Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.662
Filtrar
1.
Biomaterials ; 313: 122792, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226652

RESUMO

The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Animais , Compostos de Boro/química , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Albuminas/química , Albuminas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
2.
Int J Pharm ; 662: 124491, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032872

RESUMO

The nanoparticle albumin bound™ (nab™) technology generally offers great potential for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions for intravenous use while avoiding solubilizers and cross-linking agents. The nab™ technology is a three-step process consisting of emulsification, high-pressure homogenization and solvent evaporation. Within this work, a screening approach was developed to predict whether active pharmaceutical ingredients are suitable for nab™ formulations. A design of experiments approach was used to investigate the effects of ultrasonic homogenization on an albumin-stabilized itraconazole nanosuspension. Based on this, a screening platform was developed, and subsequently evaluated and applied to a selection of poorly water-soluble drugs. The screening process to produce albumin-stabilized nanosuspensions consists of two process steps: Ultrasonic treatment, which combined emulsification and homogenization, followed by solvent evaporation. The results of the screening process were fully transferable to the standard three-step process of nab™ technology. In addition, based on drug screening, drug properties were highlighted that are important for the development of nab™ formulations. All in all, the nab™ technology is a promising but not universal formulation platform for poorly water-soluble drugs. Nevertheless, for some poorly soluble drugs it offers a valuable approach for the formulation of nanosuspensions for intravenous use.


Assuntos
Itraconazol , Nanopartículas , Solubilidade , Suspensões , Água , Nanopartículas/química , Itraconazol/química , Itraconazol/administração & dosagem , Água/química , Composição de Medicamentos/métodos , Albuminas/química , Estabilidade de Medicamentos , Tecnologia Farmacêutica/métodos , Tamanho da Partícula , Química Farmacêutica/métodos
3.
ACS Appl Mater Interfaces ; 16(30): 38968-38978, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024013

RESUMO

Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.


Assuntos
Autofagia , Neoplasias Hepáticas , Sistema de Sinalização das MAP Quinases , Nanomedicina , Células-Tronco Neoplásicas , Peptídeos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Autofagia/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Albuminas/química , Albuminas/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
4.
Mol Pharm ; 21(8): 4004-4011, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38973113

RESUMO

The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.


Assuntos
Ibuprofeno , Lutécio , alfa-MSH , Animais , Camundongos , alfa-MSH/química , alfa-MSH/farmacocinética , Lutécio/química , Distribuição Tecidual , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/farmacologia , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Radioisótopos/química , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Albuminas/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Feminino
5.
Eur J Pharm Biopharm ; 203: 114397, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972466

RESUMO

Monoacylglycerol lipase (MAGL) is a promising target for cancer therapy due to its involvement in lipid metabolism and its impact on cancer hallmarks like cell proliferation, migration, and tumor progression. A potent reversible MAGL inhibitor, MAGL23, has been recently developed by our group, demonstrating promising anticancer activities. To enhance its pharmacological properties, a nanoformulation using nanocrystals coated with albumin was prepared (MAGL23AF). In a previous work, the formulated inhibitor showed potency in ovarian and colon cancer cell lines in terms of IC50, and was tested on mice in order to assess its biocompatibility, organs biodistribution and toxicity. In the present work, we expanded the investigation to assess the potential in vivo application of MAGL23AF. Stability assays in serum and in human derived microsomes showed a good structural stability in physiological conditions of MAGL23AF. The antitumor efficacy tested on mice bearing ovarian cancer tumor xenografts demonstrated that MAGL23AF is more potent than the non-formulated drug, leading to necrosis-driven cancer cell death. In vivo studies revealed that albumin-complexed nanocrystals improved the therapeutic window of MAGL23, exhibiting a favorable biodistribution with slightly increased accumulation in the tumor. In conclusion, the MAGL23AF showed increased in vitro stability in conditions mirroring the bloodstream environment and hepatic metabolism coupled with an optimal antitumor efficacy in vivo. These results not only validates the efficacy of our formulation but also positions it as a promising strategy for addressing challenges related to the solubility of drugs in body fluids.


