Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.364
Filtrar
1.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982145

RESUMO

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Assuntos
Capsicum , Filogenia , Rizosfera , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/classificação , RNA Ribossômico 16S/genética , Genoma Bacteriano , Desenvolvimento Vegetal
2.
Huan Jing Ke Xue ; 45(7): 3995-4005, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022947

RESUMO

Danjiangkou Reservoir is a critical water source for the South-to-North Water Diversion Project, which harbors a diverse bacterioplankton community with varying depths, and the understanding of its nitrogen and phosphorus cycle and associated driving factors remains limited. In this study, we selected five ecological sites within Danjiangkou Reservoir and conducted metagenomics analysis to investigate the vertical distribution of bacterioplankton communities in the surface, middle, and bottom layers. Furthermore, we analyzed and predicted the function of nitrogen and phosphorus cycles, along with their driving factors. Our findings revealed the dominance of Proteobacteria, Actinobacteria, and Planctomycetes in the Danjiangkou Reservoir. Significant differences were observed in the structure of bacterioplankton communities across different depths, with temperature (T), oxidation-reduction potential (ORP), dissolved oxygen (DO), and Chla identified as primary factors influencing the bacterioplankton composition. Analysis of nitrogen cycle functional genes identified 39 genes, including gltB, glnA, gltD, gdhA, NRT, etc., which were involved in seven main pathways, encompassing nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction. Phosphorus cycle function gene analysis identified 54 genes, including pstS, ppx-gppA, glpQ, ppk1, etc., primarily participating in six main pathways, including organic P mineralization, inorganic P solubilization, and regulatory. Cluster analysis indicated that different depths were significant factors influencing the composition and abundance of nitrogen and phosphorus cycle functional genes. The composition and abundance of nitrogen and phosphorus cycle functional genes in the surface and bottom layers differed and were generally higher than those in the middle layer. Deinococcus, Hydrogenophaga, Limnohabitans, Clavibacter, and others were identified as key species involved in the nitrogen and phosphorus cycle. Additionally, we found significant correlations between nitrogen and phosphorus cycle functional genes and environmental factors such as DO, pH, T, total dissolved solids (TDS), electrical conductivity (EC), and Chla. Furthermore, the content of these environmental factors exhibited depth-related changes in the Danjiangkou Reservoir, resulting in a distinct vertical distribution pattern of bacterioplankton nitrogen and phosphorus cycle functional genes. Overall, this study sheds light on the composition, function, and influencing factors of bacterioplankton communities across different layers of Danjiangkou Reservoir, offering valuable insights for the ecological function and diversity protection of bacterioplankton in this crucial reservoir ecosystem.


Assuntos
Nitrogênio , Fósforo , Plâncton , Fósforo/metabolismo , China , Nitrogênio/metabolismo , Plâncton/genética , Plâncton/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Proteobactérias/genética , Ciclo do Nitrogênio , Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos
3.
Appl Microbiol Biotechnol ; 108(1): 409, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970663

RESUMO

Vitamin D deficiencies are linked to multiple human diseases. Optimizing its synthesis, physicochemical properties, and delivery systems while minimizing side effects is of clinical relevance and is of great medical and industrial interest. Biotechnological techniques may render new modified forms of vitamin D that may exhibit improved absorption, stability, or targeted physiological effects. Novel modified vitamin D derivatives hold promise for developing future therapeutic approaches and addressing specific health concerns related to vitamin D deficiency or impaired metabolism, such as avoiding hypercalcemic effects. Identifying and engineering key enzymes and biosynthetic pathways involved, as well as developing efficient cultures, are therefore of outmost importance and subject of intense research. Moreover, we elaborate on the critical role that microbial bioconversions might play in the a la carte design, synthesis, and production of novel, more efficient, and safer forms of vitamin D and its analogs. In summary, the novelty of this work resides in the detailed description of the physiological, medical, biochemical, and epidemiological aspects of vitamin D supplementation and the steps towards the enhanced and simplified industrial production of this family of bioactives relying on microbial enzymes. KEY POINTS: • Liver or kidney pathologies may hamper vitamin D biosynthesis • Actinomycetes are able to carry out 1α- or 25-hydroxylation on vitamin D precursors.


Assuntos
Biotransformação , Vitamina D , Vitamina D/metabolismo , Humanos , Vias Biossintéticas/genética , Engenharia Metabólica/métodos , Actinobacteria/metabolismo , Actinobacteria/genética , Biotecnologia/métodos , Bactérias/metabolismo , Bactérias/genética , Hidroxilação
4.
Front Cell Infect Microbiol ; 14: 1409774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006741

RESUMO

Background: Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods: Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and ß-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results: The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion: Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.


