Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.622
Filtrar
1.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825460

RESUMO

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Assuntos
Materiais Biocompatíveis , Adesão Celular , Peptídeos , Adesão Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Humanos , Peptídeos/farmacologia , Peptídeos/química , Animais , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Engenharia Tecidual/métodos , Células-Tronco Pluripotentes Induzidas/citologia
2.
J Toxicol Sci ; 49(6): 281-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825487

RESUMO

Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 µM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.


Assuntos
Perfilação da Expressão Gênica , Óxido Nítrico , Transcriptoma , Humanos , Óxido Nítrico/metabolismo , Transcriptoma/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células HEK293 , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Inflamação/genética , Inflamação/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Int J Nanomedicine ; 19: 5109-5123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846643

RESUMO

Introduction: Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. Methods: In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. Results: The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. Conclusion: The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.


Assuntos
Fusão Vertebral , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Animais , Camundongos , Ratos , Fosfatos de Cálcio/química , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Vértebras Lombares/cirurgia , Ratos Sprague-Dawley , Masculino , Força Compressiva , Proliferação de Células/efeitos dos fármacos , Cimentos Ósseos/química , Materiais Inteligentes/química , Adesão Celular/efeitos dos fármacos
4.
Sci Rep ; 14(1): 12721, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830871

RESUMO

Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.


Assuntos
Macrófagos , Poliésteres , Propriedades de Superfície , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Bovinos , Poliésteres/química , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Durapatita/química , Citocinas/metabolismo , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fêmur , Colágeno Tipo I/metabolismo
5.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721848

RESUMO

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Assuntos
Antioxidantes , Movimento Celular , Proliferação de Células , Extratos Vegetais , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Radicais Livres/metabolismo , Extratos Vegetais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fenóis/farmacologia
6.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731542

RESUMO

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Assuntos
Materiais Biocompatíveis , Proliferação de Células , Poliésteres , Pele , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Poliésteres/química , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Alicerces Teciduais/química , Resistência à Tração , Membranas Artificiais , Linhagem Celular , Teste de Materiais , Polímeros/química , Adesão Celular/efeitos dos fármacos
7.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755128

RESUMO

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fibroínas , Magnésio , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Fibroínas/química , Fibroínas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Masculino , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Ratos , Magnésio/química , Magnésio/farmacologia , Materiais Biocompatíveis/química , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Água/química , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Crânio/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Bombyx
8.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786035

RESUMO

There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.


Assuntos
Sobrevivência Celular , Endométrio , Células Epiteliais , Estrogênios , Progestinas , Humanos , Feminino , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Progestinas/farmacologia , Estrogênios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Estradiol/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/citologia , Técnicas de Cocultura , Fatores de Tempo , Adesão Celular/efeitos dos fármacos
9.
Cells ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786065

RESUMO

In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.


Assuntos
Barreira Hematoencefálica , Inflamação , Lipopolissacarídeos , Nitroprussiato , Lipopolissacarídeos/farmacologia , Nitroprussiato/farmacologia , Animais , Camundongos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células RAW 264.7 , Inflamação/patologia , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Adesão Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786068

RESUMO

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Assuntos
Adesão Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinases de Adesão Focal , Podócitos , Proteinúria , Receptor A2B de Adenosina , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Animais , Humanos , Proteinúria/metabolismo , Ratos , Receptor A2B de Adenosina/metabolismo , Adesão Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/metabolismo , Adenosina/farmacologia , Movimento Celular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo
11.
Sci Rep ; 14(1): 12339, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811651

RESUMO

Poly-ε-caprolactone (PCL) has been widely used as biocompatible materials in tissue engineering. They have been used in mammalian cell proliferation to polarization and differentiation. Their modified versions had regulatory activities on mammalian macrophages in vitro. There are also studies suggesting different nanofiber diameters might alter the biological activities of these materials. Based on these cues, we examined the inflammatory activities and adherence properties of mammalian macrophages on electrospun PCL nanofibrous scaffolds formed with PCL having different nanofiber diameters. Our results suggest that macrophages could easily attach and get dispersed on the scaffolds. Macrophages lost their inflammatory cytokine TNF and IL6 production capacity in the presence of LPS when they were incubated on nanofibers. These effects were independent of the mean fiber diameters. Overall, the scaffolds have potential to be used as biocompatible materials to suppress excessive inflammatory reactions during tissue and organ transplantation by caging and suppressing the inflammatory cells.


