão Dental por Ar/métodos , Colagem Dentária/métodos , Resistência ao Cisalhamento , Propriedades de Superfície , Teste de Materiais , Zircônio/químicaRESUMO
OBJECTIVES: To investigate the degradation, fluorapatite formation, biological safety and cutting efficiency on dentine of the mixed fluoride- and chloride-containing bioactive glasses (BGs). METHODS: Two series of mixed fluoride- and chloride-containing glasses (GPFCl and GPF2.3Cl series) were synthesized using a melt-quench method. Glass transition temperature (Tg) and the bioactivity in term of glass degradation and fluorapatite formation were evaluated in Tris buffer solution. The cutting efficiency of the powdered BGs (GPF2.3Cl series) on dentine via air abrasion was investigated using white light profilometry and scanning electron microscope. The cytotoxicity of GPF2.3Cl series on human periodontal ligament stem cells (hPLSCs) and oral fibroblasts (OFB) were examined by MTT. RESULTS: These BGs are highly degradable and able to form fluorapatite within 3h of immersion. The formation of CaF2 was also found in the high fluoride-containing BGs. The faster glass degradation was evidenced in the BGs with higher chloride. A significant reduction of Tg from 790°C to 463°C was seen with increasing in calcium halide content. Air abrasion on dentine using the low and intermediate chloride-containing glasses demonstrates clear depressions, while no depression was found using the high chloride-containing glass. Moreover, the studied BGs showed no cytotoxicity to hPLSCs and OFB. CONCLUSIONS: The glasses with mixed fluoride and chloride integrate the benefits from the presence of both, showing rapid glass degradation, fast fluorapatite formation, excellent biocompatibility and controllable hardness to provide a selective cutting efficiency on dentine. CLINICAL SIGNIFICANCE: The developed BGs air abrasive with tunable hardness by varying chloride content can selectively cut different dental tissues. In clinic, a relatively hard BG is of great interest for caries preparation, while a soft glass is attractive for tooth cleaning.
Assuntos
Abrasão Dental por Ar , Fluoretos , Abrasão Dental por Ar/métodos , Apatitas , Cálcio , Cloretos , Vidro , Humanos , Propriedades de Superfície , TrometaminaRESUMO
OBJECTIVE: To compare the in vitro decontamination efficacy of two electrolytic cleaning methods to diode laser, plasma, and air-abrasive devices. MATERIAL AND METHODS: Sixty sandblasted large-grit acid-etched (SLA) implants were incubated with 2 ml of human saliva and Tryptic Soy Broth solution under continuous shaking for 14 days. Implants were then randomly assigned to one untreated control group (n = 10) and 5 different decontamination modalities: air-abrasive powder (n = 10), diode laser (n = 10), plasma cleaning (n = 10), and two electrolytic test protocols using either potassium iodide (KI) (n = 10) or sodium formate (CHNaO2) (n = 10) solution. Implants were stained for dead and alive bacteria in two standardized measurement areas, observed at fluorescent microscope, and analyzed for color intensity. RESULTS: All disinfecting treatment modalities significantly reduced the stained area compared to the untreated control group for both measurement areas (p < 0.001). Among test interventions, electrolytic KI and CHNaO2 treatments were equally effective, and each one significantly reduced the stained area compared to any other treatment modality (p < 0.001). Efficacy of electrolytic protocols was not affected by the angulation of examined surfaces [surface angulation 0° vs. 60° (staining %): electrolytic cleaning-KI 0.03 ± 0.04 vs. 0.09 ± 0.10; electrolytic cleaning-CHNaO2 0.01 ± 0.01 vs. 0.06 ± 0.08; (p > 0.05)], while air abrasion [surface angulation 0° vs. 60° (staining %): 2.66 ± 0.83 vs. 42.12 ± 3.46 (p < 0.001)] and plasma cleaning [surface angulation 0° vs. 60° (staining %): 33.25 ± 3.01 vs. 39.16 ± 3.15 (p < 0.001)] were. CONCLUSIONS: Within the limitations of the present in vitro study, electrolytic decontamination with KI and CHNaO2 was significantly more effective in reducing bacterial stained surface of rough titanium implants than air-abrasive powder, diode laser, and plasma cleaning, regardless of the accessibility of the contaminated implant location. CLINICAL RELEVANCE: Complete bacterial elimination (residual bacteria < 1%) was achieved only for the electrolytic cleaning approaches, irrespectively of the favorable or unfavorable access to implant surface.
