Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.721
Filtrar
2.
Ann Endocrinol (Paris) ; 85(3): 248-251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871512

RESUMO

Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti's team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.


Assuntos
Tecido Adiposo , Lactação , Animais , Humanos , Feminino , Tecido Adiposo/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Lactação/fisiologia , Gravidez , Transdiferenciação Celular/fisiologia , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Adipócitos Brancos/fisiologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/citologia , Plasticidade Celular/fisiologia , Glândulas Mamárias Humanas/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/citologia , Adipócitos/fisiologia , Adipócitos/citologia
4.
Bull Exp Biol Med ; 176(5): 620-625, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38733480

RESUMO

We studied the interaction of human buccal mesenchymal stem cells (MSCs) and osteoblasts differentiated from them with the surface of titanium samples. MSCs were isolated by enzymatic method from buccal fat pads. The obtained cell culture was presented by MSCs, which was confirmed by flow cytometry and differentiation into adipocytes and osteoblasts. Culturing of buccal MSCs on titanium samples was accompanied by an increase in the number of cells for 15 days and the formation of a developed network of F-actin fibers in the cells. The viability of buccal MSCs decreased by 8 days, but was restored by 15 days. Culturing of osteoblasts obtained as a result of buccal MSC differentiation on the surface of titanium samples was accompanied by a decrease in their viability and proliferation. Thus, MSCs from buccal fat pads can be used to coat implants to improve osseointegration during bone reconstruction in craniofacial surgery and dentistry. To improve the integration of osteoblasts, modification of the surface of titanium samples is required.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Osseointegração , Osteoblastos , Titânio , Titânio/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Humanos , Osseointegração/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Células Cultivadas , Proliferação de Células , Implantes Dentários , Sobrevivência Celular , Adipócitos/citologia , Adipócitos/fisiologia , Mucosa Bucal/citologia , Osteogênese/fisiologia
5.
Poult Sci ; 103(6): 103728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688194

RESUMO

E2F transcription factor 5 (E2F5) gene is a transcription factor, plays an important role in the development of a variety of cells. E2F5 is expressed in human and mouse adipocytes, but its specific function in adipogenesis is unclear. Krüppel-like factor 7 (KLF7) facilitates proliferation and inhibits differentiation in chicken preadipocytes. Our previous KLF7 chromatin immunoprecipitation-sequencing analysis revealed a KLF7-binding peak in the 3' flanking region of the E2F5, indicating a regulatory role of KLF7 in this region. In the present study, we investigated E2F5 potential role, the overexpression and knockdown analyses revealed that E2F5 inhibited the differentiation and promoted the proliferation of chicken preadipocytes. Moreover, we identified enhancer activity in the 3' flanking region (nucleotides +22661/+22900) of E2F5 and found that KLF7 overexpression increased E2F5 expression and luciferase activity in this region. Deleting the putative KLF7-binding site eliminated the promoting effect of KLF7 overexpression on E2F5 expression. Further, E2F5 reversed the KLF7-induced decrease in preadipocyte differentiation and increase in preadipocyte proliferation. Taken together, our findings demonstrate that KLF7 inhibits differentiation and promotes proliferation in preadipocytes by enhancing E2F5 transcription.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Proliferação de Células , Galinhas , Fatores de Transcrição Kruppel-Like , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Adipogenia/fisiologia , Galinhas/genética , Adipócitos/metabolismo , Adipócitos/fisiologia , Fator de Transcrição E2F5/metabolismo , Fator de Transcrição E2F5/genética , Fator de Transcrição E2F5/fisiologia , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética
6.
Nat Rev Endocrinol ; 20(7): 399-413, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499689

RESUMO

Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.


