Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.174
Filtrar
1.
Sci Rep ; 14(1): 20926, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251685

RESUMO

Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.


Assuntos
Antibacterianos , Aderência Bacteriana , Escherichia coli , Lasers , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Catálise , Microscopia Eletrônica de Varredura , Humanos , Azul de Metileno/química , Azul de Metileno/farmacologia , Peri-Implantite/microbiologia
2.
Sci Rep ; 14(1): 20336, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223136

RESUMO

Antimicrobial potential of bioactive glass (BAG) makes it promising for implant applications, specifically overcoming the toxicity concerns associated with traditional antibacterial nanoparticles. The 58S composition of BAG (with high Ca and absence of Na) has been known to exhibit excellent bioactivity and antibacterial behaviour, but the mechanisms behind have not been investigated in detail. In this pioneering study, we are using Atomic Force Microscopy (AFM) to gain insights into 58S BAG's adhesive interactions with planktonic cells of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria; along with the impact of crystallinity on antibacterial properties. We have recorded greater bacterial inhibition by amorphous BAG compared to semi-crystalline glass-ceramics and stronger effect against gram-negative bacteria via conventional long-term antibacterial tests. AFM force distance curves has illustrated substantial bonding between bacteria and BAG within the initial one second (observed at a gap of 250 ms) of contact, with multiple binding events. Further, stronger adhesion of BAG with E.coli (~ 6 nN) compared to S. aureus (~ 3 nN) has been found which can be attributed to more adhesive nano-domains (size effect) distributed uniformly on E.coli surface. This study has revealed direct evidence of impact of contact time and 58S BAG's crystalline phase on bacterial adhesion and antimicrobial behaviour. Current study has successfully demonstrated the mode and mechanisms of initial bacterial adhesion with 58S BAG. The outcome can pave the way towards improving the designing of implant surfaces for a range of biomedical applications.


Assuntos
Antibacterianos , Aderência Bacteriana , Cerâmica , Escherichia coli , Vidro , Microscopia de Força Atômica , Staphylococcus aureus , Microscopia de Força Atômica/métodos , Cerâmica/química , Aderência Bacteriana/efeitos dos fármacos , Vidro/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
3.
World J Microbiol Biotechnol ; 40(10): 322, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283509

RESUMO

Staphylococcus aureus can develop antibiotic resistance and evade immune responses, causing infections in different body sites. However, the metabolic changes underlying this process are poorly understood. A variant strain, C1V, was derived from the parental strain C1 by exposing it to increasing concentrations of vancomycin in vitro. C1V exhibited a vancomycin-intermediate phenotype and physiological changes compared to C1. It showed higher survival rates than C1 when phagocytosed by Raw264.7 cells. Metabolomics analysis identified significant metabolic differences pre- and post-induction (C1 + SC1 vs. C1V + SC1V: 201 metabolites) as well as pre- and post-phagocytosis (C1 vs. SC1: 50 metabolites; C1V vs. SC1V: 95 metabolites). The variant strain had distinct morphological characteristics, decreased adhesion ability, impaired virulence, and enhanced resistance to phagocytosis compared to the parental strain. Differential metabolites may contribute to S. aureus ' resistance to antibiotics and phagocytosis, offering insights into potential strategies for altering vancomycin nonsusceptibility and enhancing phagocyte killing by manipulating bacterial metabolism.


Assuntos
Antibacterianos , Metabolômica , Fagocitose , Staphylococcus aureus , Vancomicina , Vancomicina/farmacologia , Camundongos , Animais , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Antibacterianos/farmacologia , Virulência , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética , Metaboloma/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Adaptação Fisiológica
4.
Phytomedicine ; 134: 156020, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39243749

RESUMO

BACKGROUND: The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE: This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS: The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION: Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.


Assuntos
Diospyros , Fator 2 Relacionado a NF-E2 , Extratos Vegetais , Polifenóis , Vitis , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Diospyros/química , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Vitis/química , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Células HaCaT , Frutas/química , Salmonella enterica/efeitos dos fármacos , Antibacterianos/farmacologia , Interações Hospedeiro-Patógeno , Lipopolissacarídeos , Punica granatum/química
5.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091675

RESUMO

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Assuntos
Limosilactobacillus reuteri , Macrófagos , Probióticos , Escherichia coli Uropatogênica , Probióticos/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/imunologia , Limosilactobacillus reuteri/fisiologia , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/microbiologia , Humanos , Urotélio/microbiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Células RAW 264.7 , Células Epiteliais/microbiologia , Galinhas , Aderência Bacteriana/efeitos dos fármacos
6.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136648

RESUMO

Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 µm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.


