Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
1.
Environ Geochem Health ; 46(8): 300, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990399

RESUMO

This study investigated microplastic (MP) contamination in conventional sea salt farming systems. Various crude sea salt samples (n = 22) that were traditionally produced were collected from salt farms and local vendors. Salt water (n = 15), macroalgae (n = 6), and clay of pond floors (n = 6) were collected from ponds subjected to different production (stabilization, evaporation, and concentration and crystallization concentration) processes. All samples were analyzed for MP abundance and characteristics. The potential sources of MP contamination in the salt were also investigated. The mean abundance of MPs in the salt water and clay of pond floor increased progressively throughout the production process and reached its highest level in the concentration and crystallization ponds (7400 MP particles/m3 in salt water and 19,336 MP particles/m2 in the clay of the pond floor). A maximum of 26,500 MP particles/kg of macroalgal material indicated the potential sink of MPs on the surface of the algae. Approximately 34-2377 MP particles/kg salt were found in the crude sea salt samples. However, the mean abundance (378 MP particles/kg of salt) indicated nonsignificant impacts of different harvesting processes on MP contamination. Most MP size distributions, shapes and polymer types in the salts were similar to those found in the salt water, macroalgae and clay of the pond floor. Approximately 99% of the MPs were fragments that were suspected to be decomposed from larger plastic debris and plastic machinery and tools used at the salt farm. Similar patterns of polymer distribution, in which PP > PE > PET > PS, were found for all samples studied.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Água do Mar/química , Monitoramento Ambiental/métodos , Aquicultura , Alga Marinha/química , Cloreto de Sódio/química , Cloreto de Sódio/análise , Tamanho da Partícula
2.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947104

RESUMO

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Assuntos
Doença de Alzheimer , Microalgas , Alga Marinha , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Microalgas/química , Microalgas/metabolismo , Alga Marinha/química , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/isolamento & purificação , Antioxidantes/farmacologia
3.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921555

RESUMO

Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme's proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease's active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Fucus , Inibidores de Proteases , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Ligantes , Fucus/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Peptídeos/farmacologia , Peptídeos/química , Simulação de Acoplamento Molecular , Humanos , Alga Marinha/química
4.
Mar Drugs ; 22(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921574

RESUMO

The addition of marine macroalgae to animal feed has garnered interest due to the demonstrated benefits of gut health in many livestock species. Most macroalgae have a higher mineral content than terrestrial vegetables, making them an attractive, sustainable source of minerals. However, some macroalgae contain elevated concentrations of iodine and arsenic, which may be transferred to the meat of livestock fed with macroalgae. This study evaluated the mineral profile of rabbit serum, muscle, liver, and kidney of rabbits fed diets supplemented with different marine macroalgae, with the goal of improving post-weaning gut health and reducing reliance on antibiotics. We found increased deposition of iodine in muscle, liver, and kidney due to macroalgae supplementation, which is particularly promising for regions with low iodine endemicity. Higher, though relatively low arsenic concentrations, compared to those in other animal meats and food sources, were also detected in the muscle, liver, and kidney of macroalgae-fed rabbits. The absence of apparent interactions with other micronutrients, particularly selenium, suggests that the inclusion of macroalgae in rabbit diets will not affect the overall mineral content. Enhanced bioavailability of elements such as phosphorus and iron may provide additional benefits, potentially reducing the need for mineral supplementation.


Assuntos
Ração Animal , Suplementos Nutricionais , Rim , Fígado , Alga Marinha , Animais , Coelhos , Alga Marinha/química , Rim/metabolismo , Rim/efeitos dos fármacos , Fígado/metabolismo , Ração Animal/análise , Músculos/metabolismo , Minerais , Iodo/administração & dosagem , Masculino , Arsênio/sangue , Dieta/veterinária
5.
Mar Drugs ; 22(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921583

RESUMO

The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Caulerpa , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Caulerpa/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Alga Marinha/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Receptores ErbB/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/química
6.
Mar Drugs ; 22(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921584

RESUMO

The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.


