Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Curr Microbiol ; 81(7): 217, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852107

RESUMO

The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.


Assuntos
Quitinases , Fermentação , Peptídeo Hidrolases , Quitinases/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Lipase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Fungos/metabolismo , Controle Biológico de Vetores/métodos , Beauveria/enzimologia , Beauveria/metabolismo , Estabilidade Enzimática
3.
Pestic Biochem Physiol ; 202: 105956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879338

RESUMO

Pepper southern blight, caused by Sclerotium rolfsii, is a devastating soil-borne disease resulting in significant loss to pepper, Capsicum annuum L. production. Here, we isolated an antagonistic bacterial strain XQ-29 with antifungal activity against S. rolfsii from rhizospheric soil of pepper. Combining the morphological and biochemical characteristics with the 16S rDNA sequencing, XQ-29 was identified as Streptomyces griseoaurantiacus. It exhibited an inhibition of 96.83% against S. rolfsii and displayed significant inhibitory effects on Botrytis cinerea, Phytophthora capsica and Rhizoctonia solani. Furthermore, XQ-29 significantly reduced the pepper southern blight by 100% and 70.42% during seedling and growth stages, respectively. The antifungal mechanism involved altering the mycelial morphology, disrupting cell wall and membrane integrity, accompanied by accumulation of reactive oxygen species and lipid peroxidation in S. rolfsii mycelia. Furthermore, XQ-29 promoted growth and stimulated resistance of pepper plants by increasing defense-related enzyme activities and upregulating defense-related genes. Correspondingly, XQ-29 harbors numerous functional biosynthesis gene clusters in its genome, including those for siderophores and melanin production. The metabolic constituents present in the ethyl acetate extracts, which exhibited an EC50 value of 85.48 ± 1.62 µg/mL, were identified using LC-MS. Overall, XQ-29 demonstrates significant potential as a biocontrol agent against southern blight disease.


Assuntos
Botrytis , Capsicum , Doenças das Plantas , Rhizoctonia , Streptomyces , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Capsicum/microbiologia , Streptomyces/genética , Streptomyces/fisiologia , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Rhizoctonia/fisiologia , Rhizoctonia/efeitos dos fármacos , Basidiomycota/fisiologia , Phytophthora/fisiologia , Phytophthora/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Antifúngicos/farmacologia
4.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876538

RESUMO

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Assuntos
Agaricales , Cromatografia Gasosa-Espectrometria de Massas , Micélio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/química , Agaricales/química , Agaricales/crescimento & desenvolvimento , Agaricales/efeitos dos fármacos , Agaricales/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/química , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/efeitos dos fármacos , Metschnikowia/metabolismo , Antibiose , Aureobasidium , Trichoderma/crescimento & desenvolvimento , Trichoderma/química , Trichoderma/metabolismo , Microextração em Fase Sólida
5.
Microb Pathog ; 192: 106680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729380

RESUMO

Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.


Assuntos
Agrobacterium tumefaciens , Bacteriocinas , Leuconostoc mesenteroides , Olea , Doenças das Plantas , RNA Ribossômico 16S , Agrobacterium tumefaciens/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Olea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/genética , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Verticillium/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antibiose , Filogenia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
6.
Appl Environ Microbiol ; 90(6): e0066524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814060