Assuntos
Antineoplásicos , Monoacilglicerol Lipases , Nanopartículas , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Animais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Monoacilglicerol Lipases/antagonistas & inibidores , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Albuminas/química , Portadores de Fármacos/química
6.
Int J Nanomedicine ; 19: 6945-6980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005962

RESUMO

Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.


Albumin appears to be a promising carrier for drug delivery with superior biocompatibility and enhanced targeting capacity. This review focuses on the importance of albumin nanoparticles in drug delivery and concludes the recent fabrication techniques to prepare albumin nanoparticles, the modification strategies to require functional albumin nanoparticles, and critical applications of albumin nanoparticles in various diseases. The aim of this review is to help readers understand the significant potential of albumin nanoparticles in drug delivery.


Assuntos
Albuminas , Nanopartículas , Humanos , Albuminas/química , Albuminas/administração & dosagem , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Fármacos por Nanopartículas/química
7.
J Control Release ; 372: 829-845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964471

RESUMO

Cancer metastasis and recurrence are obstacles to successful treatment of aggressive cancer. To address this challenge, chemotherapy is indispensable as an essential part of comprehensive cancer treatment, particularly for subsequent therapy after surgical resection. However, small-molecule drugs for chemotherapy always cause inadequate efficacy and severe side effects against cancer metastasis and recurrence caused by lymph node metastases. Here, we developed doxorubicin-carried albumin nanocages (Dox-AlbCages) with appropriate particle sizes and pH/enzyme-responsive drug release for tumor and lymph node dual-targeted therapy by exploiting the inborn transport properties of serum albumin. Inspired by the protein-templated biomineralization and remote loading of doxorubicin into liposomes, we demonstrated the controlled synthesis of Dox-AlbCages via the aggregation or crystallization of doxorubicin and ammonium sulfate within albumin nanocages using a biomineralization strategy. Dox-AlbCages allowed efficient encapsulation of Dox in the core protected by the albumin corona shell, exhibiting favorable properties for enhanced tumor and lymph node accumulation and preferable cellular uptake for tumor-specific chemotherapy. Intriguingly, Dox-AlbCages effectively inhibited tumor growth and metastasis in orthotopic 4T1 breast tumors and prevented postsurgical tumor recurrence and lung metastasis. At the same time, Dox-AlbCages had fewer side effects than free Dox. This nanoplatform provides a facile strategy for designing tumor- and lymph node-targeted nanomedicines for suppressing cancer metastasis and recurrence.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Metástase Linfática , Camundongos Endogâmicos BALB C , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Feminino , Linhagem Celular Tumoral , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Liberação Controlada de Fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Humanos , Camundongos , Linfonodos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Sistemas de Liberação de Medicamentos , Albuminas/administração & dosagem , Albuminas/química , Portadores de Fármacos/química
8.
J Biomater Sci Polym Ed ; 35(13): 2068-2089, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888441

RESUMO

Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.


Assuntos
Sobrevivência Celular , Portadores de Fármacos , Liberação Controlada de Fármacos , Metotrexato , Nanopartículas , Tamanho da Partícula , Metotrexato/química , Metotrexato/farmacologia , Metotrexato/administração & dosagem , Metotrexato/farmacocinética , Nanopartículas/química , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Humanos , Albuminas/química , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/administração & dosagem , Polímeros/química , Animais , Desenho de Fármacos
9.
Biomaterials ; 311: 122664, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38889597

