Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(41): e2410995121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361653

RESUMO

Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.


Assuntos
Acetato-CoA Ligase , Aldeído Oxirredutases , Microscopia Crioeletrônica , Metano , Methanosarcina , Complexos Multienzimáticos , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/química , Microscopia Crioeletrônica/métodos , Methanosarcina/enzimologia , Methanosarcina/metabolismo , Metano/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Monóxido de Carbono/metabolismo , Modelos Moleculares
2.
Protein Sci ; 33(10): e5175, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276014

RESUMO

Millions of years of evolution have optimized many biosynthetic pathways by use of multi-step catalysis. In addition, multi-step metabolic pathways are commonly found in and on membrane-bound organelles in eukaryotic biochemistry. The fundamental mechanisms that facilitate these reaction processes provide strategies to bioengineer metabolic pathways in synthetic chemistry. Using Brownian dynamics simulations, here we modeled intermediate substrate transportation of colocalized yeast-ester biosynthesis enzymes on the membrane. The substrate acetate ion traveled from the pocket of aldehyde dehydrogenase to its target enzyme acetyl-CoA synthetase, then the substrate acetyl CoA diffused from Acs1 to the active site of the next enzyme, alcohol-O-acetyltransferase. Arranging two enzymes with the smallest inter-enzyme distance of 60 Å had the fastest average substrate association time as compared with anchoring enzymes with larger inter-enzyme distances. When the off-target side reactions were turned on, most substrates were lost, which suggests that native localization is necessary for efficient final product synthesis. We also evaluated the effects of intermolecular interactions, local substrate concentrations, and membrane environment to bring mechanistic insights into the colocalization pathways. The computation work demonstrates that creating spatially organized multi-enzymes on membranes can be an effective strategy to increase final product synthesis in bioengineering systems.


Assuntos
Simulação de Dinâmica Molecular , Acetiltransferases/metabolismo , Acetiltransferases/química , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Domínio Catalítico , Proteínas
3.
Nat Commun ; 15(1): 6002, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019872

RESUMO

The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Bacillus subtilis , Proteínas de Bactérias , Lisina , Acetilação , Lisina/metabolismo , Acetilcoenzima A/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/química , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Monofosfato de Adenosina/metabolismo , Organofosfatos
4.
J Am Chem Soc ; 146(30): 21034-21043, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023163

RESUMO

Acetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [Fe4S4]n+ cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle. In this work, we isolate the first bimetallic models of two hypothesized intermediates on the paramagnetic pathway of the ACS function. The heteroligated {Ni2+Ni1+} cluster, [K(12-crown-4)2][1], effectively replicates the coordination number and oxidation state of the proposed "Ared" state of the A-cluster. Addition of carbon monoxide to [1]- allows for isolation of a dinuclear {Ni2+Ni1+(CO)} complex, [K(12-crown-2)n][2] (n = 1-2), which bears similarity to the "ANiFeC" enzyme intermediate. Structural and electronic properties of each cluster are elucidated by X-ray diffraction, nuclear magnetic resonance, cyclic voltammetry, and UV/vis and electron paramagnetic resonance spectroscopies, which are supplemented by density functional theory (DFT) calculations. Calculations indicate that the pseudo-T-shaped geometry of the three-coordinate nickel in [1]- is more stable than the Y-conformation by 22 kcal mol-1, and that binding of CO to Ni1+ is barrierless and exergonic by 6 kcal mol-1. UV/vis absorption spectroscopy on [2]- in conjunction with time-dependent DFT calculations indicates that the square-planar nickel site is involved in electron transfer to the CO π*-orbital. Further, we demonstrate that [2]- promotes thioester synthesis in a reaction analogous to the production of acetyl coenzyme A by ACS.


Assuntos
Níquel , Níquel/química , Níquel/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Modelos Moleculares , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Oxirredução , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química
5.
J Biol Chem ; 300(8): 107503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944127