RESUMO

Ash dieback, caused by the fungal pathogen Hymenoscyphus fraxineus (Helotiales, Ascomycota), is threatening the existence of the European ash, Fraxineus excelsior. During our search for biological control agents for this devastating disease, endophytic fungi were isolated from healthy plant tissues and co-cultivated with H. fraxineus to assess their antagonistic potential. Among the strains screened, Penicillium cf. manginii DSM 104493 most strongly inhibited the pathogen. Initially, DSM 104493 showed promise in planta as a biocontrol agent. Inoculation of DSM 104493 into axenically cultured ash seedlings greatly decreased the development of disease symptoms in seedlings infected with H. fraxineus. The fungus was thus cultivated on a larger scale in order to obtain sufficient material to identify active metabolites that accounted for the antibiosis observed in dual culture. We isolated PF1140 (1) and identified it as the main active compound in the course of a bioassay-guided isolation strategy. Furthermore, its derivative 2, the mycotoxin citreoviridin (3), three tetramic acids of the vancouverone type (4-6), and penidiamide (7) were isolated by preparative chromatography. The structures were elucidated mainly by NMR spectroscopy and high-resolution mass spectrometry (HRMS), of which compounds 2 and 6 represent novel natural products. Of the compounds tested, not only PF1140 (1) strongly inhibited H. fraxineus in an agar diffusion assay but also showed phytotoxic effects in a leaf puncture assay. Unfortunately, both the latent virulent attributes of DSM 104493 observed subsequent to these experiments in planta and the production of mycotoxins exclude strain Penicillium cf. manginii DSM 104493 from further development as a safe biocontrol agent.IMPORTANCEEnvironmentally friendly measures are urgently needed to control the causative agent of ash dieback, Hymenoscyphus fraxineus. Herein, we show that the endophyte DSM 104493 exhibits protective effects in vitro and in planta. We traced the activity of DSM 104493 to the antifungal natural product PF1140, which unfortunately also showed phytotoxic effects. Our results have important implications for understanding plant-fungal interactions mediated by secondary metabolites, not only in the context of ash dieback but also generally in plant-microbial interactions.


Assuntos
Antifúngicos , Ascomicetos , Endófitos , Fraxinus , Doenças das Plantas , Fraxinus/microbiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antibiose , Metabolismo Secundário , Penicillium/metabolismo , Penicillium/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo
7.
Microb Ecol ; 87(1): 76, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801423

RESUMO

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Assuntos
Arabidopsis , Bacillus , Doenças das Plantas , Bacillus/fisiologia , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Percepção de Quorum , Chromobacterium/fisiologia , Chromobacterium/crescimento & desenvolvimento , Agentes de Controle Biológico/farmacologia , Desenvolvimento Vegetal , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Microbiologia do Solo
8.
Int J Food Microbiol ; 418: 110727, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759292

RESUMO

Aspergillus flavus is a notorious fungus that contaminates food crops with toxic aflatoxins, posing a serious threat to human health and the agricultural economy. To overcome the inadequacy of traditional control methods and meet consumer preferences for natural-sources additives, there is an urgent demand for novel biocontrol agents that are safe and efficient. This study aims to investigate the antifungal properties of a novel antifungal agent derived from the biologically safe Lactiplantibacillus plantarum WYH. Firstly, antifungal peptides (AFPs) with a molecular weight of less than 3kD, exhibiting remarkable temperature stability and effectively retarding fungal growth in a dose-dependent manner specifically against A. flavus, were concentrated from the fermentation supernatant of L. plantarum WYH and were named as AFPs-WYH. Further analysis demonstrated that AFPs-WYH might exert antifungal effects through the induction of oxidative stress, disruption of mitochondrial function, alteration of membrane permeability, and cell apoptosis in A. flavus. To further validate our findings, a transcriptomics analysis was conducted on A. flavus treated with 2 and 5 mg/mL of AFPs-WYH, which elucidated the potential effect of AFPs-WYH administration on the regulation of genes involved in impairing fungal development and preventing aflatoxin biosynthesis pathways. Overall, AFPs-WYH reduced the A. flavus proliferation and affected the AFB1 biosynthesis, exhibiting a promising potential for food industry applications as a biopreservative and biocontrol agent.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Contaminação de Alimentos/prevenção & controle , Lactobacillus plantarum/metabolismo , Fermentação , Peptídeos/farmacologia , Aflatoxinas/biossíntese , Estresse Oxidativo/efeitos dos fármacos
9.
Curr Microbiol ; 81(7): 180, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761223