Assuntos
Aderência Bacteriana , Enterococcus faecalis , Aderência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Enterococcus faecalis/efeitos dos fármacos , Polímeros/química , Silicones/química , Propriedades de Superfície , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos
7.
Sci Rep ; 14(1): 18870, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143137

RESUMO

The characteristics of dopamine self-polymerization were used to cover the nano-titanium dioxide (TiO2) surface and produce nano-titanium dioxide-polydopamine (TiO2-PDA). The reducing nature of dopamine was then used to reduce silver nitrate to silver elemental particles on the modified nano-titanium dioxide: The resulting TiO2-PDA-Ag nanoparticles were used as antimicrobial agents. Finally, the antibacterial agent was mixed with silicone to obtain an antibacterial silicone composite material. The composition and structure of antibacterial agents were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron energy spectroscopy, and X-ray diffraction. Microscopy and the antibacterial properties of the silicone antibacterial composites were studied as well. The TiO2-PDA-Ag antimicrobial agent had good dispersion versus nano-TiO2. The three were strongly combined with obvious characteristic peaks. The antibacterial agents were evenly dispersed in silicone, and the silicone composite has excellent antibacterial properties. Bacillus subtilis (B. subtilis) adhesion was reduced from 246 × 104 cfu/cm2 to 2 × 104 cfu/cm2, and colibacillus (E. coli) reduced from 228 × 104 cfu/cm2 leading to bacteria-free adhesion.


Assuntos
Bacillus subtilis , Escherichia coli , Silicones , Prata , Titânio , Titânio/química , Titânio/farmacologia , Silicones/química , Prata/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Polímeros/química , Polímeros/farmacologia , Difração de Raios X , Testes de Sensibilidade Microbiana , Aderência Bacteriana/efeitos dos fármacos , Indóis
8.
ACS Appl Mater Interfaces ; 16(32): 41881-41891, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39092619

RESUMO

Dental caries, the most prevalent chronic disease across all age groups, has a high prevalence, particularly among children. However, there is no specific and effective treatment for the prevention of caries in primary teeth (Pr.T.), which stems from a lack of knowledge regarding the basic nature of the tooth surface. Herein, we observed that the adhesion energies of the caries-related bacteria Streptococcus mutans and Streptococcus sanguinis to Pr.T were approximately 10 and 5.5 times higher than those to permanent teeth (Pe.T). A lower degree of mineralization and more hydrophilic characteristics of the Pr.T enamel account for this discrepancy. Accordingly, we proposed that the on-target modification of both hydroxyapatite and organic components on Pr.T by dual modification would render a sufficient hydration layer. This resulted in an approximately 11-time decrease in bacterial adhesion energy after treatment. In contrast, a single hydroxyapatite modification on Pe.T and young permanent teeth (Y.Pe.T) was sufficient to achieve a similar effect. Theoretical simulation further verified the rationality of the approach. Our findings may help understand the reason for Pr.T being caries-prone and provide references for treatment using resin restorations. This strategy offers valuable insights into daily oral hygiene and dental prophylactic treatment in children.


Assuntos
Aderência Bacteriana , Cárie Dentária , Durapatita , Streptococcus mutans , Streptococcus sanguis , Dente Decíduo , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Streptococcus mutans/efeitos dos fármacos , Humanos , Aderência Bacteriana/efeitos dos fármacos , Streptococcus sanguis/efeitos dos fármacos , Durapatita/química , Esmalte Dentário/química , Esmalte Dentário/efeitos dos fármacos
9.
Gut Microbes ; 16(1): 2390133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132815

RESUMO

Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.