Assuntos
Antibacterianos , Antioxidantes , Alga Marinha , Alga Marinha/química , Argélia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Sargassum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Phaeophyceae/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
7.
Mar Drugs ; 22(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921591

RESUMO

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Assuntos
Alginatos , Antioxidantes , Etanol , Laminaria , Alga Marinha , Alginatos/química , Laminaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Etanol/química , Alga Marinha/química , Biomassa , Flavonoides/química , Flavonoides/isolamento & purificação , Algas Comestíveis
8.
Mar Drugs ; 22(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921590

RESUMO

Ichthyotoxic red tide is a problem that the world is facing and needs to solve. The use of antialgal compounds from marine macroalgae to suppress ichthyotoxic red tide is considered a promising biological control method. Antialgal substances were screened and isolated from Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcate, Hizikia fusifarme, Laminaria japonica, Palmaria palmata, and Sargassum sp. to obtain new materials for the development of algaecides against ichthyotoxic red tide microalgae using bioactivity-guided isolation methods. The fractions of seven macroalgae exhibited selective inhibitory activities against Amphidinium carterae and Karenia mikimotoi, of which the ethyl acetate fractions had the strongest and broadest antialgal activities for the two tested red tide microalgae. Their inhibitory effects on A. carterae and K. mikimotoi were even stronger than that of potassium dichromate, such as ethyl acetate fractions of B. purpurea, H. fusifarme, and Sargassum sp. Thin-layer chromatography and ultraviolet spectroscopy were further carried out to screen the ethyl acetate fraction of Sargassum sp. Finally, a new glycolipid derivative, 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol, was isolated and identified from Sargassum sp., and it was isolated for the first time from marine macroalgae. The significant antialgal effects of 2-O-eicosanoyl-3-O-(6-amino-6-deoxy)-ß-D-glucopyranosyl-glycerol on A. carterae and K. mikimotoi were determined.


Assuntos
Glicolipídeos , Proliferação Nociva de Algas , Microalgas , Alga Marinha , Alga Marinha/química , Glicolipídeos/farmacologia , Glicolipídeos/isolamento & purificação , Glicolipídeos/química , Proliferação Nociva de Algas/efeitos dos fármacos , Microalgas/química , Dinoflagellida/química
9.
Rapid Commun Mass Spectrom ; 38(17): e9843, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924168

RESUMO

RATIONALE: 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS: To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS: By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS: This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.


Assuntos
Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Alga Marinha/química , Fosfolipídeos/química , Fosfolipídeos/análise , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Phaeophyceae/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Laminaria/química , Cromatografia Líquida/métodos , Algas Comestíveis
10.
Compr Rev Food Sci Food Saf ; 23(4): e13396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925601

RESUMO

Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.


Assuntos
Polissacarídeos , Alga Marinha , Alga Marinha/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Rodófitas/química , Carragenina/química , Phaeophyceae/química , Clorófitas/química
11.
Sci Rep ; 14(1): 13698, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871780

RESUMO

Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.


Assuntos
Iodo , Alga Marinha , Oligoelementos , Alga Marinha/química , Alga Marinha/metabolismo , Humanos , Iodo/urina , Iodo/análise , Oligoelementos/urina , Oligoelementos/análise , Feminino , Masculino , Adulto , Arsênio/urina , Arsênio/análise , Pessoa de Meia-Idade , Selênio/urina , Selênio/análise
12.
Nutrients ; 16(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38892548

RESUMO

We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-ß plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.


