Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.449
Filtrar
1.
Nat Commun ; 15(1): 6615, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103360

RESUMO

RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.


Assuntos
Processamento de Proteína Pós-Traducional , Edição de RNA , Humanos , Fosforilação , Células HEK293 , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Acetilação
2.
Cells ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120288

RESUMO

Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.


Assuntos
Adenosina Desaminase , Homeostase , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Aorta/metabolismo , Aorta/patologia , Apoptose/genética , Fibrilina-1/genética , Fibrilina-1/metabolismo , Elastina/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
Sci Rep ; 14(1): 15395, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965255

RESUMO

The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.


Assuntos
Adenosina Desaminase , Envelhecimento , Mutação , RNA Mensageiro , Proteínas de Ligação a RNA , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Envelhecimento/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Neoplasias/genética , Exoma
5.
Genome Biol ; 25(1): 173, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956576

RESUMO

BACKGROUND: RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme that mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung adenocarcinoma cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, the use of short-read RNA-seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. RESULTS: We employ long-read sequencing technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We develop a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generate nanopore data with high sequence accuracy from H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We apply our workflow to identify key inosine isoform associations to help clarify the prominence of ADAR in tumorigenesis. CONCLUSIONS: Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.


Assuntos
Haplótipos , Humanos , Linhagem Celular Tumoral , Polimorfismo de Nucleotídeo Único , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Pulmonares/genética , Splicing de RNA , Inosina/metabolismo , Inosina/genética , Análise de Sequência de RNA , Adenocarcinoma de Pulmão/genética , Edição de RNA , Software
6.
Indian J Tuberc ; 71 Suppl 1: S59-S66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39067957

RESUMO

BACKGROUND: Pericardial effusion is the accumulation of fluid in the pericardial cavity. In nations with high tuberculosis (TB) load, TB is the most common cause of pericardial effusion. 1-2% of patients with pulmonary TB develop Pericardial TB worldwide. Multi-drug-resistant (MDR) TB, including extrapulmonary TB (EPTB) cases, are rising in number. Adenosine Deaminase (ADA) is an enzyme in lymphocytes and myeloid cells, which has certain immune functions in the body. ADA levels are increased in inflammatory conditions, like pleural, pericardial, or joint effusions, of bacterial etiology, granulomatous conditions, neoplasms, and autoimmune pathologies. TB is the only lymphocytosis involving disease with increased ADA levels. MDR EPTB is rare, but cases are on the rise, and tuberculous pericardial effusion is one such example. Hence, it is important to know the percentage of cases detected by a culture that can be identified by cartridge-based nucleic acid amplification test (CBNAAT), their resistance patterns, and to identify potential markers like ADA, which can help in early identification of cases. The objectives of this study were to identify the Mycobacterium tuberculosis (MTB) bacilli in culture, and correlate them with cartridge-based nucleic acid amplification test (CBNAAT) results and their drug-resistance, in the Pericardial tubercular effusion, and to find if Adenosine Deaminase (ADA) levels can be used as a predictor of the presence of MTB in pericardial fluid. METHODOLOGY: We enrolled 52 patients with moderate to large tuberculous pericardial effusion, based on pericardial fluid analysis, CBNAAT, and culture methods, between January 2021 and December 2021. RESULTS: The mean age of the patients was 41.85 + 17.88 years, with a median of 38 years. Males made up 57.7% of the total patients. MTB was detected in 16 (30.8%) patients in the CBNAAT evaluations. 14 (87.5%) of the CBNAAT-positive TB patients were sensitive to Rifampicin, whereas the remaining 2 (12.5%) were resistant to Rifampicin on CBNAAT. MTB was found to be growing in 8 (15.38%) drug sensitivity test cultures. Out of these 8, 6 were sensitive to first-line drugs, whereas 2 were resistant to both Isoniazid and Rifampicin. The presence of cough was found to have a significant difference between CBNAAT-detected MTB positive and negative patients (p = 0.020), whereas an insignificant difference was found for the presence of hypertension, diabetes mellitus, obesity, dyspnea, or fever. There was also an insignificant difference between the number of patients positive for the Tuberculin skin test, between the two groups. ADA was significantly higher in the MTB-detected CBNAAT group (85.91 + 37.60U/L vs 39.78 + 24.31U/L, p = 0.005), whereas the total leukocyte count, lymphocytes, neutrophils, random blood sugar levels, and serum protein levels had no significant difference. The area under the Receiver Operator Curve (CBNAAT positive: dependent variable; ADA: test result variable) was 0.854 (null hypothesis rejected), with a standard error of 0.078. CONCLUSIONS: Culture is the gold standard method to diagnose tuberculosis. Detection of MTB on pericardial fluid culture is very uncommon, though in our study, culture came out positive in 16% of patients, and 4% were resistant to rifampicin and isoniazid. Higher ADA levels in pericardial fluid are an indicator of tuberculous pericardial effusion.