Assuntos
Condrócitos , Osteoblastos , Humanos , Animais , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Remodelação Óssea/fisiologia , Desenvolvimento Ósseo/fisiologia , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Adipócitos/metabolismo , Adipócitos/fisiologia
7.
PLoS One ; 19(1): e0292013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271326

RESUMO

AIM: Radiation-induced fibrosis is a recognised consequence of radiotherapy, especially after multiple and prolonged dosing regimens. There is no definitive treatment for late-stage radiation-induced fibrosis, although the use of autologous fat transfer has shown promise. However, the exact mechanisms by which this improves radiation-induced fibrosis remain poorly understood. We aim to explore existing literature on the effects of autologous fat transfer on both in-vitro and in-vivo radiation-induced fibrosis models, and to collate potential mechanisms of action. METHOD: PubMed, Cochrane reviews and Scopus electronic databases from inception to May 2023 were searched. Our search strategy combined both free-text terms with Boolean operators, derived from synonyms of adipose tissue and radiation-induced fibrosis. RESULTS: The search strategy produced 2909 articles. Of these, 90 underwent full-text review for eligibility, yielding 31 for final analysis. Nine conducted in-vitro experiments utilising a co-culture model, whilst 25 conducted in-vivo experiments. Interventions under autologous fat transfer included adipose-derived stem cells, stromal vascular function, whole fat and microfat. Notable findings include downregulation of fibroblast proliferation, collagen deposition, epithelial cell apoptosis, and proinflammatory processes. Autologous fat transfer suppressed hypoxia and pro-inflammatory interferon-γ signalling pathways, and tissue treated with adipose-derived stem cells stained strongly for anti-inflammatory M2 macrophages. Although largely proangiogenic initially, studies show varying effects on vascularisation. There is early evidence that adipose-derived stem cell subgroups may have different functional properties. CONCLUSION: Autologous fat transfer functions through pro-angiogenic, anti-fibrotic, immunomodulatory, and extracellular matrix remodelling properties. By characterising these mechanisms, relevant drug targets can be identified and used to further improve clinical outcomes in radiation-induced fibrosis. Further research should focus on adipose-derived stem cell sub-populations and augmentation techniques such as cell-assisted lipotransfer.


Assuntos
Tecido Adiposo , Síndrome da Fibrose por Radiação , Humanos , Adipócitos/fisiologia , Transplante Autólogo , Fibrose
8.
Nat Rev Endocrinol ; 19(11): 626-638, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587198

RESUMO

Adipose tissue is a dynamic component of the bone marrow, regulating skeletal remodelling and secreting paracrine and endocrine factors that can affect haematopoiesis, as well as potentially nourishing the bone marrow during periods of stress. Bone marrow adipose tissue is regulated by multiple factors, but particularly nutrient status. In this Review, we examine how bone marrow adipocytes originate, their function in normal and pathological states and how bone marrow adipose tissue modulates whole-body homoeostasis through actions on bone cells, haematopoietic stem cells and extra-medullary adipocytes during nutritional challenges. We focus on both rodent models and human studies to help understand the unique marrow adipocyte, its response to the external nutrient environment and its effects on the skeleton. We finish by addressing some critical questions that to date remain unanswered.


Assuntos
Tecido Adiposo , Células da Medula Óssea , Medula Óssea , Humanos , Adipócitos/fisiologia , Medula Óssea/patologia , Medula Óssea/fisiologia , Células da Medula Óssea/fisiologia , Obesidade/patologia , Redução de Peso
9.
Int Immunopharmacol ; 121: 110467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348228

RESUMO

Recently, emerging evidence has shown that LncRNA MEG3 is involved in adipocyte inflammation and insulin resistance progression, however, the specific mechanism of action remains unclear. In this study, we found that LncRNA MEG3 expression was increased in TNF-α stimulated 3T3-L1 mature adipocytes, and inflammatory factors IL-6 and MCP-1 secretion levels were increased, cell apoptosis and caspase3 activity was enhanced, ROS content was increased, and iNOS protein expression was increased. Moreover, TNF-α treatment attenuated glucose uptake, promoted triglyceride accumulation, inhibited GLUT4 protein expression at the plasma membrane, and reduced the phosphorylation levels of AMPK and ACC in the cells. Interestingly, we found that transfection of si-MEG3 reversed TNF-α caused inflammatory injury and insulin resistance of 3T3-L1 mature adipocytes. Next, we found that IGF2BP2 is an RNA binding protein of LncRNA MGE3 and transfection of si-IGF2BP2 reversed TNF-α caused inflammatory injury and insulin resistance in 3T3-L1 mature adipocytes, the same effects as transfection of si-MEG3. Mechanistically, LncRNA MGE3 was able to aggravate adipocyte inflammatory injury and dysregulation of insulin sensitivity by activating TLR4 pathway through upregulating the protein expression of IGF2BP2. In vivo findings showed that HFD mice with knockdown of MEG3 had reduced body weight, lower glucose concentrations and insulin levels in plasma, decreased inflammatory factors secretion, and reduced MEG3 and IGF2BP2 expression in epididymal adipose tissues and reduced fat accumulation in mice compared with HFD mice. Our results indicate that LncRNA MEG3 can aggravate chronic inflammation and insulin resistance in adipocytes by activating TLR4/NF-κB signaling pathway via targeting IGF2BP2.