Assuntos
Gardnerella vaginalis , Lactobacillus , Microbiota , Reação em Cadeia da Polimerase em Tempo Real , Vagina , Vaginose Bacteriana , Feminino , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia , Humanos , Vagina/microbiologia , Microbiota/genética , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/genética , Adulto Jovem , Sensibilidade e Especificidade , Prevotella/isolamento & purificação , Prevotella/genética , Megasphaera/isolamento & purificação , Megasphaera/genética , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Pessoa de Meia-Idade , Lactobacillus crispatus/isolamento & purificação , Lactobacillus crispatus/genética , Adolescente , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Gravidez , RNA Ribossômico 16S/genética
5.
Curr Microbiol ; 81(8): 226, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879829

RESUMO

A bacterium, designated strain T21T, that is non-motile, rod-shaped, and formed pale white colonies, was isolated from the sludge of a wastewater treatment plant's secondary sedimentation tank in China. Strain T21T could grow at 20-40 °C (optimum growth at 30 °C), pH 3.0-10.0 (optimum growth at pH 5.0) and in the presence of 0-8.0% (w/v) NaCl (optimum growth at 2.0%). Based on phylogenetic analysis of 16S rRNA gene sequences and genome sequences, the isolate belongs to the genus Tessaracoccus in the phylum Actinomycetota. It exhibited a close relationship with Tessaracoccus palaemonis J1M15T, Tessaracoccus defluvii LNB-140T, Tessaracoccus flavescens SST-39T, and Tessaracoccus coleopterorum HDW20T. The 16S rRNA gene sequence similarities are 99.8%, 97.9%, 97.9%, and 97.8%, respectively. The major cellular fatty acids were anteiso-C15:0 and C16:0. The main respiratory quinone was MK-9(H4). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, glycolipid, and phospholipid. Genome annotation of strain T21T predicted the presence of 2829 genes, of which 2754 are coding proteins and 59 are RNA genes. The genomic DNA G+C content was 69.2%. Based on the results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, we propose the name Tessaracoccus lacteus sp. nov. for this novel species within the genus Tessaracoccus. The type strain is T21T (=CCTCC AB 2023031T = KCTC 49936T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Esgotos/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/análise , Águas Residuárias/microbiologia , China , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Análise de Sequência de DNA , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Quinonas/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-38896475

RESUMO

Two Gram-stain-positive, aerobic, oxidase- and catalase-negative, non-motile, and short rod-shaped actinomycetes, named SYSU T00b441T and SYSU T00b490, were isolated from tidal flat sediment located in Guangdong province, PR China. The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU T00b441T and SYSU T00b490 were 99.3, 99.5 and 97.1 %, respectively. Strains SYSU T00b441T and SYSU T00b490 exhibited the highest 16S rRNA gene sequence similarities to Actinotalea ferrariae CF 5-4T (97.1 %/98.2 %), with ANI values of 74.01/73.88 % and dDDH values of 20.5/20.4 %. In the phylogenomic tree, the two isolates were affiliated with the genus Actinotalea. The genomes of strains SYSU T00b441T and SYSU T00b490 were 3.31 and 3.34 Mb, and both had DNA G+C contents of 72.8 mol%, coding 3077 and 3085 CDSs, three and three rRNA genes, and 53 and 51 tRNAs, respectively. Growth occurred at 15-40 °C (optimum, 28-30 °C), pH 4.0-10.0 (optimum, 7.0) and in the presence of 0-7 % (w/v) NaCl (optimum, 3 %). The major fatty acids (>10  %) of strains SYSU T00b441T and SYSU T00b490 were anteiso-C15 : 0 and C16 : 0. The major respiratory quinone was identified as MK-10(H4). The polar lipids of strains SYSU T00b441T and SYSU T00b490 were diphosphatidyl glycerol, phosphatidylglycerol, phosphoglycolipid, phosphatidyl ethanolamine, two phosphatidylinositol mannosides, two glycolipids and two phospholipids. Based on these data, the two strains (SYSU T00b441T and SYSU T00b490) represent a novel species of the genus Actinotalea, for which the name Actinotalea lenta sp. nov is proposed. The type strain is SYSU T00b441T (=GDMCC 1.3827T=KCTC 49943T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , China , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/química
7.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921587

RESUMO

Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.