RESUMO

In order to guide the formulation of post-stroke treatment strategy in time, it is necessary to have real-time feedback on collateral circulation and revascularization. Currently used near-infrared II (NIR-II) probes have inherent binding with endogenous albumin, resulting in significant background signals and uncontrollable pharmacokinetics. Therefore, the albumin-escaping properties of the new probe, IR-808AC, was designed, which achieved timely excretion and low background signal, enabling the short-term repeatable injection for visualization of cerebral vessels and perfusion. We further achieved continuous observation of changes in collateral vessels and perfusion during the 7-d period in middle cerebral artery occlusion mice using IR-808AC in vivo. Furthermore, using IR-808AC, we confirmed that remote ischemic conditioning could promote collateral vessels and perfusion. Finally, we evaluated the revascularization after thrombolysis on time in embolic stroke mice using IR-808AC. Overall, our study introduces a novel methodology for safe, non-invasive, and repeatable assessment of collateral circulation and revascularization in real-time that is crucial for the optimization of treatment strategies.


Assuntos
Modelos Animais de Doenças , Acidente Vascular Cerebral , Animais , Acidente Vascular Cerebral/diagnóstico por imagem , Camundongos , Masculino , Imagem de Perfusão/métodos , Artérias Cerebrais/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Albuminas/química , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Circulação Colateral
10.
Food Chem ; 457: 140129, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908242

RESUMO

In this study, chlorogenic acid (CA), piceatannol (PIC), epigallocatechin-3-gallate (EGCG) and ferulic acid (FA) was selected to explore the influence of polyphenol on the structural properties of wheat germ albumin (WGA) and wheat germ globulin (WGG). The emulsifying properties of the emulsions prepared by WGA-EGCG complex were also evaluated. The results indicated that all polyphenols could significantly enhance the antioxidant capacity of WGA and WGG. In particular, EGCG increased the ratio of random coil in WGA and WGG, resulting in protein unfolding and shifting from an order to disorder structure. In addition, lipid oxidation and protein oxidation of the soybean oil emulsion was significantly slowed down by WGA-EGCG. The stability of the emulsions under various environmental stress and the storage time was significantly improved by WGA-EGCG. These findings can provide a reference for expanding the application of wheat germ protein in food industry.


Assuntos
Emulsões , Globulinas , Polifenóis , Triticum , Triticum/química , Polifenóis/química , Polifenóis/farmacologia , Globulinas/química , Emulsões/química , Albuminas/química , Conformação Proteica , Proteínas de Plantas/química , Antioxidantes/química , Antioxidantes/farmacologia
11.
Int J Biol Macromol ; 272(Pt 1): 132801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825263

RESUMO

The changes of physicochemical, structural and functional properties and the lysinoalanine (LAL) formation during the unfolding and refolding of black soldier fly larvae albumin (BSFLA) induced by acid/alkaline pH shift were explored. The results showed that acid/alkaline conditions induced unfolding of BSFLA structure, but also accompanied by the formation of some large aggregates due to the hydrophobic interactions, hydrogen bonds, and disulfide bonds. Compared with control or pH1.5 shift, pH12 shift treatment significantly increased the electrostatic repulsion, surface hydrophobicity, free sulfhydryl group, and deamidation reactions, but reduced the fluorescence intensity of BSFLA, and these change in protein conformation contributed to increase in solubility, emulsion activity, and emulsion stability. But the content of LAL in BSFLA was increased by 93.39 % by pH 12 shift treatment. In addition, pH1.5 shift modified BSFLA tended to form ß-sheet structure through unfolding and refolding, resulting in the formation of aggregates with larger particle sizes, and reducing the solubility and the LAL content by 7.93 % and 65.53 %, respectively. SDS-PAGE profile showed that pH12/1.5 shifting did not cause irreversible denaturation of protein molecules. Therefore, pH12-shift is good way to improve the functional properties of BSFLA, but the content of LAL should be reduced to make it better used in food.