Assuntos
Resistência à Insulina , RNA Longo não Codificante , Animais , Camundongos , Células 3T3-L1 , Adipócitos/fisiologia , Inflamação/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Anim Biotechnol ; 34(8): 3708-3717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37149785

RESUMO

Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.


Assuntos
Adipogenia , PPAR gama , Suínos , Animais , Adipogenia/fisiologia , Rosiglitazona/farmacologia , PPAR gama/genética , Proteínas Quinases Ativadas por AMP/farmacologia , Adipócitos/fisiologia , Diferenciação Celular
12.
Front Immunol ; 14: 1083191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936928

RESUMO

Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.


Assuntos
COVID-19 , Imunidade Inata , Humanos , SARS-CoV-2 , Tecido Adiposo , Adipócitos/fisiologia
13.
Anim Biotechnol ; 34(8): 3589-3598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36866843

RESUMO

TEA domain transcription factor 1 (TEAD1), also called TEF-1, acts as a transcriptional enhancer to regulate muscle-specific gene expression. However, the role of TEAD1 in regulating intramuscular preadipocyte differentiation in goats is unclear. The aim of this study was to obtain the sequence of TEAD1 gene and elucidate the effect of TEAD1 on goat intramuscular preadipocyte differentiation in vitro and its possible mechanism. The results showed that the goat TEAD1 gene CDS region sequence was 1311 bp. TEAD1 gene was widely expressed in goat tissues, with the highest expression in brachial triceps (p < 0.01). The expression of TEAD1 gene in goat intramuscular adipocytes at 72 h was extremely significantly higher than that at 0 h (p < 0.01). Overexpression of goat TEAD1 inhibited the accumulation of lipid droplets in goat intramuscular adipocyte. The relative expression of differentiation marker genes SREBP1, PPARγ, C/EBPß were significantly down-regulated (all p < 0.01), but PREF-1 was significantly up-regulated (p < 0.01). Binding analysis showed that there were multiple binding sites between the DNA binding domain of goat TEAD1 and the promoter binding region of SREBP1, PPARγ, C/EBPß and PREF-1. In conclusion, TEAD1 negatively regulates the differentiation of goat intramuscular preadipocytes.


Assuntos
Cabras , Fatores de Transcrição de Domínio TEA , Animais , Cabras/fisiologia , PPAR gama/metabolismo , Adipócitos/fisiologia , Músculo Esquelético/metabolismo , Diferenciação Celular/genética , Adipogenia/genética
14.
Plast Reconstr Surg ; 152(5): 1036-1046, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912938

RESUMO

BACKGROUND: Lipedema, diagnosed most often in women, is a progressive disease characterized by the disproportionate and symmetrical distribution of adipose tissue, primarily in the extremities. Although numerous results from in vitro and in vivo studies have been published, many questions regarding the pathology and genetic background of lipedema remain unanswered. METHODS: In this study, adipose tissue-derived stromal/stem cells were isolated from lipoaspirates derived from nonobese and obese donors with or without lipedema. Growth and morphology, metabolic activity, differentiation potential, and gene expression were evaluated using quantification of lipid accumulation, metabolic activity assay, live-cell imaging, reverse transcription polymerase chain reaction, quantitative polymerase chain reaction, and immunocytochemical staining. RESULTS: The adipogenic potential of lipedema and nonlipedema adipose tissue-derived stromal/stem cells did not rise in parallel with the donors' body mass index and did not differ significantly between groups. However, in vitro differentiated adipocytes from nonobese lipedema donors showed significant upregulation of adipogenic gene expression compared with nonobese controls. All other genes tested were expressed equally in lipedema and nonlipedema adipocytes. The adiponectin/leptin ratio was significantly reduced in adipocytes from obese lipedema donors compared with their nonobese lipedema counterparts. Increased stress fiber-integrated smooth muscle actin was visible in lipedema adipocytes compared with nonlipedema controls and appeared enhanced in adipocytes from obese lipedema donors. CONCLUSIONS: Not only lipedema per se but also body mass index of donors affect adipogenic gene expression substantially in vitro. The significantly reduced adiponectin/leptin ratio and the increased occurrence of myofibroblast-like cells in obese lipedema adipocyte cultures underscores the importance of attention to the co-occurrence of lipedema and obesity. These are important findings toward accurate diagnosis of lipedema. CLINICAL RELEVANCE STATEMENT: Our study highlights not only the difficulty in lipedema diagnostics but also the tremendous need for further studies on lipedema tissue. Although lipedema might seem to be an underestimated field in plastic and reconstructive surgery, the power it holds to provide better treatment to future patients can not be promoted enough.