Assuntos
Doença de Alzheimer , Suplementos Nutricionais , Modelos Animais de Doenças , Alga Marinha , Animais , Doença de Alzheimer/tratamento farmacológico , Alga Marinha/química , Camundongos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Extratos Vegetais/farmacologia , Camundongos Transgênicos , Sargassum/química , Humanos , Placa Amiloide , Colesterol/metabolismo , Colesterol/sangue , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/metabolismo
13.
Int J Biol Macromol ; 273(Pt 1): 132952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848830

RESUMO

This work focuses on the potential of agar from the seaweed Gracilaria fisheri to modify the properties of starch foam. The effects of different ratios of glycerol and agar on the properties of starch foams were investigated. All formulations used in this study produced easy-to-handle, smooth, single-use foam trays with no visible cracks. The addition of agar slightly affected the off-white color of the foam but red and yellow color values significantly decreased with increments of agar content. As the agar content was increased, the foam became less dense. A foam produced at a glycerol:agar ratio of 3:7 exhibited the highest values of flexural stress at maximum load (3.23 MPa), modulus (194.46 MPa) and hardness (97.50), and the highest temperature at maximum weight loss (Tmax) (337 °C). Therefore, starch foam modified with agar from Gracilaria fisheri showed suitable physical, mechanical and thermal properties for food packaging, and could possibly be used in the place of expanded polystyrene (EPS) foam.


Assuntos
Ágar , Gracilaria , Amido , Ágar/química , Amido/química , Gracilaria/química , Alga Marinha/química , Temperatura , Glicerol/química , Glicerol/farmacologia , Embalagem de Alimentos/métodos
14.
Int J Biol Macromol ; 273(Pt 2): 133126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876243

RESUMO

Connective tissue is an important component of meat products that provides support to animal muscles. Hydrogels are considered a promising alternative to connective tissues and simulate actual products by adjusting the gel texture and mouthfeel. This study used soybean protein isolate (SPI), corn starch (CS), konjac glucomannan (KGM), and seaweed powder (SP) as raw materials to examine the effect of different added SP and KGM concentrations on the gel texture. The G' of the gel increased five-fold when the SP and KGM concentration was increased from 1 % to 3 %. The results of mechanical property tests showed that with the addition of SP, the gel hardness increased from 316.00 g to 1827.23 g and the tensile strength increased from 0.027 MPa to 0.089 MPa. Sensory evaluation showed that the samples with 2 % SP and KGM presented the highest overall acceptability score and the most significant similarity to real connective tissue. The connective tissue simulants exhibited excellent water-holding capacity (>90 %), significantly increasing their juiciness. SEM indicated that 2 % KGM addition improved gel network structure stability. The results demonstrate the potential of seaweed polysaccharide-derived hydrogels as connective tissue mimics. This provides a new strategy for the preparation of high mechanical strength hydrogels and lays the foundation for structural diversification of plant-based meat.


Assuntos
Tecido Conjuntivo , Hidrogéis , Polissacarídeos , Alga Marinha , Hidrogéis/química , Polissacarídeos/química , Tecido Conjuntivo/química , Alga Marinha/química , Resistência à Tração , Mananas/química , Animais
15.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892117

RESUMO

While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.


Assuntos
Lipídeos , Microalgas , Alga Marinha , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lipídeos/química , Lipídeos/análise , Alga Marinha/química , Microalgas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Aminacrina/química , Pigmentos Biológicos/análise , Pigmentos Biológicos/química , Spirulina/química
16.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38916067

RESUMO

Black soldier fly (Hermetia illucens) larvae are used to upcycle biowaste into insect biomass for animal feed. Previous research on black soldier fly has explored the assimilation of dietary fatty acids (FAs), but endogenous FA synthesis and modification remain comparatively unexplored. This study presents a 1H/2H-NMR methodology for measuring lipid synthesis in black soldier fly larvae using diluted deuterated water (2H2O) as a stable isotopic tracer delivered through the feeding media. This approach was validated by measuring 2H incorporation into the larvae's body water and consequent labelling of FA esterified into triacylglycerols. A 5% 2H enrichment in the body water, adequate to label the FA, is achieved after 24 h in a substrate with 10% 2H2O. A standard feeding trial using an invasive macroalgae was designed to test this method, revealing de novo lipogenesis was lower in larvae fed with macroalgae, probably related to the poor nutritional value of the diet.