Assuntos
Inflamação , Macrófagos , Nanofibras , Poliésteres , Alicerces Teciduais , Nanofibras/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Alicerces Teciduais/química , Poliésteres/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Adesão Celular/efeitos dos fármacos
12.
ACS Nano ; 18(19): 12341-12354, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695772

RESUMO

The patch with a superlubricated surface shows great potential for the prevention of postoperative adhesion during soft tissue repair. However, the existing patches suffer from the destruction of topography during superlubrication coating and lack of pro-healing capability. Herein, we demonstrate a facile and versatile strategy to develop a Janus nanofibrous patch (J-NFP) with antiadhesion and reactive oxygen species (ROS) scavenging functions. Specifically, sequential electrospinning is performed with initiators and CeO2 nanoparticles (CeNPs) embedded on the different sides, followed by subsurface-initiated atom transfer radical polymerization for grafting zwitterionic polymer brushes, introducing superlubricated skin on the surface of single nanofibers. The poly(sulfobetaine methacrylate) brush-grafted patch retains fibrous topography and shows a coefficient of friction of around 0.12, which is reduced by 77% compared with the pristine fibrous patch. Additionally, a significant reduction in protein, platelet, bacteria, and cell adhesion is observed. More importantly, the CeNPs-embedded patch enables ROS scavenging as well as inhibits pro-inflammatory cytokine secretion and promotes anti-inflammatory cytokine levels. Furthermore, the J-NFP can inhibit tissue adhesion and promote repair of both rat skin wounds and intrauterine injuries. The present strategy for developing the Janus patch exhibits enormous prospects for facilitating soft tissue repair.


Assuntos
Nanofibras , Animais , Ratos , Nanofibras/química , Cicatrização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Aderências Teciduais/prevenção & controle , Ratos Sprague-Dawley , Adesão Celular/efeitos dos fármacos , Cério/química , Cério/farmacologia , Propriedades de Superfície , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732100

RESUMO

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Assuntos
Resinas Compostas , Fibroblastos , Gengiva , Interleucina-1beta , Polimetil Metacrilato , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Resinas Compostas/farmacologia , Resinas Compostas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Cultivadas , Fator de Transcrição RelA/metabolismo , Adesão Celular/efeitos dos fármacos
14.
J Ethnopharmacol ; 331: 118336, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY: Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN: The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS: Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS: Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Neutrófilos , Selectina-P , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Selectina-P/metabolismo , Masculino , Camundongos , Adesão Celular/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Bibenzilas/farmacologia , Fenol
15.
Int Immunopharmacol ; 134: 112148, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718657