Assuntos
Adenosina Desaminase , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Derrame Pericárdico , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Adenosina Desaminase/análise , Adenosina Desaminase/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Masculino , Adulto , Feminino , Derrame Pericárdico/microbiologia , Pessoa de Meia-Idade , Líquido Pericárdico , Adulto Jovem , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Pericardite Tuberculosa/diagnóstico
7.
Mol Biol Rep ; 51(1): 864, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073463

RESUMO

BACKGROUND: The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS: For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry  of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION: Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.


Assuntos
Acetilcolinesterase , Astrócitos , Curcumina , Donepezila , Proteína Glial Fibrilar Ácida , Hipocampo , Escopolamina , Memória Espacial , Animais , Donepezila/farmacologia , Curcumina/farmacologia , Curcumina/administração & dosagem , Escopolamina/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ratos , Masculino , Memória Espacial/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Colinesterases/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Butirilcolinesterase/metabolismo , Butirilcolinesterase/genética , Óxido Nítrico/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/administração & dosagem
8.
Cell Biol Toxicol ; 40(1): 57, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060787

RESUMO

It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1ß, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.


Assuntos
Adenosina Desaminase , Adenosina , Edição de RNA , Proteínas de Ligação a RNA , Sevoflurano , Animais , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Apoptose/efeitos dos fármacos , Inosina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Piroptose/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
9.
Genes (Basel) ; 15(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062677

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing mutations in RNA using therapeutic guide oligonucleotides to direct ADAR editing at specific sites. Humans have two active ADARs whose preferences and specificities are not well understood. To investigate their substrate specificity, we introduced hADAR1 and hADAR2, respectively, into Schizosaccharomyces pombe (S. pombe), which lacks endogenous ADARs, and evaluated their editing activities in vivo. Using transcriptome sequencing of S. pombe cultured at optimal growth temperature (30 °C), we identified 483 A-to-I high-confident editing sites for hADAR1 and 404 for hADAR2, compared with the non-editing wild-type control strain. However, these sites were mostly divergent between hADAR1 and hADAR2-expressing strains, sharing 33 common sites that are less than 9% for each strain. Their differential specificity for substrates was attributed to their differential preference for neighboring sequences of editing sites. We found that at the -3-position relative to the editing site, hADAR1 exhibits a tendency toward T, whereas hADAR2 leans toward A. Additionally, when varying the growth temperature for hADAR1- and hADAR2-expressing strains, we observed increased editing sites for them at both 20 and 35 °C, compared with them growing at 30 °C. However, we did not observe a significant shift in hADAR1 and hADAR2's preference for neighboring sequences across three temperatures. The vast changes in RNA editing sites at lower and higher temperatures were also observed for hADAR2 previously in budding yeast, which was likely due to the influence of RNA folding at these different temperatures, among many other factors. We noticed examples of longer lengths of dsRNA around the editing sites that induced editing at 20 or 35 °C but were absent at the other two temperature conditions. We found genes' functions can be greatly affected by editing of their transcripts, for which over 50% of RNA editing sites for both hADAR1 and hADAR2 in S. pombe were in coding sequences (CDS), with more than 60% of them resulting in amino acid changes in protein products. This study revealed the extensive differences in substrate selectivity between the two active human ADARS, i.e., ADAR1 and ADAR2, and provided novel insight when utilizing the two different enzymes for in vivo treatment of human genetic diseases using the RNA editing approach.