Assuntos
Antibacterianos , Genisteína , Genisteína/farmacologia , Genisteína/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Microbacterium , RNA Ribossômico 16S/genética , Actinobacteria/metabolismo , Actinobacteria/genética , Metabolismo Secundário , Filogenia , Aciltransferases
8.
Nat Commun ; 15(1): 5356, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918378

RESUMO

Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol.


Assuntos
Espectrometria de Massas , Família Multigênica , Policetídeo Sintases , Policetídeos , Policetídeos/metabolismo , Policetídeos/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Espectrometria de Massas/métodos , Mineração de Dados/métodos , Aprendizado de Máquina , Actinobacteria/genética , Actinobacteria/metabolismo , Genoma Bacteriano , Algoritmos , Produtos Biológicos/química , Produtos Biológicos/metabolismo
9.
Microb Pathog ; 192: 106702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825090

RESUMO

The soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5 % NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.


Assuntos
Antibacterianos , Artemia , Sedimentos Geológicos , RNA Ribossômico 16S , Animais , Artemia/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Cromatografia Líquida , Metabolômica , Meios de Cultura/química , Indonésia , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/classificação , Testes de Sensibilidade Microbiana , Água do Mar/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Cromatografia em Camada Fina , Filogenia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/isolamento & purificação , Antifúngicos/química
10.
Microb Cell Fact ; 23(1): 181, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890640

RESUMO

BACKGROUND: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.


Assuntos
Actinobacteria , Metabolismo Secundário , Compostos Orgânicos Voláteis , Actinobacteria/metabolismo , Actinobacteria/genética , Compostos Orgânicos Voláteis/metabolismo , Streptomyces/metabolismo , Streptomyces/genética , Família Multigênica
11.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861000

RESUMO

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Assuntos
Composição de Bases , DNA Bacteriano , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S , Tolerância ao Sal , Índia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Áreas Alagadas , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Fosfolipídeos/análise , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Actinobacteria/fisiologia
12.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743050

RESUMO

Natural products from Actinomycetota have served as inspiration for many clinically relevant therapeutics. Despite early triumphs in natural product discovery, the rate of unearthing new compounds has decreased, necessitating inventive approaches. One promising strategy is to explore environments where survival is challenging. These harsh environments are hypothesized to lead to bacteria developing chemical adaptations (e.g. natural products) to enable their survival. This investigation focuses on ore-forming environments, particularly fluoride mines, which typically have extreme pH, salinity and nutrient scarcity. Herein, we have utilized metagenomics, metabolomics and evolutionary genome mining to dissect the biodiversity and metabolism in these harsh environments. This work has unveiled the promising biosynthetic potential of these bacteria and has demonstrated their ability to produce bioactive secondary metabolites. This research constitutes a pioneering endeavour in bioprospection within fluoride mining regions, providing insights into uncharted microbial ecosystems and their previously unexplored natural products.


Assuntos
Actinobacteria , Actinobacteria/genética , Actinobacteria/metabolismo , Metagenômica , Fluoretos/metabolismo , Produtos Biológicos/metabolismo , Bioprospecção , Metabolômica , Biodiversidade , Genoma Bacteriano , Filogenia , Concentração de Íons de Hidrogênio , Salinidade
13.
Front Cell Infect Microbiol ; 14: 1380209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812751

RESUMO

Introduction: The oral cavity and gut tract, being interconnected and rich in microbiota, may have a shared influence on gingivitis. However, the specific role of distinct gut microbiota taxa in gingivitis remains unexplored. Utilizing Mendelian Randomization (MR) as an ideal method for causal inference avoiding reverse causality and potential confounding factors, we conducted a comprehensive two-sample MR study to uncover the potential genetic causal impact of gut microbiota on gingivitis. Methods: Instrumental variables were chosen from single nucleotide polymorphisms (SNPs) strongly associated with 418 gut microbiota taxa, involving 14,306 individuals. Gingivitis, with 4,120 cases and 195,395 controls, served as the outcome. Causal effects were assessed using random-effect inverse variance-weighted, weighted median, and MR-Egger methods. For replication and meta-analysis, gingivitis data from IEU OpenGWAS were employed. Sensitivity analyses included Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. This study aimed to assess the genetic correlation between the genetically predicted gut microbiota and gingivitis using linkage disequilibrium score regression (LDSC). Results: Three gut microbiota taxa (class Actinobacteria id.419, family Defluviitaleaceae id.1924, genus Defluviitaleaceae UCG011 id.11287) are predicted to causally contribute to an increased risk of gingivitis (P< 0.05). Additionally, four gut microbiota taxa (class Actinobacteria id.419, genus Escherichia Shigella id.3504, genus Ruminococcaceae UCG002 id.11360) potentially exhibit inhibitory causal effects on the risk of gingivitis (P< 0.05). No significant evidence of heterogeneity or pleiotropy is detected. Our findings indicate a suggestive genetic correlation between class Actinobacteria id.419, class Bacteroidia id.912, family Defluviitaleaceae id.1924, genus Escherichia Shigella id.3504 and gingivitis. Conclusion: Our study establishes the genetic causal effect of 418 gut microbiota taxa on gingivitis, offering insights for clinical interventions targeting gingivitis. Subsequent research endeavors are essential to corroborate the findings of our present study.