RESUMO

One of the seven natural CO2 fixation pathways, the anaerobic Wood-Ljungdahl pathway (WLP) is unique in generating CO as a metabolic intermediate, operating through organometallic intermediates, and in conserving (versus utilizing) net ATP. The key enzyme in the WLP is acetyl-CoA synthase (ACS), which uses an active site [2Ni-4Fe-4S] cluster (A-cluster), a CO tunnel, and an organometallic (Ni-CO, Ni-methyl, and Ni-acetyl) reaction sequence to generate acetyl-CoA. Here, we reveal that an alcove, which interfaces the tunnel and the A-cluster, is essential for CO2 fixation and autotrophic growth by the WLP. In vitro spectroscopy, kinetics, binding, and in vivo growth experiments reveal that a Phe229A substitution at one wall of the alcove decreases CO affinity thirty-fold and abolishes autotrophic growth; however, a F229W substitution enhances CO binding 80-fold. Our results indicate that the structure of the alcove is exquisitely tuned to concentrate CO near the A-cluster; protect ACS from CO loss during catalysis, provide a haven for inhibitory CO, and stabilize the tetrahedral coordination at the Nip site where CO binds. The directing, concentrating, and protective effects of the alcove explain the inability of F209A to grow autotrophically. The alcove also could help explain current controversies over whether ACS binds CO and methyl through a random or ordered mechanism. Our work redefines what we historically refer to as the metallocenter "active site". The alcove is so crucial for enzymatic function that we propose it is part of the active site. The community should now look for such alcoves in all "gas handling" metalloenzymes.


Assuntos
Acetato-CoA Ligase , Monóxido de Carbono , Domínio Catalítico , Níquel , Níquel/metabolismo , Níquel/química , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Ciclo do Carbono , Anaerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química
6.
Angew Chem Int Ed Engl ; 63(31): e202405120, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743001

RESUMO

The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.


Assuntos
Acetilcoenzima A , Dióxido de Carbono , Oxirredução , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/química , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/química , Biocatálise , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Modelos Moleculares
7.
J Biol Chem ; 297(3): 101037, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343565

RESUMO

Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Acetato-CoA Ligase/genética , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/química , Fibroblastos/enzimologia , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Alinhamento de Sequência
8.
ACS Chem Biol ; 16(8): 1587-1599, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34369755

RESUMO

Acetyl CoA synthetases (ACSs) are Acyl-CoA/NRPS/Luciferase (ANL) superfamily enzymes that couple acetate with CoA to generate acetyl CoA, a key component of central carbon metabolism in eukaryotes and prokaryotes. Normal mammalian cells are not dependent on ACSs, while tumor cells, fungi, and parasites rely on acetate as a precursor for acetyl CoA. Consequently, ACSs have emerged as a potential drug target. As part of a program to develop antifungal ACS inhibitors, we characterized fungal ACSs from five diverse human fungal pathogens using biochemical and structural studies. ACSs catalyze a two-step reaction involving adenylation of acetate followed by thioesterification with CoA. Our structural studies captured each step of these two half-reactions including the acetyl-adenylate intermediate of the first half-reaction in both the adenylation conformation and the thioesterification conformation and thus provide a detailed picture of the reaction mechanism. We also used a systematic series of increasingly larger alkyl adenosine esters as chemical probes to characterize the structural basis of the exquisite ACS specificity for acetate over larger carboxylic acid substrates. Consistent with previous biochemical and genetic data for other enzymes, structures of fungal ACSs with these probes bound show that a key tryptophan residue limits the size of the alkyl binding site and forces larger alkyl chains to adopt high energy conformers, disfavoring their efficient binding. Together, our analysis provides highly detailed structural models for both the reaction mechanism and substrate specificity that should be useful in designing selective inhibitors of eukaryotic ACSs as potential anticancer, antifungal, and antiparasitic drugs.


Assuntos
Acetato-CoA Ligase/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Acetato-CoA Ligase/antagonistas & inibidores , Acetato-CoA Ligase/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
J Am Chem Soc ; 143(7): 2751-2756, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577316

RESUMO

DNA-encoded small molecule libraries (DELs) have facilitated the discovery of novel modulators of many different therapeutic protein targets. We report the first successful screening of a multimillion membered DEL inside a living cell. We demonstrate a novel method using oocytes from the South African clawed frog Xenopus laevis. The large size of the oocytes of 1 µL, or 100 000 times bigger than a normal somatic cell, permits simple injection of DELs, thus resolving the fundamental problem of delivering DELs across cell membranes for in vivo screening. The target protein was expressed in the oocytes fused to a prey protein, to allow specific DNA labeling and hereby discriminate between DEL members binding to the target protein and the endogenous cell proteins. The 194 million member DEL was screened against three pharmaceutically relevant protein targets, p38α, ACSS2, and DOCK5. For all three targets multiple chemical clusters were identified. For p38α, validated hits with single digit nanomolar potencies were obtained. This work demonstrates a powerful new approach to DEL screening, which eliminates the need for highly purified active target protein and which performs the screening under physiological relevant conditions and thus is poised to increase the DEL amenable target space and reduce the attrition rates.