Assuntos
Adenosina Desaminase , Edição de RNA , Proteínas de Ligação a RNA , Schizosaccharomyces , Schizosaccharomyces/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Especificidade por Substrato , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Adenosina/metabolismo , Adenosina/genética , Inosina/genética , Inosina/metabolismo
10.
Fish Shellfish Immunol ; 151: 109743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964433

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.


Assuntos
Adenosina Desaminase , Pectinidae , Filogenia , Edição de RNA , Animais , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Pectinidae/genética , Pectinidae/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Transcriptoma , Alinhamento de Sequência/veterinária
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 849-852, 2024 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-38946371

RESUMO

OBJECTIVE: To investigate the clinical and genetic features of a child with Dyschromatosis symmetrica hereditaria (DSH) and variant of the ADAR1 gene. METHODS: A child who was admitted to the Department of Dermatology of the First Affiliated Hospital of Zhengzhou University in June 2020 due to irregular pigmented maculopapular rash on the dorsum of hands was selected as the study subject. Whole exome sequencing (WES) was carried out for the child and his similarly affected father, and Sanger sequencing was used to verify the candidate variant. SWISS-MODEL was used to predict the secondary and tertiary structures of the wild-type and mutant ADAR1 proteins. RESULTS: The child, a 13-year-old boy, had symmetrical hyperpigmented and depigmented spots on the back of his hands and was clinically diagnosed with DSH. WES and Sanger sequencing results showed that he and his father had both harbored a heterozygous c.2858dup (p.T954Dfs*20) truncating variant in exon 10 of the ADAR1 gene. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was predicted as pathogenic (PVS1+PM2_Supporting+PM1+PP3). CONCLUSION: The c.2858dup (p.T954Dfs*20) variant of the ADAR1 gene probably underlay the DSH in this pedigree.


Assuntos
Adenosina Desaminase , Transtornos da Pigmentação , Proteínas de Ligação a RNA , Humanos , Masculino , Adenosina Desaminase/genética , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/congênito , Proteínas de Ligação a RNA/genética , Adolescente , Mutação , Sequenciamento do Exoma , Éxons , Testes Genéticos , Linhagem
12.
J Comput Aided Mol Des ; 38(1): 25, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014124

RESUMO

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.


Assuntos
Adenosina Desaminase , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA , Adenosina Desaminase/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Humanos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Conformação Proteica , Edição de RNA
13.
Nucleic Acids Res ; 52(14): 8628-8642, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994565

RESUMO

Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.


Assuntos
Escherichia coli , Edição de RNA , RNA Antissenso , RNA Mensageiro , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética
14.
Biochem Biophys Res Commun ; 726: 150213, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38964186

RESUMO

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.


Assuntos
Adenosina Desaminase , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Edição de RNA , Proteínas de Ligação a RNA , Neoplasias Gástricas , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estudos de Coortes , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino
15.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000531

RESUMO

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animais , Guanosina/metabolismo , Dano ao DNA
16.
Pediatr Neurol ; 158: 49-56, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959649