Assuntos
Óxido de Deutério , Larva , Espectroscopia de Ressonância Magnética , Alga Marinha , Animais , Larva/metabolismo , Larva/crescimento & desenvolvimento , Alga Marinha/metabolismo , Alga Marinha/química , Óxido de Deutério/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ração Animal/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Lipídeos/análise , Dípteros/metabolismo , Simuliidae/metabolismo , Simuliidae/crescimento & desenvolvimento , Dieta/veterinária
17.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830495

RESUMO

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Assuntos
Antioxidantes , Polissacarídeos , Alga Marinha , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/efeitos dos fármacos , Peso Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Digestão/efeitos dos fármacos , Sulfatos/química , Glucanos/química , Glucanos/farmacologia , Phaeophyceae/química , Humanos
18.
Sci Total Environ ; 946: 174247, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936725

RESUMO

Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.


Assuntos
Arsênio , Arsenicais , Alga Marinha , Alga Marinha/química , Medição de Risco , Arsênio/análise , Arsenicais/análise , Camundongos , Humanos , Animais , China , Disponibilidade Biológica , Contaminação de Alimentos/análise , Ácido Cacodílico , Células CACO-2 , Algas Comestíveis
19.
Food Chem ; 455: 139926, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833868

RESUMO

Brown seaweed Ecklonia radiata harbors valuable polyphenols, notably phlorotannins, prized for their health benefits. This study optimized phlorotannin extraction via conventional solvent extraction and ultrasound-assisted extraction methods, utilizing variable concentrations of ethanol. Employing fractional factorial designs, key variables were identified. Steepest ascent/descent method and central composite rotatable designs refined optimal conditions, enhancing phlorotannin and polyphenol yields, and antioxidant capacities. Under optimized conditions, phlorotannin contents reached 2.366 ± 0.01 and 2.596 ± 0.04 PGE mg/g, total polyphenol contents peaked at 10.223 ± 0.03 and 10.836 ± 0.02 GAE mg/g. Robust antioxidant activity was observed: DPPH and OH radical scavenging capacities measured 27.891 ± 0.06 and 17.441 ± 0.08 TE mg/g, and 37.498 ± 1.12 and 49.391 ± 0.82 TE mg/g, respectively. Reducing power capacities surged to 9.016 ± 0.02 and 28.110 ± 0.10 TE mg/g. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) analyses revealed enriched antioxidant compounds. Variations in polyphenol profiles were noted, potentially influencing antioxidant capacity nuances. This study illuminated the potential of E. radiata potential as a polyphenol source and offers optimized extraction methods poised to benefit various industries.


Assuntos
Antioxidantes , Polifenóis , Alga Marinha , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/análise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Alga Marinha/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Fracionamento Químico/métodos , Phaeophyceae/química , Zygophyllaceae/química , Espectrometria de Massas
20.
Food Chem ; 455: 139929, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850972

RESUMO

Production of the red seaweed Palmaria palmata is currently hindered by a lack of standardised cultivation methods leading to uncertainties in yield and product quality. This study assessed vegetative propagation of meristematic fragments and the protein content and bioactivity potential of resulting plants. Growth was strong and sustained, averaging 5% day-1. Total protein contents initially decreased but recovered as the fragments grew larger and thicker. Samples displayed the highest antioxidant activity early in the experiment, suggesting that wounds may increase the secretion of antioxidant compounds. In silico analysis identified 762 potentially bioactive motifs, including 70 matching in vitro results. The newly discovered peptide SLLYSDITRPGGNMYTTR (SR18), linked to the pigment allophycocyanin, had very strong antioxidant properties and may drive the recorded in vitro activity. Vegetative propagation appears as a strong potential cultivation tool, and the utilised approach can be applied to assess the cultivation and nutritional potential of other seaweed species.


Assuntos
Antioxidantes , Proteínas de Plantas , Rodófitas , Alga Marinha , Alga Marinha/química , Alga Marinha/metabolismo , Alga Marinha/crescimento & desenvolvimento , Rodófitas/química , Rodófitas/crescimento & desenvolvimento , Rodófitas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Antioxidantes/química , Antioxidantes/metabolismo , Algas Comestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...