Assuntos
DNA/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Xenopus laevis/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Humanos , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Oócitos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Xenopus laevis/crescimento & desenvolvimento
10.
Inorg Chem ; 59(20): 15167-15179, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33017144

RESUMO

The biological synthesis of acetyl-coenzyme A (acetyl-CoA), catalyzed by acetyl-CoA synthase (ACS), is of biological significance and chemical interest acting as a source of energy and carbon. The catalyst contains an unusual hexa-metal cluster with two nickel ions and a [Fe4S4] cluster. DFT calculations have been performed to investigate the ACS reaction mechanism starting from three different oxidation states (+2, +1, and 0) of Nip, the nickel proximal to [Fe4S4]. The results indicate that the ACS reaction proceeds first through a methyl radical transfer from cobalamin (Cbl) to Nip randomly accompanying with the CO binding. After that, C-C bond formation occurs between the Nip-bound methyl and CO, forming Nip-acetyl. The substrate CoA-S- then binds to Nip, allowing C-S bond formation between the Nip-bound acetyl and CoA-S-. Methyl transfer is rate-limiting with a barrier of ∼14 kcal/mol, which does not depend on the presence or absence of CO. Both the Nip2+ and Nip1+ states are chemically capable of catalyzing the ACS reaction independent of the state (+2 or +1) of the [Fe4S4] cluster. The [Fe4S4] cluster is not found to affect the steps of methyl transfer and C-C bond formation but may be involved in the C-S bond formation depending on the detailed mechanism chosen. An ACS active site containing a Nip(0) state could not be obtained. Optimizations always led to a Nip1+ state coupled with [Fe4S4]1+. The calculations show a comparable activity for Nip1+/[Fe4S4]1+, Nip1+/[Fe4S4]2+, and Nip2+/[Fe4S4]2+. The results here give significant insights into the chemistry of the important ACS reaction.


Assuntos
Acetato-CoA Ligase/química , Proteínas de Bactérias/química , Catálise , Teoria da Densidade Funcional , Firmicutes/enzimologia , Proteínas Ferro-Enxofre/química , Modelos Químicos , Moorella/enzimologia , Níquel/química , Oxirredução , Vitamina B 12/análogos & derivados , Vitamina B 12/química
11.
Biosci Biotechnol Biochem ; 84(10): 2045-2053, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32538302

RESUMO

NDP-forming type acyl-CoA synthetase superfamily proteins are known to have six essential subdomains (1, 2, 3, a, b, c) of which partition and order are varied, suggesting yet-to-be-defined subdomain rearrangement happened in its evolution. Comparison in physicochemical and biochemical characteristics between the recombinant proteins which we made from fragmented subdomains and wild-type protein, acetate-CoA ligase in a hyperthermophilic archaeon, consisting of two distinct subunits (α1-2-3 and ßa-b-c) provided a clue to the mystery of its molecular evolutionary passage. Although solubility and thermostability of each fragmented subdomain turned out to be lower than that of wild-type, mixture of the three synthetic subunits of α1-2, α3, and ßa-b-c had quaternary structure, thermostability, and enzymatic activity comparable to those of the wild-type. This suggests that substantial independence and mobility of subdomain 3 have enabled rearrangement of the subdomains; and thermostability of the subdomains has constrained the composition of the subunits.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Estabilidade Enzimática , Domínios Proteicos , Pyrobaculum/enzimologia , Temperatura
12.
PLoS One ; 14(11): e0225105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725783