RESUMO

BACKGROUND: Severe combined immunodeficiency secondary to adenosine deaminase deficiency is rare. The deficiency of this enzyme results in the accumulation of substrates in the tissues, including the brain. Clinical signs of neurological involvement may include seizures, neurodevelopmental disorders, hypotonia, and sensorineural hearing loss. Hematopoietic stem cell transplantation corrects the failure of the immune system but not the neurological involvement. OBJECTIVES: To describe the spectrum of neurological complications identified in a series of children with severe combined immunodeficiency due to adenosine deaminase deficiency. Additionally, we propose a neurological approach including electrophysiological, radiological, and neurocognitive studies to address this group of children in an efficient and timely manner. METHODS: A descriptive, observational, retro-, and prospective analysis of patients with a confirmed immunological diagnosis seen between 1996 and 2021 and referred to the Department of Neurology for neurological evaluation was conducted. RESULTS: Ten patients met the inclusion criteria. The median age at diagnosis was 4 months (range, 1-36 months). All patients had neurodevelopmental delay with hypotonia in six, language delay in three, sensorineural hearing loss in four, and spastic paraparesis in one patient. Two children developed an epileptic syndrome, consisting of generalized epilepsy in one and focal epilepsy in the other. Neuroimaging showed brain calcifications in the basal ganglia and/or centrum semiovale in four patients and enlarged subarachnoid spaces in two other patients. CONCLUSION: In this pediatric series, the rate of neurological involvement associated with abnormalities on neuroimaging was high. Although this involvement could be related to accumulation of adenosine metabolites in the central nervous system, the possibility of associated chronic infections should be ruled out. Given the neurological manifestations, it is important to involve the pediatric neurologist in the multidisciplinary follow-up team.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Imunodeficiência Combinada Severa , Humanos , Adenosina Desaminase/deficiência , Pré-Escolar , Lactente , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Feminino , Masculino , Agamaglobulinemia/complicações , Estudos Prospectivos , Estudos Retrospectivos
17.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926387

RESUMO

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Assuntos
Adenosina Desaminase , Adenosina , Autopsia , Encéfalo , Inosina , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Encéfalo/metabolismo , Inosina/metabolismo , Inosina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Córtex Pré-Frontal/metabolismo , Mudanças Depois da Morte , Masculino
18.
Cell Signal ; 121: 111258, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866351

RESUMO

Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3. However, whether ADAR1 has effects on ferroptosis in breast cancer cells is largely unknown. In this study, we knocked down ADAR1 using CRISPR-Cas9 technology or over-expressed ADAR1 protein using plasmid expressing ADAR1 in MCF-7 and MDA-MB-231 breast cancer cell lines, then detected cell viability, and levels of ROS, MDA, GSH, Fe2+, GPX4 protein and miR-335-5p. We showed that the cell proliferation was inhibited, levels of ROS, MDA, Fe2+, and miR-335-5p were increased, while GSH and GPX4 levels were decreased after loss of ADAR1, compared to the control group. The opposite effects were observed after ADAR1 overexpression in the cells. Further, we demonstrated that ADAR1-controlled miR-335-5p targeted Sp1 transcription factor of GPX4, a known ferroptosis molecular marker, leading to inhibition of ferroptosis by ADAR1 in breast cancer cells. Moreover, RNA editing activity of ADAR1 is not essential for inducing ferroptosis. Collectively, loss of ADAR1 induces ferroptosis in breast cancer cells by regulating miR-335-5p/Sp1/GPX4 pathway. The findings may provide insights into the mechanism by which ADAR1 promotes breast cancer progression via inhibiting ferroptosis.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Ferroptose , Proteínas de Ligação a RNA , Ferroptose/genética , Humanos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Proliferação de Células , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Regulação Neoplásica da Expressão Gênica
19.
J Biol Chem ; 300(7): 107425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823639

RESUMO

Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.


Assuntos
Adenosina Desaminase , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gluconeogênese , Animais , Masculino , Camundongos , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
20.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891830

RESUMO

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Assuntos
Adenosina Desaminase , Proteínas Morfogenéticas Ósseas , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Espermatogênese , Animais , Masculino , Espermatogênese/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...