Assuntos
Antibacterianos , Proteínas de Bactérias , Bacteroides thetaiotaomicron , Biofilmes , Clostridioides difficile , Simbiose , Vancomicina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Clostridioides difficile/genética , Humanos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Células CACO-2 , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/fisiologia , Bacteroides thetaiotaomicron/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/metabolismo , Enterotoxinas/genética , Aderência Bacteriana/efeitos dos fármacos
10.
PLoS One ; 19(8): e0309307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39196973

RESUMO

BACKGROUND: Colistin resistance in Acinetobacter baumannii is an emerging problem that limits antimicrobial therapy options. MATERIALS & METHODS: We isolated two pairs of colistin susceptible and colistin-resistant A. baumannii (K1007/K1006 and K408/K409) from two patients diagnosed with carbapenem-resistant A. baumannii infection. Colistin susceptible isolates were exposed to in vitro colistin induction for 50 generations. The selected cell populations were subjected to DNA and RNA sequencing and phenotypic assays. RESULTS: In the in vitro induction assay, K408 gained colistin resistance on the corresponding day of clinical resistance (K408-G25) and got resensitized to colistin in the consecutive generation (K408-G26). A significant upregulation of ompW, ata, adeFGH genes on K408-G25 was followed by a downregulation upon resensitization to colistin (G26). Despite the upregulation of the ompW gene in transcriptomic analysis, the ompW protein disappeared on K408-G25 and recovered in the resensitized generation (G26). In parallel, disrupted cell membrane integrity recovered in K408-G26. In the K408-G25, downregulation of pbpG and upregulation of pbp1a/pbp3 genes decreased serum-resistance which was reversed in the resensitized generation (G26). The K1007 did not gain colistin resistance amongst 50-generations, however, the generation corresponding to clinical resistance day (K1007-G9) had a similar trend with K408-G25. The clinical colistin-resistant K409 and K1006 had SNPs on pmrA and pmrB genes. CONCLUSION: In this study, we observed that A. baumannii regulates adhesion, efflux pumps and serum-resistance associated genes as an early response to colistin stress. Besides, the ompW protein disappears in the cell membrane of colistin resistant cells which recovers after resensitization to colistin. The lack of ompW protein in colistin-resistant cells should be taken into consideration for escape mutants in development of antivirulence vaccination or treatment options.


Assuntos
Acinetobacter baumannii , Antibacterianos , Colistina , Colistina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Carbapenêmicos/farmacologia
11.
Front Cell Infect Microbiol ; 14: 1406429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211795

RESUMO

Dairy mastitis is one of the most common diseases in dairy farming, and the formation of pathogenic bacteria biofilms may be an important reason why traditional antibiotic therapy fails to resolve some cases of dairy mastitis. We isolated and identified three strains of A. lwoffii were with strong biofilm forming ability from dairy cow mastitis samples from Chongqing dairy farms in China. In order to investigate the effect of novel anti-biofilm peptide CRAMP-34 on A.lwoffii biofilms, the anti-biofilm effect was evaluated by crystal violet staining, biofilms viable bacteria counting and confocal laser scanning microscopy (CLSM). In addition, transcriptome sequencing analysis, qRT-PCR and phenotypic verification were used to explore the mechanism of its action. The results showed that CRAMP-34 had a dose-dependent eradicating effect on A. lwoffii biofilms. Transcriptome sequencing analysis showed that 36 differentially expressed genes (11 up-regulated and 25 down-regulated) were detected after the intervention with the sub-inhibitory concentration of CRAMP-34. These differentially expressed genes may be related to enzyme synthesis, fimbriae, iron uptake system, capsular polysaccharide and other virulence factors through the functional analysis of differential genes. The results of subsequent bacterial motility and adhesion tests showed that the motility of A.lwoffii were enhanced after the intervention of CRAMP-34, but there was no significant change in adhesion. It was speculated that CRAMP-34 may promote the dispersion of biofilm bacteria by enhancing the motility of biofilm bacteria, thereby achieving the effect of eradicating biofilms. Therefore, these results, along with our other previous findings, suggest that CRAMP-34 holds promise as a new biofilm eradicator and deserves further research and development.


Assuntos
Acinetobacter , Antibacterianos , Biofilmes , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Animais , Bovinos , Feminino , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , China , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Aderência Bacteriana/efeitos dos fármacos , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia
12.
Int J Biol Macromol ; 277(Pt 4): 134357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102916