RESUMO

The response to environmental stresses by eukaryotic organisms includes activation of protective biological mechanisms, orchestrated in part by transcriptional regulators. The tri-member Hypoxia Inducible Factor (HIF) family of DNA-binding transcription factors include HIF-2, which is activated under conditions of oxygen or glucose deprivation. Although oxygen-dependent protein degradation is a key mechanism by which HIF-1 and HIF-2 activity is regulated, HIF-2 is also influenced substantially by the coupled action of acetylation and deacetylation. The acetylation/deacetylation process that HIF-2 undergoes employs a specific acetyltransferase and deacetylase. Likewise, the supply of the acetyl donor, acetyl CoA, used for HIF-2 acetylation originates from a specific acetyl CoA generator, acetate-dependent acetyl CoA synthetase 2 (Acss2). Although Acss2 is predominantly cytosolic, a subset of the Acss2 cellular pool is enriched in the nucleus following oxygen or glucose deprivation. Prevention of nuclear localization by a directed mutation in a putative nuclear localization signal in Acss2 abrogates HIF-2 acetylation and blunts HIF-2 dependent signaling as well as flank tumor growth for knockdown/rescue cancer cells expressing ectopic Acss2. In this study, we report generation of a novel mouse strain using CRISPR/Cas9 mutagenesis that express this mutant Acss2 allele in the mouse germline. The homozygous mutant mice have impaired induction of the canonical HIF-2 target gene erythropoietin and blunted recovery from acute anemia. Surprisingly, Acss2 protein levels are dramatically reduced in these mutant mice. Functional studies investigating the basis for this phenotype reveal multiple protein instability domains in the Acss2 carboxy terminus. The findings described herein may be of relevance in the regulation of native Acss2 protein as well as for humans carrying missense mutations in these domains.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sequência Conservada , Mutação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Sequência de Aminoácidos , Animais , Genes Reporter , Genótipo , Humanos , Camundongos , Estabilidade Proteica
13.
J Agric Food Chem ; 67(34): 9569-9578, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31385495

RESUMO

Acetyl-CoA synthetase (ACS) plays a key role in microalgal lipid biosynthesis and acetyl-CoA industrial production. In the present study, two ACSs were cloned and characterized from the oleaginous microalga Chromochloris zofingiensis. In vitro kinetic analysis showed that the Km values of CzACS1 and CzACS2 for potassium acetate were 0.99 and 0.81 mM, respectively. Moreover, CzACS1 and CzACS2 had outstanding catalytic efficiencies (kcat/Km), which were 70.67 and 79.98 s-1 mM-1, respectively, and these values were higher than that of other reported ACSs. CzACS1 and CzACS2 exhibited differential expression patterns at the transcriptional level under various conditions. Screening a recombinant library of 52 transcription factors (TFs) constructed in the present study via yeast one-hybrid assay pointed to seven TFs with potential involvement in the regulation of the two ACS genes. Expression correlation analysis implied that GATA20 was likely an important regulator of CzACS2 and that ERF9 could regulate two CzACSs simultaneously.


Assuntos
Acetato-CoA Ligase/metabolismo , Clorófitas/enzimologia , Regulação Enzimológica da Expressão Gênica , Microalgas/enzimologia , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Biocatálise , Clorófitas/química , Clorófitas/genética , Cinética , Metabolismo dos Lipídeos , Microalgas/química , Microalgas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
ACS Synth Biol ; 8(6): 1325-1336, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117358

RESUMO

Acetyl-CoA synthetase (ACS) is a member of a large superfamily of enzymes that display diverse substrate specificities, with a common mechanism of catalyzing the formation of a thioester bond between Coenzyme A and a carboxylic acid, while hydrolyzing ATP to AMP and pyrophosphate. As an activated form of acetate, acetyl-CoA is a key metabolic intermediate that links many metabolic processes, including the TCA cycle, amino acid metabolism, fatty acid metabolism and biosynthetic processes that generate many polyketides and some terpenes. We explored the structural basis of the specificity of ACS for only activating acetate, whereas other members of this superfamily utilize a broad range of other carboxylate substrates. By computationally modeling the structure of the Arabidopsis ACS and the Pseudomonas chlororaphis isobutyryl-CoA synthetase using the experimentally determined tertiary structures of homologous ACS enzymes as templates, we identified residues that potentially comprise the carboxylate binding pocket. These predictions were systematically tested by mutagenesis of four specific residues. The resulting rationally redesigned carboxylate binding pocket modified the size and chemo-physical properties of the carboxylate binding pocket. This redesign successfully switched a highly specific enzyme from using only acetate, to be equally specific for using longer linear (up to hexanoate) or branched chain (methylvalerate) carboxylate substrates. The significance of this achievement is that it sets a precedent for understanding the structure-function relationship of an enzyme without the need for an experimentally determined tertiary structure of that target enzyme, and rationally generates new biocatalysts for metabolic engineering of a broad range of metabolic processes.