Assuntos
Albuminas , Dípteros , Lisinoalanina , Animais , Albuminas/química , Fenômenos Químicos , Dípteros/química , Dípteros/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Larva , Lisinoalanina/química , Redobramento de Proteína/efeitos dos fármacos , Desdobramento de Proteína , Solubilidade
12.
J Mater Chem B ; 12(27): 6563-6569, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38899918

RESUMO

This paper outlines a novel drug delivery system for highly cytotoxic mertansine (DM1) by conjugating to an albumin-binding Evans blue (EB) moiety through a tuneable responsive disulfide linker, providing valuable insights for the development of effective drug delivery systems toward cancer therapy.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Oxirredução , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais , Albuminas/química , Maitansina/química , Maitansina/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
13.
Eur J Nucl Med Mol Imaging ; 51(11): 3334-3345, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38787395

RESUMO

PURPOSE: The advancement of heterodimeric tracers, renowned for their high sensitivity, marks a significant trend in the development of radiotracers for cancer diagnosis. Our prior work on [68Ga]Ga-HX01, a heterodimeric tracer targeting CD13 and integrin αvß3, led to its approval for phase I clinical trials by the China National Medical Production Administration (NMPA). However, its fast clearance and limited tumor retention pose challenges for broader clinical application in cancer treatment. This study aims to develop a new radiopharmaceutical with increased tumor uptake and prolonged retention, rendering it a potential therapeutic candidate. METHODS: New albumin binder-conjugated compounds were synthesized based on the structure of HX01. In vitro and in vivo evaluation of these new compounds were performed after labelling with 68Ga. Small-animal PET/CT imaging were conducted at different time points at 0.5-6 h post injection (p.i.) using BxPC-3 xenograft mice models. The one with the best imaging performance was further radiolabeled with 177Lu for small-animal SPECT/CT and ex vivo biodistribution investigation. RESULTS: We have synthesized novel albumin binder-conjugated compounds, building upon the structure of HX01. When radiolabeled with 68Ga, all compounds demonstrated improved pharmacokinetics (PK). Small-animal PET/CT studies revealed that these new albumin binder-conjugated compounds, particularly [68Ga]Ga-L6, exhibited significantly enhanced tumor accumulation and retention compared with [68Ga]Ga-L0 without an albumin binder. [68Ga]Ga-L6 outperformed [68Ga]Ga-L7, a compound developed using a previously reported albumin binder. Furthermore, [177Lu]Lu-L6 demonstrated rapid clearance from normal tissues, high tumor uptake, and prolonged retention in small-animal SPECT/CT and biodistribution studies, positioning it as an ideal candidate for radiotherapeutic applications. CONCLUSION: A new integrin αvß3 and CD13 targeting compound was screened out. This compound bears a novel albumin binder and exhibits increased tumor uptake and prolonged tumor retention in BxPC-3 tumors and low background in normal organs, making it a perfect candidate for radiotherapy when radiolabeled with 177Lu.


Assuntos
Integrina alfaVbeta3 , Compostos Radiofarmacêuticos , Animais , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Integrina alfaVbeta3/metabolismo , Camundongos , Humanos , Distribuição Tecidual , Linhagem Celular Tumoral , Albuminas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
14.
Food Res Int ; 186: 114380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729734

RESUMO

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Assuntos
Temperatura Alta , Proteínas de Ervilha , Pisum sativum , Espalhamento a Baixo Ângulo , Difração de Raios X , Concentração de Íons de Hidrogênio , Pisum sativum/química , Proteínas de Ervilha/química , Albuminas/química , Cromatografia em Gel
15.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728869

RESUMO

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Assuntos
Irinotecano , Pró-Fármacos , Irinotecano/química , Irinotecano/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Animais , Humanos , Camundongos , Distribuição Tecidual , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Albuminas/química , Masculino , Relação Estrutura-Atividade , Albumina Sérica Humana/química , Peptídeos Semelhantes ao Glucagon
16.
Artigo em Inglês | MEDLINE | ID: mdl-38735125