RESUMO

Developing durable protective cotton fabrics (CF) against potential environmental dangers such as fire hazards and bacterial growth remains an imperative but tough challenge. In this study, flame retardant, antibacterial and hydrophobic CF were successfully prepared via two-step coating. The inner coating entailed polyelectrolyte complexes consisting of polyethyleneimine and ammonium polyphosphate with the goal of enhancing the flame retardancy of CF. Halloysite nanotubes (HNTs), a kind of tubular silicate mineral, were creatively modified and introduced to multifunctional coatings to improve flame retardant and antibacterial properties of CF. N-halamine modified HNTs (HNTs-EA-Cl) and polydimethylsiloxane were applied as the outer coating to endow CF with antibacterial and hydrophobic properties and further improve the flame retardancy of CF. After halloysite-based inorganic-organic hybrid coatings, the limiting oxygen index of the treated samples (PAHP-CF) was over 28 %, and the release of heat and smoke was significantly inhibited. PAHP-CF could inactivate 100 % E. coli and S. aureus within 2 h. More importantly, PAHP-CF showed excellent hydrophobicity with a water contact angle of 148° and exhibited great prevention of bacterial adhesion. PAHP-CF exhibited excellent washing durability undergoing 5 washing cycles. This study promotes the development of multifunctional coatings and offers a new way to manufacture multifunctional cotton fabrics.


Assuntos
Antibacterianos , Argila , Fibra de Algodão , Escherichia coli , Retardadores de Chama , Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Argila/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanotubos/química , Têxteis , Polietilenoimina/química , Aderência Bacteriana/efeitos dos fármacos , Aminas , Fosfatos
13.
ACS Appl Mater Interfaces ; 16(35): 46177-46190, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39169797

RESUMO

Silicone is a common elastomer used in indwelling urinary catheters, and catheters are widely used in various medical applications due to their exceptional biocompatibility, hypoallergenic properties, and flexibility. However, silicones exhibit hydrophobic characteristics, lack inherent biolubrication, and are susceptible to nonspecific biosubstance adsorption, resulting in complications including but not limited to tissue trauma, postoperative pain, and urinary tract infections (UTIs). The development of effective surface designs for biomedical catheters to mitigate invasive damage and UITs has been a longstanding challenge. Herein, we present a novel approach to prepare a mucus mimic hydrogel coating. A thin layer of hydrogel containing xylitol is fabricated via photopolymerization. The surface modification technique and the interface-initiated hydrogel polymerization method ensure robust interfacial coherence. The resultant coating exhibits a low friction coefficient (CoF ≈ 0.1) for urinary catheter applications. Benefiting from the hydration layer and the antifouling of the xylitol unit, the xylitol hydrogel-coated surfaces (pAAAMXA) demonstrate outstanding antibiofouling properties against proteins (98.9% reduction relative to pristine polydimethylsiloxane (PDMS)). Furthermore, the pAAAMXA shows general adhesion resistance against bacteria primarily responsible for UITs (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Methicillin-resistant strains of Staphylococcus aureus (MRSA), and Staphylococcus epidermidis (S. epidermidis)) without compromising biotoxicity (cell viability 98%). In vivo, catheters coated with the mucus mimic hydrogel displayed excellent biocompatibility, resistance to adhesion of bio substance, and anti-inflammatory characteristics. This work describes a promising alternative to conventional silicone catheters, offering potential for clinical interventional procedures with minimized complications.


Assuntos
Escherichia coli , Hidrogéis , Cateteres Urinários , Cateteres Urinários/microbiologia , Hidrogéis/química , Hidrogéis/farmacologia , Escherichia coli/efeitos dos fármacos , Animais , Muco/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos
14.
Int J Biol Macromol ; 278(Pt 2): 134568, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116980

RESUMO

Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs). Currently, QS has made great progress in the study of drug resistance, but there is still a lack of complete understanding of its damage to host cells after adhesion and invasion. Thus, in this study, we examined the effects of abaI mutant (ΔabaI) on the functions of adhesion and invasion, cell viability, inflammation, apoptosis in A. baumannii infected A549 cells, to evaluate the effects of ΔabaI in a zebrafish model. We found the group infected with ΔabaI increased cell viability, reduced adhesion and invasion, cell injury, inflammatory cytokine production and apoptosis. By RNA-Seq, we explored the possibility that abaI stimulated A549 cells inflammation by A. baumannii infection via TLR4/MAPK signaling pathway. In addition, the ΔabaI significantly reduced pathogenicity and recruitment to neutrophils in zebrafish. These observations suggest that abaI plays a major role in A. baumannii infection.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Inflamação , Percepção de Quorum , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Acinetobacter baumannii/patogenicidade , Humanos , Infecções por Acinetobacter/microbiologia , Células A549 , Modelos Animais de Doenças , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Ligases/metabolismo , Ligases/genética
15.
Int J Biol Macromol ; 278(Pt 1): 134693, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142485