RESUMO

Postharvest fungal diseases cause serious fruit losses and food safety issues worldwide. The trend in preventing food loss and waste has shifted to environmentally friendly and sustainable methods, such as biological control. Penicillium expansum is a common postharvest contaminant fungus that causes blue mould disease and patulin formation on apples. This study aimed to provide biocontrol using Metschnikowia pulcherrima isolates against P. expansum, and to understand their antagonistic action mechanisms. In vitro, 38.77-51.69% of mycelial growth inhibition of P. expansum was achieved by M. pulcherrima isolates with the dual culture assay, while this rate was 69.45-84.89% in the disc diffusion assay. The disease symptoms of P. expansum on wounds were reduced by M. pulcherrima, on Amasya apples. The lesion diameter, 41.84 mm after 12 d of incubation in control, was measured as 24.14 mm when treated with the most effective M. pulcherrima DN-MP in vivo. Although the antagonistic mechanisms of M. pulcherrima isolates were similar, there was a difference between their activities. In general, DN-HS and DN-MP isolates were found to be more effective. In light of all these results, it can be said that M. pulcherrima isolates used in the study have an antagonistic effect against the growth of P. expansum both in vitro and in vivo in Amasya apples, therefore, when the appropriate formulation is provided, they can be used as an alternative biocontrol agent to chemical fungicides in the prevention of postharvest diseases.


Assuntos
Antibiose , Malus , Metschnikowia , Penicillium , Doenças das Plantas , Penicillium/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Penicillium/efeitos dos fármacos , Penicillium/fisiologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/fisiologia , Frutas/microbiologia , Agentes de Controle Biológico/farmacologia
10.
Pest Manag Sci ; 80(8): 4125-4136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578571

RESUMO

BACKGROUND: Maize stalk rot (MSR) caused by Fusarium graminearum is the primary factor contributing to the reduction in maize yield and quality. However, this soil-borne disease presents a significant challenge for sustainable control through field management and chemical agents. The screening of novel biocontrol agents can aid in developing innovative and successful strategies for MSR control. RESULTS: A total of 407 strains of bacteria were isolated from the rhizosphere soil of a resistant maize inbred line. One strain exhibited significant antagonistic activity in plate and pot experiments, and was identified as Burkholderia ambifaria H8. The strain could significantly inhibit the mycelial growth and spore germination of F. graminearum, induce resistance to stalk rot, and promote plant growth. The volatile compounds produced by strain H8 and its secondary metabolites in the sterile fermentation broth exhibited antagonistic activity. The primary volatile compound produced by strain H8 was identified as dimethyl disulfide (DMDS) using gas chromatography tandem mass spectrometry. Through in vitro antagonistic activity assays and microscopic observation, it was confirmed that DMDS was capable of inhibiting mycelial growth and disrupting the mycelial structure of F. graminearum, suggesting it may be the major active compound for strain H8. The transcriptome data of F. graminearum further indicated that strain H8 and its volatile compounds could alter pathogenic fungi metabolism, influence the related metabolic pathways, and potentially induce cell apoptosis within F. graminearum. CONCLUSION: Our results showed that B. ambifaria H8 was capable of producing the volatile substance dimethyl disulfide, which influenced the synthesis and permeability of cell membranes in pathogens. Thus, B. ambifaria H8 was found to be a promising biological control agent against MSR. © 2024 Society of Chemical Industry.


Assuntos
Burkholderia , Dissulfetos , Fusarium , Doenças das Plantas , Compostos Orgânicos Voláteis , Zea mays , Fusarium/fisiologia , Zea mays/microbiologia , Dissulfetos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Burkholderia/fisiologia , Burkholderia/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores , Agentes de Controle Biológico/farmacologia
11.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582599

RESUMO

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Assuntos
Inseticidas , Receptores Nicotínicos , Tisanópteros , Animais , Tisanópteros/metabolismo , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Agentes de Controle Biológico/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insetos/genética , Macrolídeos/farmacologia , Combinação de Medicamentos
12.
J Basic Microbiol ; 64(7): e2300643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578065

RESUMO

Bacterial endophytes from plants harbor diverse metabolites that play major roles in biocontrol and improve plant growth. In this study, a total of 12 endophytic bacteria were isolated from the ginger rhizome. The strain K3 was highly effective in preventing mycelia growth of Pythium myriotylum (78.5 ± 1.5% inhibition) in dual culture. The cell-free extract (2.5%) of endophyte K3 inhibited 76.3 ± 4.8% mycelia growth, and 92.4 ± 4.2% inhibition was observed at a 5% sample concentration. The secondary metabolites produced by Bacillus licheniformis K3 showed maximum activity against Pseudomonas syringae (24 ± 1 mm zone of inhibition) and Xanthomonas campestris (28 ± 3 mm zone of inhibition). The strain K3 produced 28.3 ± 1.7 IU mL-1 protease, 28.3 ± 1.7 IU mL-1 cellulase, and 2.04 ± 0.13 IU mL-1 chitinase, respectively. The ginger rhizome treated with K3 in the greenhouse registered 53.8 ± 1.4% soft rot incidence, and the streptomycin-treated pot registered 78.3 ± 1.7% disease incidence. The selected endophyte K3 improved ascorbate peroxidase (1.37 ± 0.009 µmole ASC min-1 mg-1 protein), catalase (8.7 ± 0.28 µmole min-1 mg-1 protein), and phenylalanine ammonia-lyase (26.2 ± 0.99 Umg-1) in the greenhouse. In addition, K3 treatment in the field trial improved rhizome yield (730 ± 18.4 g) after 180 days (p < 0.01). The shoot length was 46 ± 8.3 cm in K3-treated plants, and it was about 31% higher than the control treatment (p < 0.01). The lytic enzyme-producing and growth-promoting endophyte is useful in sustainable crop production through the management of biotic stress.


Assuntos
Bacillus licheniformis , Endófitos , Doenças das Plantas , Pythium , Zingiber officinale , Pythium/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Zingiber officinale/microbiologia , Zingiber officinale/crescimento & desenvolvimento , Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/metabolismo , Rizoma/microbiologia , Rizoma/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Antibiose , Agentes de Controle Biológico/farmacologia , Metabolismo Secundário , Quitinases/metabolismo
13.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
14.
Pest Manag Sci ; 80(8): 3839-3851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511614

RESUMO

BACKGROUND: As a type of biological control agent (BCA), Bacillus velezensis possesses the efficacy of inhibiting pathogenic microorganisms, promoting plant growth, and overcoming continuous cropping obstacles (CCOs). However, there is limited reporting on the optimization of the cultivation conditions for such biocontrol agents and their role as double-stranded RNA (dsRNA) delivery vectors. RESULTS: In this study, a Bacillus velezensis strain HS-3 was isolated from the root zone of tomato plants with in vitro anti-Botrytis cinerea activity. The investigation into active compounds revealed that HS-3 predominantly employs proteins with molecular weights greater than 3 kDa for its antifungal activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified various proteases and chitosanase, further suggesting that HS-3 most likely employs these enzymes to degrade fungal cell walls for its antifungal effect. To optimize the production of extracellular proteins, fermentation parameters for HS-3 were systematically optimized, leading to an optimized medium (OP-M). HS-3 cultured in OP-M demonstrated enhanced capacity to assist tomato plants in withstanding CCOs. However, the presence of excessive nematodes in diseased soil resulted in the disease severity index (DSI) remaining high. An RNA interference mechanism was further introduced to HS-3, targeting the nematode tyrosine phosphatase (TP) gene. Ultimately, HS-3 expressing dsRNA of TP in OP-M effectively assisted tomatoes in mitigating CCOs, reducing DSI to 2.2% and 17.8% of the control after 45 and 90 days of growth, respectively. CONCLUSION: The advantages of Bacillus velezensis in crop disease management and the mitigation of CCOs become even more pronounced when utilizing both optimized levels of endogenous enzymes and introduced nematode-targeting dsRNA. © 2024 Society of Chemical Industry.


Assuntos
Bacillus , Resistência à Doença , Doenças das Plantas , RNA de Cadeia Dupla , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Bacillus/fisiologia , Bacillus/genética , Bacillus/metabolismo , RNA de Cadeia Dupla/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Animais , Botrytis , Controle Biológico de Vetores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Agentes de Controle Biológico/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo
15.
Pest Manag Sci ; 80(7): 3578-3589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450978

RESUMO

BACKGROUND: Plant defense elicitors are valuable tools in sustainable agriculture, providing an environmentally friendly and effective means of enhancing plant defense and promoting plant health. Fusarium head blight (FHB) is one of the most important fungal diseases of cereal crops worldwide. The PSP1 is a novel biopesticide formulated based on an elicitor, the extracellular protein AsES, from the fungus Sarocladium strictum. The present work aimed to evaluate the effectiveness of PSP1 in controlling FHB under field conditions. Experiments were conducted during three consecutive growing seasons (2019, 2020, and 2021). Three biostimulant treatments were tested in different physiological stages (from late tillering to heading stage), and FHB inoculations were performed at anthesis. Disease parameters, seed parameters, grain yield, and grain quality parameters were evaluated. RESULTS: Depending on the year and the genotype, reductions in disease incidence (up to 11%) and disease severity (up to 5%) were reported, although these differences could not be attributed to the use of the PSP1 biostimulant. Occasional improvements in seed parameters and grain quality were observed, suggesting that early treatments could work better than late treatments, probably due to early activation/priming of defense response mechanisms. However, more studies are deemed necessary. CONCLUSION: The use of PSP1 biostimulant in commercial wheat crops could be a biological alternative or complement to traditional chemical fungicides to manage FHB. The reduced environmental impact and the potential benefits in grain yield and quality are other reasons that can generate new adherents of this technology in worldwide agriculture systems in the coming years. © 2024 Society of Chemical Industry.


Assuntos
Grão Comestível , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Grão Comestível/microbiologia , Grão Comestível/crescimento & desenvolvimento , Hypocreales/fisiologia , Agentes de Controle Biológico/farmacologia
16.
Exp Parasitol ; 260: 108725, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458554

RESUMO

Duddingtonia flagrans is a nematophagous fungus which has shown promising results as a non-chemical parasitic control tool. The fungus disrupts the parasite's life cycle by trapping larvae in the environment through the networks generated from chlamydospores, thus preventing the reinfection of animals. One barrier to the development of a commercial product using this tool is the need to increase chlamydospore production in the laboratory for its administration to livestock. The purpose of this study was to evaluate the addition of mannitol to an enriched culture medium and the effect of adverse cultivation conditions on chlamydospore production. D. flagrans was cultivated on Petri dishes with corn agar for 4 weeks at 27 °C and 70% relative humidity (RH). Four groups were then formed, all with Sabouraud agar as a base, to which different growth inducers were added: GSA (glucose Sabouraud agar), GSA-MI (glucose Sabouraud agar + meso inositol), GSA-E (enriched glucose Sabouraud agar), and AE-M (enriched agar + mannitol). After 4 weeks, chlamydospores were recovered by washing the surface of each plate with distilled water and then quantified. The medium that yielded the highest amount of chlamydospores was subjected to different cultivation conditions: NC (normal conditions): 70% RH and 27 °C, AC (adverse conditions) 1: 20% RH and 40 °C, CA2: 60% RH and 27 °C, and CA3: 55% RH and 24 °C. It was determined that mannitol increases chlamydospore production (65x106 chlamydospores/plate), and when reducing humidity by 10% under cultivation conditions it resulted in an approximately 10% increase in chlamydospore production compared to the control group. These results suggest that the addition of polyols, as well as its cultivation under certain environmental conditions, can improve chlamydospore production on a laboratory scale.


Assuntos
Ágar , Meios de Cultura , Duddingtonia , Manitol , Esporos Fúngicos , Manitol/farmacologia , Meios de Cultura/química , Esporos Fúngicos/crescimento & desenvolvimento , Duddingtonia/crescimento & desenvolvimento , Duddingtonia/fisiologia , Glucose/metabolismo , Animais , Inositol/farmacologia , Umidade , Temperatura , Agentes de Controle Biológico/farmacologia
17.
Pest Manag Sci ; 80(7): 3401-3411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38407453

RESUMO

BACKGROUND: Despite their known negative effects on ecosystems and human health, synthetic pesticides are still largely used to control crop insect pests. Currently, the biopesticide market for insect biocontrol mainly relies on the entomopathogenic bacterium Bacillus thuringiensis (Bt). New biocontrol tools for crop protection might derive from fungi, in particular from Trichoderma spp., which are known producers of chitinases and other bioactive compounds able to negatively affect insect survival. RESULTS: In this study, we first developed an environmentally sustainable production process for obtaining chitinases from Trichoderma asperellum ICC012. Then, we investigated the biological effects of this chitinase preparation - alone or in combination with a Bt-based product - when orally administered to two lepidopteran species. Our results demonstrate that T. asperellum efficiently produces a multi-enzymatic cocktail able to alter the chitin microfibril network of the insect peritrophic matrix, resulting in delayed development and larval death. The co-administration of T. asperellum chitinases and sublethal concentrations of Bt toxins increased larval mortality. This synergistic effect was likely due to the higher amount of Bt toxins that passed the damaged peritrophic matrix and reached the target receptors on the midgut cells of chitinase-treated insects. CONCLUSION: Our findings may contribute to the development of an integrated pest management technology based on fungal chitinases that increase the efficacy of Bt-based products, mitigating the risk of Bt-resistance development. © 2024 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Quitinases , Larva , Mariposas , Controle Biológico de Vetores , Quitinases/metabolismo , Animais , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Hypocreales/enzimologia , Proteínas Fúngicas/metabolismo , Agentes de Controle Biológico/farmacologia
18.
Pest Manag Sci ; 80(6): 3010-3021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38318950