RESUMO

Protein adducts are vital targets for exploring organophosphorus nerve agents (OPNAs) exposure and identification, that can be used to characterize the chemical burden and initiate chemical safety measures. However, the use of protein adducts as biomarkers of OPNA exposure has developed slowly. To further promote the development of biomarkers in chemical forensics, it is crucial to expand the range of modified peptides and active sites, and describe the characteristics of OPNA adducts at specific reaction sites. This study utilized multi-species and multi-source albumins as the protein targets. We identified 56 peptides in albumins from various species (including human, horse, rat and pig), that were modified by at least two OPNAs. Diverse modification characteristics were observed in response to certain agents: including (1) multiple sites on the same peptide modified by one or more agents, (2) different reactivities at the same site in homologous albumins, and (3) different preferences at the same active sites associated with differences in the biological matrix during exposure. Our studies provided an empirical reference with rationalized underpinnings supported by estimated conformation energetics through molecular modeling. We employed different peptide markers for detection of protein adducts, as (one would do) in forensic screening for identification and quantification of chemical damage. Three characteristic peptides were screened and analyzed in human albumin, including Y287ICENQDSISSK, K438VPQVS443TPTLVEVSR, and Y162LY164EIAR. Stable fragment ions with neutral loss were found from their tandem MS/MS spectra, which were used as characteristic ions for identification and extraction of modified peptides in enzymatic digestion mixtures. Coupling these observations with computer simulations, we found that the structural stability of albumin and albumin-adduct complexes (as well as the effective force that promotes stability of different adducts) changes in the interval before and after adduct formation. In pig albumin, five active peptides existed stably in vivo and in vitro. Most of them can be detected within 30 min after OPNA exposure, and the detection window can persist about half a month. These early findings provided the foundation and rationale for utilizing pig albumin as a sampling target for rapid analysis in future forensic work.


Assuntos
Agentes Neurotóxicos , Compostos Organofosforados , Animais , Humanos , Ratos , Compostos Organofosforados/química , Suínos , Agentes Neurotóxicos/química , Agentes Neurotóxicos/análise , Cavalos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Peptídeos/análise , Albuminas/química , Albuminas/metabolismo , Biomarcadores/análise , Biomarcadores/química
17.
J Control Release ; 370: 468-478, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697314

RESUMO

A critical parameter during the development of protein therapeutics is to endow them with suitable pharmacokinetic and pharmacodynamic properties. Small protein drugs are quickly eliminated by kidney filtration, and in vivo half-life extension is therefore often desired. Here, different half-life extension technologies were studied where PAS polypeptides (PAS300, PAS600), XTEN polypeptides (XTEN288, XTEN576), and an albumin binding domain (ABD) were compared for half-life extension of an anti-human epidermal growth factor receptor 2 (HER2) affibody-drug conjugate. The results showed that extension with the PAS or XTEN polypeptides or the addition of the ABD lowered the affinity for HER2 to some extent but did not negatively affect the cytotoxic potential. The half-lives in mice ranged from 7.3 h for the construct including PAS300 to 11.6 h for the construct including PAS600. The highest absolute tumor uptake was found for the construct including the ABD, which was 60 to 160% higher than the PASylated or XTENylated constructs, even though it did not have the longest half-life (9.0 h). A comparison of the tumor-to-normal-organ ratios showed the best overall performance of the ABD-fused construct. In conclusion, PASylation, XTENylation, and the addition of an ABD are viable strategies for half-life extension of affibody-drug conjugates, with the best performance observed for the construct including the ABD.


Assuntos
Peptídeos , Receptor ErbB-2 , Animais , Meia-Vida , Receptor ErbB-2/metabolismo , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/administração & dosagem , Feminino , Camundongos Nus , Albuminas/química , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunoconjugados/farmacocinética , Imunoconjugados/química , Imunoconjugados/administração & dosagem , Camundongos Endogâmicos BALB C , Distribuição Tecidual
18.
Theranostics ; 14(7): 2675-2686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773981