RESUMO

It aims to prepare the chitosan (CS) and polyethylene oxide (PEO) hydrogel membranes with different CS/PEO blend ratios (100:0, 95:5, 90:10, 80:20 and 70:30) via solvent casting. The physicochemical properties of these membranes were investigated using various characterization techniques: Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), contact angle, and tensile testing. The interaction of PEO and chitosan was investigated by DSC in terms of freezing bound, freezing free, and non-freezing PEO fraction. The cross-sectional surface morphology of membranes displayed a smoother surface with increasing PEO content up to 20 %, beyond which nonhomogeneity on the surface was visible. The antifouling behavior of membranes was investigated by bacterial adherence study, which showed an enhanced antifouling nature of membranes with the increase in the PEO content. The peeling strength of the membranes was measured using a 90° angle peeling test, and it was found that 20 % and more PEO content promotes easy removal from the gelatin slab. In addition to this, live/ dead assay of the CS was performed to visualize the presence of live and dead bacteria on the surface. The CS/PEO blend with 20 % PEO content has properties makes it suitable for use as a protective layer on wound dressings to prevent bacterial growth. It's use in wound dressings has the potential to reduce the pain during the time of dressing removal and improve patient outcomes. The present investigation leads to the development of a CS hydrogel matrix which exhibits very interesting interaction with the PEO moiety along with its innovative feature of antifouling and antimicrobial nature.


Assuntos
Quitosana , Membranas Artificiais , Polietilenoglicóis , Quitosana/química , Quitosana/farmacologia , Polietilenoglicóis/química , Incrustação Biológica/prevenção & controle , Aderência Bacteriana/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Hidrogéis/química , Hidrogéis/farmacologia , Resistência à Tração
16.
Microb Pathog ; 195: 106856, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153576

RESUMO

Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.


Assuntos
Aderência Bacteriana , Biofilmes , Emulsificantes , Poríferos , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Poríferos/microbiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Emulsificantes/farmacologia , Emulsificantes/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/fisiologia , Hemólise , Tensoativos/farmacologia , Tensoativos/metabolismo , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Vibrio/metabolismo , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia
17.
ACS Infect Dis ; 10(9): 3245-3255, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39105738

RESUMO

When coordinating and adhering to a surface, microorganisms produce a biofilm matrix consisting of extracellular DNA, lipids, proteins, and polysaccharides that are intrinsic to the survival of bacterial communities. Indeed, bacteria produce a variety of structurally diverse polysaccharides that play integral roles in the emergence and maintenance of biofilms by providing structural rigidity, adhesion, and protection from environmental stressors. While the roles that polysaccharides play in biofilm dynamics have been described for several bacterial species, the difficulty in isolating homogeneous material has resulted in few structures being elucidated. Recently, Cegelski and co-workers discovered that uropathogenic Escherichia coli (UPEC) secrete a chemically modified cellulose called phosphoethanolamine cellulose (pEtN cellulose) that plays a vital role in biofilm assembly. However, limited chemical tools exist to further examine the functional role of this polysaccharide across bacterial species. To address this critical need, we hypothesized that we could design and synthesize an unnatural glycopolymer to mimic the structure of pEtN cellulose. Herein, we describe the synthesis and evaluation of a pEtN cellulose glycomimetic which was generated using ring-opening metathesis polymerization. Surprisingly, the synthetic polymers behave counter to native pEtN cellulose in that the synthetic polymers repress biofilm formation in E. coli laboratory strain 11775T and UPEC strain 700415 with longer glycopolymers displaying greater repression. To evaluate the mechanism of action, changes in biofilm and cell morphology were visualized using high resolution field-emission gun scanning electron microscopy which further revealed changes in cell surface appendages. Our results suggest synthetic pEtN cellulose glycopolymers act as an antiadhesive and inhibit biofilm formation across E. coli strains, highlighting a potential new inroad to the development of bioinspired, biofilm-modulating materials.