Assuntos
Implantes Dentários , Peri-Implantite , Abrasão Dental por Ar/métodos , Descontaminação , Eletrólitos , Humanos , Lasers Semicondutores , Microscopia Eletrônica de Varredura , Peri-Implantite/terapia , Pós , Propriedades de Superfície , TitânioRESUMO
OBJECTIVES: To develop and test the cutting efficiency of a novel degradable glass as an alternative media to alumina powder for air abrasion. MATERIALS AND METHODS: A zinc-based glass (QMZK2) was designed, produced, and evaluated with a multi-modality imaging analysis. The glass dissolution study was carried out in three acids, using ICP-OES (inductively coupled plasma optical emission spectroscopy) at 5 different time points: 2.5, 5, 10, 60, and 240 min. The cutting efficiency of both materials was tested under the same parameters on slabs of elephant enamel. A stained fissure of a molar tooth was air abraded with the glass and evaluated with X-ray micro-tomography before and after air abrasion. RESULTS: The particle size distribution of the glass was similar to that of alumina 53 µm but with a slightly greater dispersion of particle size. The shape of the particles was angular, appropriate for cutting purposes. The dissolution study showed that the glass dissolved rapidly in acidic conditions at all time points. Between the two variables, pressure and powder flow, pressure was found to influence the cutting speed to a greater extent than powder flow. CONCLUSIONS: Alumina powder was found to perform significantly better in 4 of the 9 conditions tested on elephant enamel, QMZK2 in one, and no significant differences were found for the rest of the 4 conditions. The QMZK2 seems to offer promising results as an alternative material to alumina. CLINICAL RELEVANCE: QMZK2 glass has the potential for replacing aluminum oxide as a degradable material in air abrasion technology.
Assuntos
Abrasão Dental por Ar , Esmalte Dentário , Abrasão Dental por Ar/métodos , Óxido de Alumínio/química , Cerâmica/química , Vidro/química , Teste de Materiais , Pós , Propriedades de SuperfícieRESUMO
OBJECTIVES: The aim of this study was to evaluate the SBS of pre-sintered and sintered zirconia to a selfadhesive resin cement after various treatment (air abrasion and the Nd:YAG laser irradiation at varying power levels -1 W, 2 W and 3 W). MATERIAL AND METHODS: Ninety-nine zirconia specimens were prepared and divided into 3 groups: control (with no surface treatment); and pre-sintered and sintered groups with surface treatment. Surface treatment was applied before sintering in the pre-sintered group and after sintering in the sintered group. After following all protocols, a resin cement was layered on the zirconia surface. Shear bond strength was measured using a universal testing machine. The results were subjected to the statistical analysis. The surface topography and phase transformation of zirconia were evaluated using the atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses after surface treatment. RESULTS: The laser irradiation (3 W, 1 W and 2 W) of the pre-sintered zirconia surface resulted in the highest SBS values (p < 0.001), while the lowest SBS values were obtained with airborne particle abrasion of the pre-sintered and sintered zirconia surfaces. CONCLUSIONS: Laser irradiation increased the SBS of pre-sintered zirconia to a resin cement. Surface treatment with air abrasion had a lesser effect on the SBS values.
Assuntos
Colagem Dentária , Cimentos de Resina , Abrasão Dental por Ar/métodos , Cimentos Dentários , Humanos , Teste de Materiais , Cimentos de Resina/química , Propriedades de Superfície , ZircônioRESUMO
This study aimed to investigate the effects of femtosecond laser (Fs) and/or air-abrasion protocols on surface roughness (Ra) of zirconia and resin bond strength. Eighty zirconia samples were randomly divided into eight subgroups according to surface treatment protocols: Control (C), Air-abrasion before sintering (ABS), Air-abrasion after sintering (AAS), Air-abrasion before and after sintering (ABS + AAS), Fs laser before sintering (FBS), Fs laser before sintering + air-abrasion after sintering (FBS + AAS), Fs laser after sintering (FAS), and Fs laser after sintering + air-abrasion after sintering (FAS + AAS). Measurements of Ra values were obtained using a surface profilometer. Surface morphological properties were evaluated with scanning electron microscopy (SEM), and crystallographic changes were examined by X-Ray diffractometry (XRD). Self-adhesive resin cement was bonded to zirconia samples, and shear bond strength (SBS) tests were performed. The data were statistically analyzed by one-way ANOVA, followed by Tamhane tests. The control group displayed the lowest Ra and SBS values among all groups. The highest Ra and SBS values were found in the FBS and FBS + AAS groups. Air-abrasion applied before sintering significantly increased the Ra of specimens. FAS, FAS + AAS, and ABS + AAS groups exhibited higher SBS values than AAS and ABS (p < .05). Air-abrasion applied after Fs laser did not produce any significant change in the Ra and SBS compared to Fs laser alone (p > .05). Femtosecond laser application may be a promising method to enhance the surface roughness of zirconia and improve resin bond strength. Air-abrasion at pre- and post-sintered stages may also be a viable surface treatment option.