Assuntos
Acetato-CoA Ligase/genética , Sítios de Ligação/genética , Mutagênese Sítio-Dirigida/métodos , Especificidade por Substrato/genética , Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Arabidopsis/genética , Engenharia Metabólica/métodos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Mol Microbiol ; 112(2): 588-604, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31099918

RESUMO

Lysine acylation is a posttranslational modification used by cells of all domains of life to modulate cellular processes in response to metabolic stress. The paradigm for the role of lysine acylation in metabolism is the acetyl-coenzyme A synthetase (Acs) enzyme. In prokaryotic and eukaryotic cells alike, Acs activity is downregulated by acetylation and reactivated by deacetylation. Proteins belonging to the bacterial GCN5-related N-acetyltransferase (bGNAT) superfamily acetylate the epsilon amino group of an active site lysine, inactivating Acs. A deacetylase can remove the acetyl group, thereby restoring activity. Here we show the Acs from Staphylococcus aureus (SaAcs) activates acetate and weakly activates propionate, but does not activate >C3 organic acids or dicarboxylic acids (e.g. butyrate, malonate and succinate). SaAcs activity is regulated by AcuA (SaAcuA); a type-IV bGNAT. SaAcuA can acetylate or propionylate SaAcs reducing its activity by >90% and 95% respectively. SaAcuA also succinylated SaAcs, with this being the first documented case of a bacterial GNAT capable of succinylation. Inactive SaAcsAc was deacetylated (hence reactivated) by the NAD+ -dependent (class III) sirtuin protein deacetylase (hereafter SaCobB). In vivo and in vitro evidence show that SaAcuA and SaCobB modulate the level of SaAcs activity in S. aureus.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Sirtuínas/metabolismo , Staphylococcus aureus/enzimologia , Acetato-CoA Ligase/genética , Acetilação , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Lisina/genética , Sirtuínas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácido Succínico/metabolismo
16.
Mol Plant Pathol ; 20(1): 107-123, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136442

RESUMO

Acetyl-coenzyme A (acetyl-CoA) is a key molecule that participates in many biochemical reactions in amino acid, protein, carbohydrate and lipid metabolism. Here, we genetically dissected the distinct roles of two acetyl-CoA synthetase genes, ChAcs1 and ChAcs2, in the regulation of fermentation, lipid metabolism and virulence of the hemibiotrophic fungus Colletotrichum higginsianum. ChAcs1 and ChAcs2 are both highly expressed during appressorial development and the formation of primary hyphae, and are constitutively expressed in the cytoplasm throughout development. We found that C. higginsianum strains without ChAcs1 were non-viable in the presence of most non-fermentable carbon sources, including acetate, ethanol and acetaldehyde. Deletion of ChAcs1 also led to a decrease in lipid content of mycelia and delayed lipid mobilization in conidia to developing appressoria, which suggested that ChAcs1 contributes to lipid metabolism in C. higginsianum. Furthermore, a ChAcs1 deletion mutant was defective in the switch to invasive growth, which may have been directly responsible for its reduced virulence. Transcriptomic analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that ChAcs1 can affect the expression of genes involved in virulence and carbon metabolism, and that plant defence genes are up-regulated, all demonstrated during infection by a ChAcs1 deletion mutant. In contrast, deletion of ChAcs2 only conferred a slight delay in lipid mobilization, although it was highly expressed in infection stages. Our studies provide evidence for ChAcs1 as a key regulator governing lipid metabolism, carbon source utilization and virulence of this hemibiotrophic fungus.


Assuntos
Acetato-CoA Ligase/genética , Carbono/metabolismo , Colletotrichum/genética , Colletotrichum/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos , Metabolismo dos Lipídeos/genética , Acetato-CoA Ligase/química , Acetato-CoA Ligase/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum/enzimologia , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lipídeos/biossíntese , Filogenia , Esporos Fúngicos/crescimento & desenvolvimento , Transcriptoma/genética , Virulência/genética
17.
Inorg Chem ; 57(21): 13713-13727, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339375

RESUMO

Aliphatic thiolato-S-bridged tri- and binuclear nickel(II) complexes have been synthesized and characterized as models for the Nip site of the A cluster of acetyl coenzyme A synthase (ACS)/carbon monooxide (CO) dehydrogenase. Reaction of the in situ formed N2Sthiol donor ligands with [Ni(H2O)6](ClO4)2 afforded the trinuclear complexes [Ni{(LMe(S))2Ni}2](ClO4)2·CH3CN (1·CH3CN) and [Ni{(LBr(S))2Ni}2](ClO4)2·5H2O (2·5H2O) following self-assembly. Complexes 1 and 2 react with [Ni(dppe)Cl2] and dppe [dppe = 1,2-bis(diphenylphosphino)ethane] to afford the binuclear [Ni(dppe)Ni(LMe(S))2](ClO4)2·2H2O (3·2H2O) and [Ni(dppe)Ni(LBr(S))2](ClO4)2·0.75O(C2H5)2 [4·0.75O(C2H5)2], respectively. The X-ray crystal structures of 1-4 revealed a central NiIIS4 moiety in 1 and 2 and a NiIIP2S2 moiety in 3 and 4; both moieties have a square-planar environment around Ni and may mimic the properties of the Nip site of ACS. The electrochemical reduction of both terminal NiII ions of 1 and 2 occurs simultaneously, which is further confirmed by the isolation of [Ni{(LMe(S))2Ni(NO)}2](ClO4)2 (5) and [Ni{(LBr(S))2Ni(NO)}2](ClO4)2 (6) following reductive nitrosylation of 1 and 2. Complexes 5 and 6 exhibit νNO at 1773 and 1789 cm-1, respectively. In the presence of O2, both 5 and 6 transform to nitrite-bound monomers [(LMe(S-S))Ni(NO2)](ClO4) (7) and [(LBr(S-S))Ni(NO2)](ClO4)2 (8). The nature of the ligand modification is evident from the X-ray crystal structure of 7. To understand the origin of multiple reductive responses of 1-4, complex [(LMe(SMe))2Ni](ClO4)2 (9) is considered. The central NiS4 part of 1 is labile like the Nip site of ACS and can be replaced by phenanthroline. The treatment of CO to reduce 3 generates a 3red-(CO)2 species, as confirmed by Fourier transform infrared (νCO = 1997 and 2068 cm-1) and electron paramagnetic resonance ( g1 = 2.18, g2 = 2.13, g3 = 1.95, and AP = 30-80 G) spectroscopy. The CO binding to NiI of 3red is relevant to the ACS activity.


Assuntos
Acetato-CoA Ligase/química , Aldeído Oxirredutases/química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Complexos Multienzimáticos/química , Níquel/química , Acetato-CoA Ligase/metabolismo , Aldeído Oxirredutases/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Níquel/metabolismo
18.
J Lipid Res ; 59(6): 994-1004, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29678960

RESUMO

Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.


Assuntos
Acetato-CoA Ligase/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Estágios do Ciclo de Vida , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Acetato-CoA Ligase/química , Sequência de Aminoácidos , Citosol/metabolismo , Ácidos Graxos/biossíntese , Modelos Moleculares , Nutrientes/metabolismo , Conformação Proteica , Toxoplasma/metabolismo
19.
J Am Chem Soc ; 139(30): 10328-10338, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28675928

RESUMO

The acetyl coenzyme A synthase (ACS) enzyme plays a central role in the metabolism of anaerobic bacteria and archaea, catalyzing the reversible synthesis of acetyl-CoA from CO and a methyl group through a series of nickel-based organometallic intermediates. Owing to the extreme complexity of the native enzyme systems, the mechanism by which this catalysis occurs remains poorly understood. In this work, we have developed a protein-based model for the NiP center of acetyl coenzyme A synthase using a nickel-substituted azurin protein (NiAz). NiAz is the first model nickel protein system capable of accessing three (NiI/NiII/NiIII) distinct oxidation states within a physiological potential range in aqueous solution, a critical feature for achieving organometallic ACS activity, and binds CO and -CH3 groups with biologically relevant affinity. Characterization of the NiI-CO species through spectroscopic and computational techniques reveals fundamentally similar features between the model NiAz system and the native ACS enzyme, highlighting the potential for related reactivity in this model protein. This work provides insight into the enzymatic process, with implications toward engineering biological catalysts for organometallic processes.


Assuntos
Acetato-CoA Ligase/metabolismo , Monóxido de Carbono/química , Metaloproteínas/química , Níquel/química , Acetato-CoA Ligase/química , Monóxido de Carbono/metabolismo , Elétrons , Metaloproteínas/isolamento & purificação , Metaloproteínas/metabolismo , Modelos Moleculares , Níquel/metabolismo , Oxirredução , Pseudomonas aeruginosa/enzimologia
20.
PLoS One ; 12(2): e0171039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178309

RESUMO

Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely.


Assuntos
Acetato-CoA Ligase/química , Ligantes , Espectroscopia por Absorção de Raios X , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Domínio Catalítico , Metais/química , Metais/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...