Assuntos
Biofilmes , Celulose , Etanolaminas , Biofilmes/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Etanolaminas/química , Etanolaminas/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Aderência Bacteriana/efeitos dos fármacos
18.
Int J Biol Macromol ; 278(Pt 4): 134961, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179081

RESUMO

Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging. This study introduces a hybrid hydrogel network made from Tannic Acid (TA) and Poly-l-Lysine (PLL), cross-linked through ionic and hydrogen bonds, which imparts adhesive and anti-infective properties. The physicochemical analysis revealed that the hydrogels exhibited significant porosity, favorable mechanical characteristics, and demonstrated in vitro enzymatic biodegradation. Moreover, the hydrogels demonstrated adhesion to various substrates, including Ti alloy with an adhesive strength of 42.5 kPa, and retained their integrity even after immersion in water for a minimum of 10 days. The modified Ti surfaces significantly reduced protein adsorption (∼70 %), indicating antifouling properties. The hydrogels prevented bacterial adhesion on titanium surfaces through a "contact-kill" mode of action and inhibited biofilm formation by around 94.5 % for Staphylococcus aureus and 90.8 % for Pseudomonas aeruginosa. The modified Ti retained biofilm inhibitory effects for at least six days without significant performance decline. In vitro cytotoxicity assay confirmed the biocompatibility of the hydrogels with NIH3T3 cells. Overall, these results highlight the competence of hybrid hydrogels as effective coatings for Ti implants, offering strong adhesion and biofilm prevention to mitigate implant-related infections.


Assuntos
Antibacterianos , Biofilmes , Hidrogéis , Polilisina , Staphylococcus aureus , Taninos , Polilisina/química , Polilisina/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Animais , Taninos/química , Taninos/farmacologia , Células NIH 3T3 , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polifenóis
19.
Int J Nanomedicine ; 19: 8015-8027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130690

RESUMO

Purpose: This study aimed to confirm the synergy effect of these two materials by evaluating osteoblast and antibacterial activity by applying a double-layered hydroxyapatite(HA) zirconium oxide(ZrO2) coating to titanium. Methods: The specimens used in this study were divided into four groups: a control group (polished titanium; group T) and three experimental groups: Group TH (RF magnetron sputtered HA deposited titanium), Group Z (ZrO2 ALD deposited titanium), and Group ZH (RF magnetron sputtered HA and ZrO2 ALD deposited titanium). The adhesion of Streptococcus mutans (S.mutans) to the surface was assessed using a crystal violet assay. The adhesion, proliferation, and differentiation of MC3T3-E1 cells, a mouse osteoblastic cell line, were assessed through a WST-8 assay and ALP assay. Results: Group Z showed a decrease in the adhesion of S. mutans (p < 0.05) and an improvement in osteoblastic viability (p < 0.0083). Group TH and ZH showed a decrease in adhesion of S. mutans (p < 0.05) and an increase in osteoblastic cell proliferation and cell differentiation (p < 0.0083). Group ZH exhibited the highest antibacterial and osteoblastic differentiation. Conclusion: In conclusion double-layered HA and ZrO2 deposited on titanium were shown to be more effective in inhibiting the adhesion of S. mutans, which induced biofilm formation, and increasing osteoblastic differentiation involved in osseointegration by the synergistic effect of the two materials.


Assuntos
Aderência Bacteriana , Diferenciação Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis , Durapatita , Osteoblastos , Streptococcus mutans , Propriedades de Superfície , Titânio , Zircônio , Zircônio/química , Zircônio/farmacologia , Titânio/química , Titânio/farmacologia , Streptococcus mutans/efeitos dos fármacos , Animais , Camundongos , Durapatita/química , Durapatita/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Linhagem Celular , Antibacterianos/farmacologia , Antibacterianos/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
20.
Biofouling ; 40(7): 402-414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991845

RESUMO

Microbial fouling involves the physicochemical interactions between microorganisms and solid surfaces. An electromagnetic field (EMF) may change the diffusion rates of microbial cells and the electrical double layer around the cells and contacting surfaces. In the current study, polycardanol exhibiting antibiofouling activity was modified with ferromagnetic iron oxide (IO) to investigate the EMF effects on bacterial adhesion. When there was a flow of electrolyte that contained bacterial cells, flow-induced EMF was generated according to Faraday's principle. It was observed that the IO-ionic solution (IS)-modified surfaces, with an induced current of 44, 53, 66 nA, showed decreases in the adhesion of bacteria cells more than the unmodified (polycardanol) and IO-nanoparticles-modified ones. In addition to the EMF effects, the nano-scale uniform roughness of the modified surfaces appeared to play an important role in the reduction of cell adhesion. The results demonstrated that the IOIS-modified surface (3.2 × 10-6 mM IO) had the highest antibiofouling activity.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Campos Eletromagnéticos , Fenóis , Propriedades de Superfície , Incrustação Biológica/prevenção & controle , Aderência Bacteriana/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia , Compostos Férricos/química , Biofilmes/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...