Assuntos
Abrasão Dental por Ar/métodos , Cimentos Dentários/química , Materiais Dentários , Zircônio , Ar , Colagem Dentária , Materiais Dentários/química , Temperatura Alta , Lasers , Teste de Materiais , Microscopia Eletrônica , Pressão , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície , Difração de Raios X , Zircônio/químicaRESUMO
This study aimed to evaluate the effect of air-abrasion/sintering order and autoclave aging on the surface roughness (Ra), phase transformation, and biaxial flexural strength (BFS) of monolithic zirconia. A total of 104 monolithic zirconia specimens (Katana ML) were divided into eight groups according to airborne-particle abrasion protocols and hydrothermal aging: control (non-aged: C-, aged: C+), air-abrasion before sintering (BS-, BS+), air-abrasion after sintering (AS-, AS+), and air-abrasion before and after sintering (BAS-, BAS+). A steam autoclave was used for accelerated aging, and Ra values were measured with a surface profilometer. All specimens were analyzed by X-ray diffraction to determine any phase transformation on the zirconia surface. BFS was measured by using the piston-on-three-balls method. Scanning electron microscopy and atomic force microscopy were performed on one specimen per group. BS and BAS groups showed higher Ra values compared with groups C and AS. The aging process significantly increased the monoclinic phase content of all specimens. Lower monoclinic levels were found in AS+ and BAS+ compared with other aged groups. The AS groups exhibited higher flexural strength values relative to control groups, whereas BS groups exhibited significantly lower flexural strength values (p < .05). There was no reduction in flexural strength by using the BAS protocol. Air-abrasion of zirconia at the pre-sintered stage only is not recommended in clinical use because of the remarkable decrease in flexural strength.
Assuntos
Abrasão Dental por Ar/métodos , Cimentos Dentários/química , Materiais Dentários , Zircônio , Colagem Dentária , Materiais Dentários/química , Temperatura Alta , Teste de Materiais , Microscopia Eletrônica , Pressão , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície , Difração de Raios X , Zircônio/químicaRESUMO
OBJECTIVE: This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. METHODOLOGY: Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. RESULTS: The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. CONCLUSION: Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.
Assuntos
Abrasão Dental por Ar/métodos , Óxido de Alumínio/química , Colagem Dentária/métodos , Cimentos de Resina/química , Zircônio/química , Análise de Variância , Resistência à Flexão , Temperatura Alta , Teste de Materiais , Microscopia Confocal/métodos , Valores de Referência , Reprodutibilidade dos Testes , Propriedades de Superfície , Resistência à Tração , Difração de Raios X/métodosRESUMO
OBJECTIVE: The aim of this study was to determine if there are differences between the shear bond strengths of 3 types of ceramic brackets when bonded to different ceramic substrates using an aluminium oxide air abrasion etchant protocol. MATERIALS AND METHODS: Substrate groups consisting of thirty-six lithium disilicate (e.max® CAD) samples and thirty-six lithium silicate infused with zirconia (CELTRA® DUO) samples were fabricated to replicate the facial surface of a left maxillary central incisor. The surface of all samples was prepared with an aluminium oxide air abrasion etchant protocol. Each substrate group was split into three test groups (n=12). Each test group was bonded using a different brand of ceramic orthodontic bracket. Shear bond strength (SBS) testing was conducted and the mean SBS values for each group were calculated and recorded in MPa. An Adhesive Resin Index (ARI) score was also assigned to each sample to assess the location of bond failure. RESULTS: Mean SBS of the e.max® CAD groups were significantly less than the CELTRA® DUO groups. Symetri brackets showed significantly higher shear bond strengths to both substrates than both of the other brackets tested. ARI scores of the e.max® CAD groups were significantly less than the CELTRA® DUO groups. CONCLUSION: The Symetri bracket was the only bracket that was effective for both substrates (mean SBS>6mPa). The Etch Master protocol does not appear effective for e.max® CAD.
Assuntos
Abrasão Dental por Ar , Cerâmica/química , Coroas , Colagem Dentária/métodos , Braquetes Ortodônticos , Resistência ao Cisalhamento , Abrasão Dental por Ar/métodos , Óxido de Alumínio , Análise do Estresse Dentário , Humanos , Teste de Materiais , Propriedades de SuperfícieRESUMO
Abstract Objective This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. Methodology Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. Results The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. Conclusion Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.