Assuntos
Microbioma Gastrointestinal , Gengivite , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Microbioma Gastrointestinal/genética , Humanos , Gengivite/microbiologia , Desequilíbrio de Ligação , Predisposição Genética para Doença , Actinobacteria/genética , Actinobacteria/isolamento & purificação
14.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820822

RESUMO

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Proteobactérias , Actinobacteria/genética , Microbiota/efeitos dos fármacos , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética
15.
Antonie Van Leeuwenhoek ; 117(1): 82, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789815

RESUMO

This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.


Assuntos
Actinobacteria , Biotecnologia , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/classificação , Antibacterianos/farmacologia , Metabolismo Secundário
16.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806859

RESUMO

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Assuntos
Actinobacteria , Camellia sinensis , Rizosfera , Sementes , Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/genética , Camellia sinensis/metabolismo , Índia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , RNA Ribossômico 16S/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo
17.
Microbiol Res ; 285: 127743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733725

RESUMO

Clavibacter michiganensis is a Gram-positive bacterium that causes diverse disease symptoms in tomatoes and Nicotiana benthamiana, a surrogate host plant, including canker, blister lesions, and wilting. Previously, we reported that C. michiganensis also causes necrosis in N. benthamiana leaves. Here, to identify novel virulence genes of C. michiganensis required for necrosis development in N. benthamiana leaves, we screened 1,862 transposon-inserted mutants and identified a mutant strain that exhibited weak and delayed necrosis, whereas there was no discernible difference in blister lesions, canker, or wilting symptoms. Notably, this mutant caused canker similar to that of the wild-type strain, but caused mild wilting in tomato. This mutant carried a transposon in a chromosomal gene, called Clavibactervirulence gene A1 (cviA1). CviA1 encodes a 180-amino acid protein with a signal peptide (SP) at the N-terminus and two putative transmembrane domains (TMs) at the C-terminus. Interestingly, deletion of the SP or the C-terminus, including the two putative TMs, in CviA1 failed to restore full necrosis in the mutant, highlighting the importance of protein secretion and the putative TMs for necrosis. A paralog of cviA1, cviA2 is located on the large plasmid pCM2 of C. michiganensis. Despite its high similarity to cviA1, the introduction of cviA2 into the cviA1 mutant strain did not restore virulence. Similarly, the introduction of cviA1 into the Clavibacter capsici type strain PF008, which initially lacks cviA1, did not enhance necrosis symptoms. These results reveals that the chromosomal cviA1 gene in C. michiganensis plays an important role in necrosis development in N. benthamiana leaves.


Assuntos
Elementos de DNA Transponíveis , Nicotiana , Doenças das Plantas , Folhas de Planta , Fatores de Virulência , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Fatores de Virulência/genética , Virulência/genética , Folhas de Planta/microbiologia , Proteínas de Bactérias/genética , Solanum lycopersicum/microbiologia , Clavibacter/genética , Necrose , Actinobacteria/genética , Actinobacteria/patogenicidade , Mutagênese Insercional , Genes Bacterianos/genética
18.
Carbohydr Res ; 541: 109150, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788560

RESUMO

Aim of the study was to optimize and produce beta-mannanase at fermenter scale by using cheaper minimal media. Increased production of beta-mannanase from Microbacterium camelliasinensis CIAB417 was achieved by heterologous expression in E. coli BL21 (DE3). The scale-up production of beta-mannanase was optimized from shake flask to 5-L fermenter. The cost-effective minimal media (M9+e) without any vitamins was found to be most effective and optimized for culturing the cells. The same media displayed no significant fluctuation in the pH while culturing the cells for the production of beta-mannanase both at shake flask and fermenter level. Additionally, E. coli cells were able to produce similar amount of dry cell weight and recombinant beta-mannanase both in the presence of micro and macro-oxygen environment. The optimized media was demonstrated to show no significant drop in pH throughout the recombinant protein production process. In one litre medium, 2.0314 g dry weight of E. coli cells yielded 1.8 g of purified recombinant beta-mannanase. The purified enzyme was lyophilized and demonstrated to hydrolyse locust bean gum to release mannooligosaccharides.