RESUMO

BACKGROUND: Vascular inflammation is the key event in early atherogenesis. Pro-inflammatory endothelial cells induce monocyte recruitment into the sub-endothelial layer of the artery. This requires endothelial expression of adhesion molecules namely intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), alongside chemokines production. Christia vespertilionis (L.f.) Bakh.f. (CV) possesses anti-inflammatory property. However, its potential anti-atherogenic effect in the context of vascular inflammation has yet to be explored. PURPOSE: To evaluate the anti-atherogenic mechanism of 80% ethanol extract of CV leaves on tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs). METHODS: Qualitative analysis of the CV extract was carried out by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The cell viability of HUVECs treated with CV extract was determined by MTT assay. The effect of CV extract on monocyte adhesion was determined by monocyte-endothelial adhesion assay. Protein expressions of ICAM-1, VCAM-1 and nuclear factor-kappa B (NF-κB) signaling pathway were determined by western blot while production of monocyte chemoattractant protein-1 (MCP-1) was determined by ELISA. RESULTS: LC-MS/MS analysis showed that CV extract composed of five main compounds, including schaftoside, orientin, isovitexin, 6-caffeoyl-D-glucose, and 3,3'-di-O-methyl ellagic acid. Treatment of CV extract at a concentration range from 5 to 60 µg/mL for 24 h maintained HUVECs viability above 90 %, therefore concentrations of 20, 40 and 60 µg/mL were selected for the subsequent experiments. All concentrations of CV extract showed a significant inhibitory effect on monocyte adhesion to TNF-α-activated HUVECs (p < 0.05). In addition, the protein expressions of ICAM-1 and VCAM-1 were significantly attenuated by CV in a concentration dependent manner (p < 0.001). At all tested concentrations, CV extract also exhibited significant inhibition on the production of MCP-1 (p < 0.05). Moreover, CV extract significantly inhibited TNF-α-induced phosphorylation of inhibitor of nuclear factor-κB kinase alpha/beta (IKKα/ß), inhibitor kappa B-alpha (IκBα), NF-κB and nuclear translocation of NF-κB (p < 0.05). CONCLUSION: CV extract inhibited monocyte adhesion to endothelial cells by suppressing protein expressions of cell adhesion molecules and production of chemokines through downregulation of NF-κB signaling pathway. Thus, CV has the potential to be developed as an anti-atherogenic agent for early treatment of atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais da Veia Umbilical Humana , Molécula 1 de Adesão Intercelular , Monócitos , NF-kappa B , Extratos Vegetais , Folhas de Planta , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Aterosclerose/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Monócitos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Etanol/química , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
17.
Colloids Surf B Biointerfaces ; 239: 113971, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759296

RESUMO

The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.


Assuntos
Alginatos , Catequina , Proliferação de Células , Hidrogéis , Crânio , Alicerces Teciduais , Zinco , Zinco/química , Zinco/farmacologia , Alginatos/química , Alginatos/farmacologia , Catequina/química , Catequina/análogos & derivados , Catequina/farmacologia , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/patologia , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
18.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775012

RESUMO

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Assuntos
Adesão Celular , Diferenciação Celular , Polpa Dentária , Estimulação Elétrica , Odontogênese , Polivinil , Células-Tronco , Polpa Dentária/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos , Adesão Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Polivinil/química , Animais , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície
19.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783647

RESUMO

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Assuntos
Compostos de Boro , Durapatita , Metacrilatos , Ligamento Periodontal , Animais , Ratos , Humanos , Durapatita/química , Durapatita/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Compostos de Boro/farmacologia , Compostos de Boro/química , Metacrilatos/química , Metacrilatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Masculino , Proliferação de Células/efeitos dos fármacos , Cavidade Pulpar/metabolismo , Cavidade Pulpar/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Metilmetacrilatos/química , Metilmetacrilatos/farmacologia , Adesão Celular/efeitos dos fármacos
20.
Biomed Mater ; 19(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38740037

RESUMO

The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.


Assuntos
Materiais Revestidos Biocompatíveis , Ácido Hialurônico , Osseointegração , Osteoblastos , Osteogênese , Osteoporose , Próteses e Implantes , Rutina , Propriedades de Superfície , Titânio , Animais , Titânio/química , Rutina/química , Rutina/farmacologia , Osteogênese/efeitos dos fármacos , Ratos , Osteoporose/tratamento farmacológico , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osseointegração/efeitos dos fármacos , Ácido Hialurônico/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Quitosana/química , Feminino , Ratos Sprague-Dawley , Adesão Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Diferenciação Celular/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Proliferação de Células/efeitos dos fármacos , Polietilenoimina/química , Células 3T3 , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas em Multicamadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA