Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.142
Filtrar
2.
Glob Chang Biol ; 30(10): e17552, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39450644

RESUMO

Understanding the fate of organic carbon in thawed permafrost is crucial for predicting climate feedback. While minerals and microbial necromass are known to play crucial roles in the long-term stability of organic carbon in subsoils, their exact influence on carbon persistence in Arctic permafrost remains uncertain. Our study, combining radiocarbon dating and biomarker analyses, showed that soil organic carbon in Alaskan permafrost had millennial-scale radiocarbon ages and contained only 10%-15% microbial necromass carbon, significantly lower than the global average of ~30%-60%. This ancient carbon exhibited a weak correlation with reactive minerals but a stronger correlation with mineral weathering (reactive iron to total iron ratio). Peroxidase activity displayed a high correlation coefficient (p < 10-6) with Δ14C and δ13C, indicating its strong predictive power for carbon persistence. Further, a positive correlation between peroxidase activity and polysaccharides indicates that increased peroxidase activity may promote the protection of plant residues, potentially by fostering the formation of mineral-organic associations. This protective role of mineral surfaces on biopolymers was further supported by examining 1451 synchrotron radiation infrared spectra from soil aggregates, which revealed a strong correlation between mineral OH groups and organic functional groups at the submicron scale. An incubation experiment revealed that increased moisture contents, particularly within the 0%-40% range, significantly elevated peroxidase activity, suggesting that ancient carbon in permafrost soils is vulnerable to moisture-induced destabilization. Collectively, this study offers mechanistic insights into the persistence of carbon in thawed permafrost soils, essential for refining permafrost carbon-climate feedbacks.


Assuntos
Carbono , Minerais , Pergelissolo , Solo , Solo/química , Alaska , Carbono/análise , Minerais/análise , Microbiologia do Solo , Regiões Árticas
3.
Nature ; 634(8033): 359-365, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39385050

RESUMO

The rate of river migration affects the stability of Arctic infrastructure and communities1,2 and regulates the fluxes of carbon3,4, nutrients5 and sediment6,7 to the oceans. However, predicting how the pace of river migration will change in a warming Arctic8 has so far been stymied by conflicting observations about whether permafrost9 primarily acts to slow10,11 or accelerate12,13 river migration. Here we develop new computational methods that enable the detection of riverbank erosion at length scales 5-10 times smaller than the pixel size in satellite imagery, an innovation that unlocks the ability to quantify erosion at the sub-monthly timescales when rivers undergo their largest variations in water temperature and flow. We use these high-frequency observations to constrain the extent to which erosion is limited by the thermal condition of melting the pore ice that cements bank sediment14, a requirement that will disappear when permafrost thaws, versus the mechanical condition of having sufficient flow to transport the sediment comprising the riverbanks, a condition experienced by all rivers15. Analysis of high-resolution data from the Koyukuk River, Alaska, shows that the presence of permafrost reduces erosion rates by 47%. Using our observations, we calibrate and validate a numerical model that can be applied to diverse Arctic rivers. The model predicts that full permafrost thaw may lead to a 30-100% increase in the migration rates of Arctic rivers.


Assuntos
Congelamento , Sedimentos Geológicos , Pergelissolo , Rios , Erosão do Solo , Alaska , Regiões Árticas , Calibragem , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Gelo/análise , Modelos Teóricos , Pergelissolo/química , Reprodutibilidade dos Testes , Rios/química , Imagens de Satélites/métodos , Imagens de Satélites/normas , Erosão do Solo/prevenção & controle , Erosão do Solo/estatística & dados numéricos , Temperatura , Movimentos da Água
4.
Biol Lett ; 20(10): 20240166, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39406337

RESUMO

Freshwater populations of typically marine species present unique opportunities to investigate biodiversity, evolutionary divergence, and the adaptive potential and niche width of species. A few pinniped species have populations that reside solely in freshwater. The harbour seals inhabiting Iliamna Lake, Alaska constitute one such population. Their remoteness, however, has long hindered scientific inquiry. We used DNA from seal scat and tissue samples provided by Indigenous hunters to screen for mitochondrial DNA and microsatellite variation within Iliamna Lake and eight regions across the Pacific Ocean. The Iliamna seals (i) were substantially and significantly discrete from all other populations ( [Formula: see text]F st-mtDNA = 0.544, [Formula: see text]Φ st - mtDNA = 0.541, [Formula: see text]F st-microsatellites = 0.308), (ii) formed a discrete genetic cluster separate from all marine populations (modal ∆k = 2, PC1 = 14.8%), had (iii) less genetic diversity (Hd, π, H exp), and (iv) higher inbreeding (F) than marine populations. These findings are both striking and unexpected revealing that Iliamna seals have likely been on a separate evolutionary trajectory for some time and may represent a unique evolutionary legacy for the species. Attention must now be given to the selective processes driving evolutionary divergence from harbour seals in marine habitats and to ensuring the future of the Iliamna seal.


Assuntos
DNA Mitocondrial , Variação Genética , Repetições de Microssatélites , Phoca , Animais , Phoca/genética , Alaska , DNA Mitocondrial/genética , Lagos , Evolução Biológica
5.
Proc Natl Acad Sci U S A ; 121(44): e2322269121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39432792

RESUMO

Climate warming enables easier access and operation in the Arctic, fostering industrial and urban development. However, there is no comprehensive pan-Arctic overview of industrial and urban development, which is crucial for the planning of sustainable development of the region. In this study, we utilize satellite-derived artificial light at night (ALAN) data to quantify the hotspots and the development of light-emitting human activity across the Arctic from 1992 to 2013. We find that out of 16.4 million km2 analyzed a total area of 839,710 km2 (5.14%) is lit by human activity with an annual increase of 4.8%. The European Arctic and the oil and gas extraction regions in Russia and Alaska are hotspots of ALAN with up to a third of the land area lit, while the Canadian Arctic remains dark to a large extent. On average, only 15% of lit area in the Arctic contains human settlement, indicating that artificial light is largely attributable to industrial human activity. With this study, we provide a standardized approach to spatially assess human industrial activity across the Arctic, independent from economic data. Our results provide a crucial baseline for sustainable development and conservation planning across the highly vulnerable Arctic region.


Assuntos
Desenvolvimento Industrial , Regiões Árticas , Humanos , Federação Russa , Luz , Alaska , Iluminação , Canadá , Mudança Climática , Atividades Humanas
6.
Sci Total Environ ; 953: 176103, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39245392

RESUMO

Exposure and resulting tissue concentrations of various elements from natural and anthropogenic sources are influenced by multiple factors, such as geographic location, age, diet, and metabolic rate, that can influence wildlife health. Essential and non-essential elements were assessed in lanugo and whole blood collected in 2019 from 102 Steller sea lion (Eumetopias jubatus) pups from two rookeries from the western and central Aleutian Islands: Agattu (WAI, n = 54) and Ulak Islands (CAI, n = 48). Rookery, sex, dorsal standard length, and trophic ecology (ẟ15N, ẟ13C values) effects on element concentration were evaluated. Significant differences in element concentrations of lanugo were exhibited across rookeries (p < 0.05), except for zinc (Zn). For example, higher mercury (Hg) and selenium (Se) concentrations were observed in WAI than CAI, while other elements were lower in WAI. Whole blood showed higher sulfur (S) and Se concentrations in CAI compared to WAI, while WAI had elevated strontium (Sr) and Hg concentrations relative to CAI. Trophic ecology significantly influenced most element concentrations, possibly due to regional variations in adult female feeding and food web dynamics. Interactions between elements were found in lanugo across both rookeries, with varying strengths. Whole blood displayed less pronounced yet consistent associations, with variable intensities. Essential elements sodium (Na), potassium (K), and calcium (Ca) formed a distinct group whose interaction is crucial for nervous system function and muscle contraction. Another group comprised zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), phosphorous (P), S, and Se, which are known for indirectly interacting with enzyme function and metabolic pathways. Hg and Se formed a distinct group probably due to their known chemical interactions and physiological protective interactions.


Assuntos
Leões-Marinhos , Animais , Leões-Marinhos/metabolismo , Alaska , Feminino , Monitoramento Ambiental , Poluentes Químicos da Água/metabolismo , Oligoelementos/metabolismo , Masculino , Cadeia Alimentar , Selênio/metabolismo , Selênio/sangue
7.
Emerg Microbes Infect ; 13(1): 2406291, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39287422

RESUMO

The ongoing panzootic of highly pathogenic H5 clade 2.3.4.4b avian influenza (HPAI) spread to North America in late 2021, with detections of HPAI viruses in Alaska beginning in April 2022. HPAI viruses have since spread across the state, affecting many species of wild birds as well as domestic poultry and wild mammals. To better understand the dissemination of HPAI viruses spatiotemporally and among hosts in Alaska and adjacent regions, we compared the genomes of 177 confirmed HPAI viruses detected in Alaska during April-December 2022. Results suggest multiple viral introductions into Alaska between November 2021 and August or September 2022, as well as dissemination to areas within and outside of the state. Viral genotypes differed in their spatiotemporal spread, likely influenced by timing of introductions relative to population immunity. We found evidence for dissemination of HPAI viruses between wild bird species, wild birds and domestic poultry, as well as wild birds and wild mammals. Continued monitoring for and genomic characterization of HPAI viruses in Alaska can improve our understanding of the evolution and dispersal of these economically costly and ecologically relevant pathogens.


Assuntos
Animais Selvagens , Aves , Genoma Viral , Genótipo , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Alaska/epidemiologia , Aves/virologia , Animais Selvagens/virologia , Aves Domésticas/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Genômica , Análise Espaço-Temporal , Mamíferos/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade
8.
Environ Sci Technol ; 58(40): 17695-17702, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39324860

RESUMO

Arctic soils are the largest pool of organic carbon compared with other soils globally and serve as a main source for greenhouse gases, especially in the course of the predicted future temperature increase. With increasing temperatures, substantial thawing of the permafrost layer of soils is expected, altering the availability of calcium in those soils, with an increase by ∼5 mg Ca g-1 DW predicted for Alaska. Here we show for two representative soils in Alaska (initially Ca-poor or Ca-rich) that this increase in Ca availability will lead to decreases in CO2 release by 50% and 57%. It is already well-known that the cation bridging of Ca ions to organic carbon renders this carbon unavailable for microbial respiration and that Ca is altering the transformation of Corg by microbes. Here we show that the decrease of the soil CO2 release may be also due to enhanced aragonite formation (by 300% for Ca-poor and 90-200% for Ca-rich soils), as revealed by synchrotron-based scanning transmission X-ray microscopy. We therefore call upon field experiments for validation of this process and inclusion of this process in global and local carbon budget models.


Assuntos
Cálcio , Dióxido de Carbono , Solo , Dióxido de Carbono/química , Regiões Árticas , Solo/química , Cálcio/metabolismo , Carbonato de Cálcio/química , Alaska
9.
Int J Circumpolar Health ; 83(1): 2404273, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39283062

RESUMO

Pandemics are regularly occurring events, and there are foundational principles of pandemic preparation upon which communities, regions, states, and nations may draw upon for elevated preparedness against an inevitable future infectious disease threat. Many disciplines within the social sciences can provide crucial insight and transdisciplinary thinking for the development of preparedness measures. In 2023, the National Science Foundation funded a conference of circumpolar researchers and Indigenous partners to reflect on COVID-19-related research. In this article, we synthesise our diverse social science perspectives to: (1) identify potential areas of future pandemic-related research in Alaska, and (2) pose new research questions that elevate the needs of Alaska and its people, pursuant of a specific body of pandemic knowledge that takes into account the ecological and sociocultural contexts of the region. In doing so, we highlight important domains of research in the social sciences from transdisciplinary perspectives, including the centering of Indigenous knowledges and needs, the contexts of risk perception and resilience, food and housing security, and more. We highlight the contributions of social sciences to pandemic knowledge and provide a foundation for future pandemic-related research in Alaska.


Assuntos
Preparação para Pandemia , Pandemias , Humanos , Alaska/epidemiologia , Regiões Árticas/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Comunicação Interdisciplinar , Ciências Sociais
10.
J Phycol ; 60(5): 1319-1331, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39287914

RESUMO

Climate change has profound effects on the distribution of kelp forests in the Arctic and sub-Arctic. However, studies on the responses of kelps to climate change, particularly along the sub-Arctic regions of the Alaska coast, are limited. Eualaria fistulosa is a foundational kelp species in the Aleutian Islands, with an east-west distribution that extends from Japan to southern southwest Alaska. In this study, we utilized a species distribution model (SDM) to explore changes in the future habitat suitability of E. fistulosa under contrasting Shared Socioeconomic Pathway (SSP) scenarios. Our model exhibited relatively high predictive performance, validating our SDM predictions. Notably, the SDM results indicate that minimum sea surface temperature, annual range in sea surface temperatures, and annual mean current velocities are the three most important predictor variables determining E. fistulosa's distribution. Furthermore, the projected geographic distribution of Eualaria is generally consistent with its observed occurrence records. However, under high emission scenarios (SSP5-8.5), E. fistulosa is predicted to contract its distribution range by 9.0% by 2100, with widespread disappearance along the southeast Alaskan coast and limited northward migration to Kamchatka Krai in Russia and Bristol Bay in Alaska. These findings contribute valuable insights for conservation strategies via addressing climate-induced alterations in sub-Arctic kelp distribution.


Assuntos
Mudança Climática , Ecossistema , Kelp , Kelp/fisiologia , Alaska , Modelos Biológicos , Regiões Árticas
11.
Science ; 385(6713): 1034-1035, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236192

RESUMO

Many researchers and tribes see the change as long overdue but say it means new burdens.


Assuntos
Mudança Climática , Povos Indígenas , Pesquisadores , Humanos , Fundações , Apoio à Pesquisa como Assunto , Alaska
12.
Proc Natl Acad Sci U S A ; 121(41): e2414052121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39348535

RESUMO

Cyclical population dynamics are a common phenomenon in populations worldwide, yet the spatial organization of these cycles remains poorly understood. In this study, we investigated the spatial form and timing of a population collapse from 2018 to 2022 in Canada lynx (Lynx canadensis) across the northwest boreal forest. We analyzed survival, reproduction, and dispersal data from 143 individual global positioning system (GPS) collared lynx from populations across five study sites spanning interior Alaska to determine whether lynx displayed characteristics of a population wave following a concurrent wave in snowshoe hare (Lepus americanus) abundance. Reproductive rates declined across the study sites; however, site-level reproduction declined first in our easternmost study sites, supporting the idea of a population wave. Despite a clear increase in percent of dispersing lynx, there was no evidence of directional bias in dispersal following a hare population wave. Analysis did show increasingly poor survival for lynx dispersing to the east compared to combined resident and westward dispersal. This pattern is consistent with a survival-mediated population wave in lynx as the driver of the theorized population wave. The combination of these factors supports the idea of a hierarchical response to snowshoe hare population declines with a drop in lynx reproduction followed by increased dispersal, and finally reduced survival. All of this evidence is consistent with the expected characteristics of a population undergoing a traveling wave and supports the hypothesis that lynx presence may facilitate and mirror the underlying wave patterns in snowshoe hare.


Assuntos
Lynx , Dinâmica Populacional , Reprodução , Animais , Lynx/fisiologia , Alaska , Reprodução/fisiologia , Lebres/fisiologia , Comportamento Predatório/fisiologia , Ecossistema
13.
Ecology ; 105(10): e4402, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39161201

RESUMO

The seasonal timing and magnitude of photosynthesis in evergreen needleleaf forests (ENFs) has major implications for the carbon cycle and is increasingly sensitive to changing climate. Earlier spring photosynthesis can increase carbon uptake over the growing season or cause early water reserve depletion that leads to premature cessation and increased carbon loss. Determining the start and the end of the growing season in ENFs is challenging due to a lack of field measurements and difficulty in interpreting satellite data, which are impacted by snow and cloud cover, and the pervasive "greenness" of these systems. We combine continuous needle-scale chlorophyll fluorescence measurements with tower-based remote sensing and gross primary productivity (GPP) estimates at three ENF sites across a latitudinal gradient (Colorado, Saskatchewan, Alaska) to link physiological changes with remote sensing signals during transition seasons. We derive a theoretical framework for observations of solar-induced chlorophyll fluorescence (SIF) and solar intensity-normalized SIF (SIFrelative) under snow-covered conditions, and show decreased sensitivity compared with reflectance data (~20% reduction in measured SIF vs. ~60% reduction in near-infrared vegetation index [NIRv] under 50% snow cover). Needle-scale fluorescence and photochemistry strongly correlated (r2 = 0.74 in Colorado, 0.70 in Alaska) and showed good agreement on the timing and magnitude of seasonal transitions. We demonstrate that this can be scaled to the site level with tower-based estimates of LUEP and SIFrelative which were well correlated across all sites (r2 = 0.70 in Colorado, 0.53 in Saskatchewan, 0.49 in Alaska). These independent, temporally continuous datasets confirm an increase in physiological activity prior to snowmelt across all three evergreen forests. This suggests that data-driven and process-based carbon cycle models which assume negligible physiological activity prior to snowmelt are inherently flawed, and underscores the utility of SIF data for tracking phenological events. Our research probes the spectral biology of evergreen forests and highlights spectral methods that can be applied in other ecosystems.


Assuntos
Florestas , Fotossíntese , Folhas de Planta , Estações do Ano , Fluorescência , Folhas de Planta/fisiologia , Fatores de Tempo , Árvores/fisiologia , Clorofila/metabolismo , Colorado , Alaska
14.
Mil Med ; 189(Suppl 3): 196-204, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160861

RESUMO

INTRODUCTION: Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. MATERIALS AND METHODS: Participants engaged in baseline laboratory metrics at their home station, Fort Carson, located in Colorado (CO) prior to WWT, for one week in Montana (MT) and one week in Alaska (AK). WWT periods were separated by approximately one month. Blood was collected upon wake at baseline (CO) and on the first and last day of WWT at each location (MT and AK). Plasma was analyzed for stress, metabolic, and growth-related hormones via enzyme-linked immunoassay (ELISA). Sleep quality was assessed via the Pittsburg Sleep Quality Index (PSQI) at baseline (CO) and on the first day of training in MT and AK. Cognitive function was evaluated using the Defense Automated Neurobehavioral Assessment (DANA) at baseline (CO) and on the first and last day of WWT in both MT and AK. RESULTS: Fourteen US Army operators in 10th Special Forces Group (SFG) Operational Detachment participated in winter warfare training (WWT; age: 31.5 years; 95%CI[28.1, 34.3]; height: 180.6 cm; 95%CI[177.3, 183.4]; weight: 87.4 kg.; 95%CI[80.6, 97.7]; body fat: 18.9%; 95%CI[13.7, 23.1]; male: n=13; female: n=1). Plasma adrenocorticotropic hormone (ACTH) levels increased from baseline (19.9 pg/mL; 95%CI[8.6, 24.2])  to pre-WWT (26.9 pg/mL; 95%CI [16.2, 37]; p=0.004), decreased from pre-  (26.9 pg/mL; 95%CI [16.2, 37]) to post-WWT in MT (22.3 pg/mL; 95% CI [8, 23.7]; p=0.004;), and increased from pre-  (25 pg/mL; 95%CI[ 28.4) to post-WWT (36.6 pg/mL; 95%CI [17.9, 48.9]) in AK (p=0.005). Plasma cortisol levels decreased from pre- (174 ng/mL; 95%CI[106.2, 233.6])  to post-WWT (94.5 ng/mL; 95%CI[54.8, 101.7]) in MT (p=0.001) and, conversely, increased from pre- (123.1 ng/mL; 95%CI[97.5, 143.9]) to post-WWT  (162.8 ng/mL; 95%CI[128, 216.7]) in AK (p<0.001). Alterations in growth-related hormones (insulin-like growth factor 1 [IGF-1], insulin-like growth factor binding protein 3 [IGFBP-3],  and sex hormone binding globulin [SHBG]) were observed throughout WWT (p<0.05). The Total Testosterone / Cortisol ratio (TT / CORT; molar ratio) was lower pre-WWT in MT (0.04; 95%CI[0.01,0.04) compared to baseline in CO (0.07; 95%CI[0.04, 0.07]; p=0.042). Triiodothyronine (T3) levels increased from pre-  (101.7 ng/dL; 95%CI[93.7, 110.4]) to post-WWT  (117.8 ng/dL; 95%CI[105.1, 129.4]) in MT (p=0.042). No differences in sleep quality were reported between locations (CO, MT, and AK). Alterations in cognitive function were exhibited between locations and during WWT in both MT and AK (p<0.05). CONCLUSIONS: Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.


Assuntos
Militares , Humanos , Masculino , Adulto , Feminino , Colorado , Militares/estatística & dados numéricos , Montana , Alaska , Hidrocortisona/sangue , Hidrocortisona/análise , Estresse Fisiológico/fisiologia , Estações do Ano , Hormônio Adrenocorticotrópico/sangue
15.
Environ Sci Technol ; 58(32): 14293-14305, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093591

RESUMO

Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Madeira , Madeira/química , Alaska , Radicais Livres , Material Particulado , Monitoramento Ambiental , Aerossóis , Hidrocarbonetos Policíclicos Aromáticos/análise
16.
Sci Rep ; 14(1): 19313, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164346

RESUMO

Marine heatwaves (MHWs) are often associated with physiological changes throughout biological communities but can also result in biomass declines that correspond with shifts in phenology. We examined the response of larval Pacific cod (Gadus macrocephalus) to MHWs in the Gulf of Alaska across seven years to evaluate the effects of MHWs on hatch phenology, size-at-age, and daily growth and identify potential regulatory mechanisms. Hatch dates were, on average, 19 days earlier since the onset of MHWs, shifting a mean of 15 days earlier per 1 â„ƒ increase. Size-at-capture was larger during & between MHWs but, contrary to expectations, larvae grew slower and were smaller in size-at-age. The larger size during & between MHWs can be entirely explained by older ages due to earlier hatching. Daily growth variation was well-explained by an interaction among age, temperature, and hatch date. Under cool conditions, early growth was fastest for the latest hatchers. However, this variation converged at warmer temperatures, due to faster growth of earlier hatchers. Stage-specific growth did not vary with temperature, remaining relatively similar from 4 to 8 â„ƒ. Temperature-related demographic changes were more predictable based on phenological shifts rather than changes in growth, which could affect population productivity after MHWs.


Assuntos
Tamanho Corporal , Larva , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Gadiformes/crescimento & desenvolvimento , Gadiformes/fisiologia , Alaska , Temperatura Alta
17.
PLoS One ; 19(7): e0301723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985729

RESUMO

The effects of timber harvest practices and climate change have altered forest ecosystems in southeast Alaska. However, quantification of patterns and trends in stream habitats associated with these forests is limited owing to a paucity of data available in remote watersheds. Here, we analyzed a 30-year dataset from southeast Alaska's Tongass National Forest to understand how these factors shape stream habitats. First, we examined differences between broad management classes (i.e., harvested and non-harvested) that have been used to guide stream channel restoration goals. Second, we assessed associations between intrinsic landscape characteristics, watershed management, and timber harvest legacies on aquatic habitat metrics. And third, we examined trends in stream habitat metrics over the duration of the dataset to anticipate future management challenges for these systems. Small effect sizes for some harvest-related predictors suggest that some stream habitat metrics, such as pool densities, are less responsive than others, and management practices such as protecting riparian buffers as well as post-harvest restoration may help conserve fish habitats. Large wood densities increased with time since harvest at sites harvested >50 years ago, indicating that multiple decades of post-harvest forest regrowth may contribute large wood to streams (possibly alder), but that it is not enough time for old-growth trees (e.g., spruce, Picea, or hemlock, Tsuga,), classified as key wood, to develop and be delivered to streams. The declining trend in key wood (i.e., the largest size class of wood) regardless of management history may reflect that pre-harvest legacy old-growth trees are declining along streams, with low replacement. The introduction of wood to maintain complex stream habitats may fill this gap until riparian stands again contribute structural key wood to streams. Trend analyses indicate an increasing spatial extent of undercut banks that may also be influenced by shifting hydrologic regimes under climate change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Rios , Alaska , Mudança Climática , Agricultura Florestal , Monitoramento Ambiental/métodos
18.
PLoS One ; 19(7): e0307135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052607

RESUMO

We estimated the annual harvest of waterfowl and Sandhill Crane Grus canadensis and their eggs by Alaska's rural residents and described seasonal and geographic patterns. Subsistence in Alaska refers to patterns of resource use typical of rural, remote regions where Indigenous people are a high proportion of the population. Rural communities in Alaska rely on the legally-allowed spring-summer harvest of migratory birds for food and socio-cultural wellbeing, in addition to harvests in the fall-winter general hunting season. We based harvest estimates on a large dataset (637 community-years) composed from multiple sources. The estimated annual average harvest of waterfowl and Sandhill Crane by rural residents was 270,641 birds/year (68% in spring-summer, 32% in fall-winter) and 36,692 eggs/year in the 2004-2015 reference period. Harvest estimates for ducks, swans, and Sandhill Crane were lower than in the 1980s-1990s. Harvest amounts, seasonality, and species composition distinguished regional patterns for the Pacific-Aleutian mainland and islands, Bering Sea mainland, St. Lawrence-Diomede islands, North Slope, and Interior Alaska-Upper Copper River. Rural residents accounted for 79% of the total waterfowl harvest in Alaska and high proportions of the total Pacific Flyway harvest for several species of sea ducks, geese, swans, and Sandhill Crane. Alaska's Indigenous people are important partners in harvest management and conservation of migratory birds. Harvest data are needed to inform efficient and appropriate decisions to achieve management goals. This study can facilitate collaboration for harvest management and conservation across Alaska and the flyways by helping diverse users to understand their contributions to the total harvest.


Assuntos
Aves , Estações do Ano , Animais , Alaska , População Rural , Migração Animal , Humanos , Conservação dos Recursos Naturais , Patos
19.
PLoS One ; 19(7): e0285068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959265

RESUMO

Sperm whales exhibit sexual dimorphism and sex-specific latitudinal segregation. Females and their young form social groups and are usually found in temperate and tropical latitudes, while males forage at higher latitudes. Historical whaling data and rare sightings of social groups in high latitude regions of the North Pacific, such as the Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI), suggest a more complex distribution than previously understood. Sperm whales are the most sighted and recorded cetacean in marine mammal surveys in these regions but capturing their demographic composition and habitat use has proven challenging. This study detects sperm whale presence using passive acoustic data from seven sites in the GOA and BSAI from 2010 to 2019. Differences in click characteristics between males and females (i.e., inter-click and inter-pulse interval) was used as a proxy for animal size/sex to derive time series of animal detections. Generalized additive models with generalized estimation equations demonstrate how spatiotemporal patterns differ between the sexes. Social groups were present at all recording sites with the largest relative proportion at two seamount sites in the GOA and an island site in the BSAI. We found that the seasonal patterns of presence varied for the sexes and between the sites. Male presence was highest in the summer and lowest in the winter, conversely, social group peak presence was in the winter for the BSAI and in the spring for the GOA region, with the lowest presence in the summer months. This study demonstrates that social groups are not restricted to lower latitudes and capture their present-day habitat use in the North Pacific. It highlights that sperm whale distribution is more complex than accounted for in management protocol and underscores the need for improved understanding of sperm whale demographic composition to better understand the impacts of increasing anthropogenic threats, particularly climate change.


Assuntos
Ecossistema , Cachalote , Animais , Cachalote/fisiologia , Feminino , Masculino , Alaska , Vocalização Animal/fisiologia , Estações do Ano , Caracteres Sexuais
20.
Trials ; 25(1): 494, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033266

RESUMO

BACKGROUND: Adverse reactions to foodstuffs (ARFS), specifically food allergy (FA) and food intolerance (FI), are increasing worldwide and represent a major public health concern. Thus, ARFS management, its identification, evaluation, and intervention, must provide a comprehensive solution. OBJECTIVES: (a) To develop a multifactorial strategy for ARFS management in adults with FA and/or FI; (b) to describe the multiple influential variables in ARFS within the realm of ARFS management; and (c) to design a personalized food allergen-specific substitutive diet (FASSD), as a 6-month dietary treatment option for adults with ARFS and as a component of ARFS management. METHODS: The ALASKA study will consider the following main variables as part of the ARFS management: (1) demographics and clinical information; (2) symptomatology, food and beverages intake and physical activity; (3) hematobiochemical study; (4) immunology; (5) enzymatic activity; (6) anthropometry, body composition, and physical fitness; (7) QoL; (8) 6-month intervention; (9) end of the study; and (10) other assessments. The FASSD will be designed with special emphasis on the commonly lacking micronutrients in the ARFS population: niacin, Mg, K, P, Ca, Zn, B12, folate, Fe, and fiber. DISCUSSION: The ALASKA study protocol has been developed as a global strategy to manage and evaluate ARFS in Spanish adults older than 18 years of age. Approaching ARFS with multiple assessments, as influencing factors, will lead to a novel strategy for ARFS management. The FASSD has been designed as a personalized tool to avoid crucial micronutrient deficiencies that a current strict food allergen avoidance or elimination diet may provoke. TRIAL REGISTRATION: The protocol has been approved by the Ethics Committee of the UPM (REF.20200602) and registered on ClinicalTrials.gov (NCT05802017).


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Adulto , Alaska , Resultado do Tratamento , Fatores de Tempo , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...