Assuntos
Leptina , Lipedema , Humanos , Feminino , Leptina/metabolismo , Lipedema/diagnóstico , Lipedema/patologia , Adiponectina/metabolismo , Adipócitos/fisiologia , Obesidade/complicações , Células Cultivadas
15.
Anim Biotechnol ; 34(4): 1196-1208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34939903

RESUMO

Fibroblast growth factor 1(FGF1) has been proved to bind to specific signal molecules and activate intracellular signal transduction, leading to proliferation or differentiation of cells. However, the role of FGF1 in goat adipocytes is still unclear. Here, we investigated its role in lipogenesis of goats, which depends on the activation of FGFRs. In goat intramuscular and subcutaneous adipocytes, we observed that adipocytes accumulation was inhibited by interfering of FGF1, the expression of C/EBPα, C/EBPß, LPL, Pref-1, PPARγ, AP2, KLF4, KLF6, KLF10 and KLF17 were significantly down-regulated (p < 0.05). When the FGF1 was up-regulated, the opposite result was found, while the expression of C/EBPß, LPL, PPARγ, SREBP1, AP2, KLF4, KLF7, KLF15, KLF16 and KLF17 were increased significantly (p < 0.05) in goat intramuscular and subcutaneous adipocytes. The expression level of FGFR1 was significantly and decreased with the interference of FGF1, and increased with the overexpression of FGF1. But in goat subcutaneous adipocytes, only the expression of FGFR2 was consistent with the expression of FGF1. Interference methods confirmed that FGFR1 or FGFR2 and FGF1 have the similarly promoting function in adipocytes differentiation. With the co-transfection technology, we confirmed that FGF1 promoted the differentiation of intramuscular and subcutaneous adipocytes might via FGFR1 or FGFR2, respectively.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Cabras , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Cabras/fisiologia , PPAR gama/metabolismo , Diferenciação Celular/fisiologia , Adipócitos/fisiologia
16.
Anim Biotechnol ; 34(2): 268-279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34346296

RESUMO

Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.


Assuntos
MicroRNAs , RNA Longo não Codificante , Suínos , Animais , Adipogenia/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Adipócitos/fisiologia , MicroRNAs/genética
17.
Plast Reconstr Surg ; 151(5): 1005-1015, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534068