RESUMO

BACKGROUND: Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS: Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION: Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.


Assuntos
Aspergillus niger , Doenças das Plantas , Pyrus , Compostos Orgânicos Voláteis , Pyrus/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Agentes de Controle Biológico/farmacologia
19.
World J Microbiol Biotechnol ; 40(4): 108, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403797

RESUMO

The incorporation of biological control agents (BCAs) such as Trichoderma spp. in agricultural systems favors the transition towards sustainable practices of plant nutrition and diseases control. Novel bioproducts for crop management are called to guarantee sustainable antagonism activity of BCAs and increase the acceptance of the farmers. The encapsulation in polymeric matrices play a prominent role for providing an effective carrier/protector and long-lasting bioproduct. This research aimed to study the influence of biopolymer in hydrogel capsules on survival and shelf-life of T. koningiopsis. Thus, two hydrogel capsules prototypes based on alginate (P1) and amidated pectin (P2), containing conidia of T. koningiopsis Th003 were formulated. Capsules were prepared by the ionic gelation method and calcium gluconate as crosslinker. Conidia releasing under different pH values of the medium, survival of conidia in drying capsules, storage stability, and biocontrol activity against rice sheath blight (Rhizoctonia solani) were studied. P2 prototype provided up to 98% survival to Th003 in fluid bed drying, faster conidia releasing at pH 5.8, storage stability greater than 6 months at 18 °C, and up to 67% of disease reduction. However, both biopolymers facilitate the antagonistic activity against R. solani, and therefore can be incorporated in novel hydrogel capsules-based biopreparations. This work incites to develop novel biopesticides-based formulations with potential to improve the delivery process in the target site and the protection of the active ingredient from the environmental factors.


Assuntos
Hypocreales , Oryza , Trichoderma , Hidrogéis , Doenças das Plantas/prevenção & controle , Rhizoctonia , Esporos Fúngicos , Agentes de Controle Biológico/farmacologia
20.
Toxicon ; 240: 107653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387755

RESUMO

Population growth leads to the need for more efficient techniques and compounds in agriculture, such as pesticides, to deal with the ever-growing demand. Pesticides may end up in the environment, often compromising the ecosystem affecting all organisms including humans. Therefore, the consequences of exposure to these compounds to biota and humans needs to be assessed. Bearing this in mind, the aim of this study was to examine the in vitro cytotoxicity and genotoxicity attributed to exposure to the biopesticide Turex® utilizing the liver cell line HepG2. Cells were incubated with biopesticide Turex® at 250, 500, 1000, 1500 or 2000 µg/L in both non-activated and activated forms for 24 and 48 h. Subsequent effects on cell viability were assessed using the MTT. The influence on cell cycle dynamics was determined by flow cytometry, while DNA damage was measured by the comet assay. Data demonstrated that activated Turex® induced cytotoxicity and DNA damage after 48 h in HepG2 cell line. The cell cycle progression was not markedly affected by Turex® at any concentration or duration of exposure. In conclusion, data demonstrated the potential adverse effects attributed to exposure to biopesticide Turex® in human cell line HepG2. Consequently, this type of biopesticide needs to be further investigated to determine the potential adverse in vivo effects on various non-target organisms.


Assuntos
Agentes de Controle Biológico , Praguicidas , Humanos , Células Hep G2 , Agentes de Controle Biológico/farmacologia , Ecossistema , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Praguicidas/toxicidade , Ciclo Celular , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...