RESUMO

Cyanine dyes are widely used organic probes for in vivo imaging due to their tunable fluorescence. They can form complexes with endogenous albumin, resulting in enhanced brightness and photostability. However, this binding is uncontrollable and irreversible, leading to considerable nonspecific background signals and unregulated circulation time. Methods: Here, we connect varying numbers of 4-(4-iodophenyl) butanoic acid (IP) as albumin-binding moieties (ABM) to the cyanine dye, enabling dynamic and controllable binding with albumin. Meanwhile, we provide a blocking method to completely release the dye from covalent capture with albumin, resulting in specific targeting fluorescence. Furthermore, we evaluate the pharmacokinetics and tumor targeting of the developed dyes. Results: The engineered dyes can dynamically and selectively bind with multiple albumins to change the in situ size of assemblies and circulation time, providing programmable regulation over the imaging time window. The nucleophilic substitution of meso-Cl with water-soluble amino acids or targeting peptides for IP-engineered dye further addresses the nonspecific signals caused by albumin, allowing for adjustable angiography time and efficient tumor targeting. Conclusion: This study rationalizes the binding modes of dyes and proteins, applicable to a wide range of near-infrared (NIR) dyes for improving their in vivo molecular imaging.


Assuntos
Albuminas , Corantes Fluorescentes , Imagem Óptica , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Albuminas/química , Albuminas/metabolismo , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem , Camundongos , Humanos , Carbocianinas/química , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
19.
Nucl Med Biol ; 132-133: 108911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614036

RESUMO

INTRODUCTION: The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS: We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS: In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION: These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.


Assuntos
Quelantes , Animais , Camundongos , Quelantes/química , Quelantes/síntese química , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Técnicas de Química Sintética , Feminino , Albuminas/química , Receptor ErbB-2/metabolismo , Trastuzumab/química , Trastuzumab/farmacocinética
20.
Eur J Nucl Med Mol Imaging ; 51(9): 2663-2671, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570359

RESUMO

PURPOSE: A probe for targeted alpha therapy (TAT) using the RGD peptide (Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]1)) with albumin-binding moiety (ABM) was recently developed. [211At]1 highly accumulated in tumors and significantly inhibited tumor growth in U-87 MG tumor-bearing mice. However, high [211At]1 retention in blood may cause critical adverse events, such as hematotoxicity. Therefore, we attempted to accelerate the blood clearance of [211At]1 by competitively inhibiting the binding of [211At]1 to albumin to modulate the pharmacokinetics of the former. METHODS: To evaluate the effects of albumin-binding inhibitors in normal mice, sodium 4-(4-iodophenyl)butanoate at 2, 5, or 10 molar equivalents of blood albumin was administered at 1-h postinjection of [211At]1. The biodistribution of [211At]1, SPECT/CT imaging of [67Ga]Ga-DOTA-K(IPBA)-c(RGDfK) ([67Ga]2), and the therapeutic effects of [211At]1 were compared with or without IPBA administration in U-87 MG tumor-bearing mice. RESULTS: Blood radioactivity of [211At]1 was decreased in a dose-dependent manner with IPBA in normal mice. In U-87 MG tumor-bearing mice, the blood radioactivity and accumulation in nontarget tissues of [211At]1 were decreased by IPBA. Meanwhile, tumor [211At]1 accumulation was not changed at 3-h postinjection of IPBA. In SPECT/CT imaging of [67Ga]2, IPBA administration dramatically decreased radioactivity in nontarget tissues, and only tumor tissue was visualized. In therapeutic experiments, [211At]1 with IPBA injected-group significantly inhibited tumor growth compared to the control group. CONCLUSION: IPBA administration (as an albumin-binding inhibitor) could modulate the pharmacokinetics and enhance the therapeutic effects of [211At]1.


Assuntos
Oligopeptídeos , Animais , Camundongos , Oligopeptídeos/farmacocinética , Oligopeptídeos/química , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Albuminas/química , Albuminas/farmacocinética , Ligação Proteica , Masculino , Marcação por Isótopo , Albumina Sérica/química , Feminino , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...