RESUMO

BACKGROUND: The pathophysiology of adipose proliferation or differentiation in extremity lymphedema has not been thoroughly studied. This study investigated the impacts of the lymph harvested from lymphedematous limbs on the adipogenesis of adipose-derived stem cells (ASCs). METHODS: ASCs were isolated from the adipose tissue of normal extremities and cultured with lymph collected from Cheng lymphedema grade III to IV patients or adipogenic differentiation medium (ADM) and further subjected to differentiation and proliferation assay. The expression of adipogenesis genes was examined by real-time polymerase chain reaction to investigate the effect of lymph on ASCs. The level of adipogenic cytokines in the lymph was also evaluated. RESULTS: The adipocytes were significantly larger in lymphedema fat tissue compared with that in normal fat tissues ( P < 0.00). The adipogenesis of ASCs cultured in lymph was significantly enhanced compared with in ADM ( P = 0.008) on day 10, suggesting that the adipogenesis of ASCs was promoted under the lymph-cultured environment. The expression of adipogenesis genes, peroxisome proliferator-activated receptor ( P = 0.02), CAAT/enhancer-binding protein α ( P = 0.008); fatty-acid binding protein ( P = 0.004), and lipoprotein lipase ( P = 0.003), was statistically elevated when the ASCs were cultured with lymph. The insulin content in lymph was statistically higher in lymph ( P < 0.001) than in plasma. CONCLUSIONS: The adipogenesis of ASCs was promoted under the lymph-cultured environment with statistically increased adipogenesis genes of peroxisome proliferator-activated receptor, CAAT/enhancer-binding protein α, fatty-acid binding protein, and lipoprotein lipase. The excess lymph accumulated in the lymphedematous extremity contained a greater insulin/insulin-like growth factor-2. These adipogenic factors promoted the expression of early adipogenesis genes and led ASCs to undergo adipogenesis and differentiated into adipocytes. CLINICAL RELEVANCE STATEMENT: The accumulation of adipose tissue in the lymphedema region was contributed from the content of excess lymph.


Assuntos
Insulinas , Linfedema , Humanos , Adipogenia/fisiologia , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Adipócitos/fisiologia , Tecido Adiposo , Diferenciação Celular/genética , Células-Tronco/fisiologia , Insulinas/metabolismo , Insulinas/farmacologia , Células Cultivadas
18.
Adv Mater ; 35(8): e2207686, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502507

RESUMO

Obesity treatment is a global public health challenge due to inadequate weight loss and weight regain even after endeavors with multimodal treatments. Considering the abundance of resident macrophages in adipose tissues, precise regulation of the interactions between macrophages and adipocytes may provide chances for immunotherapy of obesity. Herein, inspired by the phagocytosis of macrophages to clear apoptotic cells in homeostasis, an immunotherapy strategy for obesity treatment is proposed for the first time through apoptotic camouflage of adipocytes by PA Au BPs to activate macrophages for clearance, where PA Au BPs are gold nanobipyramids engineered with adipose-targeting and apoptotic cell-mimicking functions. During clearance, the macrophage is switched from pro-inflammatory M1 to anti-inflammatory M2, remarkably modulating the immune microenvironment of adipose tissues to prevent weight regain. After inguinal injection with PA Au BPs, the body weights of obese mice are effectively decreased by 24.4% and can be decreased by 33.3% when combined with photothermal lipolysis, and little weight regain is associated with these treatments. This study demonstrates that the strategy of camouflaging adipocytes with apoptotic features holds great potential for obesity immunotherapy.


Assuntos
Adipócitos , Tecido Adiposo , Animais , Camundongos , Adipócitos/fisiologia , Obesidade , Aumento de Peso , Imunoterapia , Camundongos Endogâmicos C57BL
19.
Anim Biotechnol ; 34(7): 2736-2744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001396

RESUMO

Intramuscular fat (IMF) content is one of the most significant factors influencing beef quality in terms of tenderness, flavor, and juiciness. Thus, internal factors affecting IMF deposition have received considerable attention for decades. In this study, we demonstrated a long non-coding RNA, lnc210, promoted adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was rich in adipose tissue and showed increased expression with the adipogenic differentiation of buffalo intramuscular adipocytes. lnc210 was mainly expressed in the nucleus of adipocytes. Full-length lnc210 was obtained by rapid amplification of cDNA ends technology. lnc210 overexpression promoted lipid accumulation by upregulating the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) and CCAAT enhancer binding protein alpha (C/EBPα) in buffalo intramuscular adipocytes. These results provide a basis for an in-depth analysis of the role of lnc210 in accelerating IMF deposition in buffaloes.


Assuntos
Búfalos , RNA Longo não Codificante , Bovinos , Animais , Búfalos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipócitos/fisiologia , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular/genética
20.
Anim Biotechnol ; 34(7): 3216-3236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200856

RESUMO

Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.


Assuntos
Adipócitos , Adipogenia , Humanos , Animais , Técnicas de Cocultura , Adipócitos/fisiologia , Diferenciação Celular , Carne , Músculo Esquelético/fisiologia , Tecido Adiposo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...