Assuntos
Escherichia coli , Fermentação , Proteínas Recombinantes , beta-Manosidase , beta-Manosidase/metabolismo , beta-Manosidase/genética , beta-Manosidase/biossíntese , beta-Manosidase/química , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Mananas/metabolismo , Mananas/química , Mananas/biossíntese , Reatores Biológicos , Concentração de Íons de Hidrogênio , Aerobiose , Galactanos/metabolismo , Galactanos/biossíntese , Galactanos/química , Meios de Cultura/química , Meios de Cultura/metabolismo , Gomas Vegetais/química , Gomas Vegetais/metabolismo , Actinobacteria/enzimologia , Actinobacteria/metabolismo , Actinobacteria/genética , Hidrólise
19.
World J Microbiol Biotechnol ; 40(7): 202, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743315

RESUMO

Currently, heavy metal-resistant (HMR) marine actinomycetes have attracted much attention worldwide due to their unique capabilities. In this study, 27 marine-derived actinomycetes were isolated from coastal beaches in the Arabian Gulf of Al-Jubail in Saudi Arabia and screened for resistance to 100 mg/L of the heavy metals Cd2+, Cr6+, Cu2+, Fe2+, Pb2+, and Ni2+ using different assay techniques. Six isolates were selected as HMRs, of which two isolates, JJB5 and JJB11, exhibited the highest maximum tolerance concentrations (200- > 300 mg/L). Both isolates were the highest among six-HMR screened for their biodegradation potential of plastics low-density polyethylene, polystyrene, and polyvinyl chloride, recording the highest weight loss (15 ± 1.22 - 65 ± 1.2%) in their thin films. They also showed the highest biodegradability of the pesticides acetamiprid, chlordane, hexachlorocyclohexane, indoxacarb and lindane, indicating promising removal capacities (95.70-100%) for acetamiprid and indoxacarb using HPLC analysis. Additionally, the cell-free filtrate (CFF) of both isolates displayed the highest antimicrobial activity among the six-HMR screened against a variety of microbial test strains, recording the highest inhibition zone diameters (13.76 ± 0.66 - 26.0 ± 1.13 mm). GC‒MS analyses of the ethyl acetate extract of their CFFs revealed the presence of diverse chemical compounds with a multitude of remarkable biological activities. Based on their spore morphology and wall-chemotype, they were assigned to the nocardioform-actinomycetes. Furthermore, their phenotypic characteristics, together with 16S rRNA gene sequencing (OR121525-OR121526), revealed them as Nocardia harenae JJB5 and Amycolatopsis marina JJB11. Our results suggest that marine HMR actinomycetes are promising candidates for various biotechnological applications.


Assuntos
Biodegradação Ambiental , Metais Pesados , Testes de Sensibilidade Microbiana , Nocardia , RNA Ribossômico 16S , Metais Pesados/metabolismo , RNA Ribossômico 16S/genética , Nocardia/isolamento & purificação , Nocardia/genética , Nocardia/metabolismo , Arábia Saudita , Antibacterianos/farmacologia , Filogenia , Actinobacteria/metabolismo , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Poluentes Químicos da Água/metabolismo , Água do Mar/microbiologia , Praguicidas/metabolismo , Farmacorresistência Bacteriana
20.
Curr Opin Microbiol ; 79: 102487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733791

RESUMO

Natural products (NPs) produced by bacteria, particularly soil actinomycetes, often possess diverse bioactivities and play a crucial role in human health, agriculture, and biotechnology. Soil actinomycete genomes contain a vast number of predicted biosynthetic gene clusters (BGCs) yet to be exploited. Understanding the factors governing NP production in an ecological context and activating cryptic and silent BGCs in soil actinomycetes will provide researchers with a wealth of molecules with potential novel applications. Here, we highlight recent advances in NP discovery strategies employing ecology-inspired approaches and discuss the importance of understanding the environmental signals responsible for activation of NP production, particularly in a soil microbial community context, as well as the challenges that remain.


Assuntos
Actinobacteria , Produtos Biológicos , Família Multigênica , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...