Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.718
Filtrar
1.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886388

RESUMO

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Assuntos
Biodiversidade , Magnoliopsida , Filogenia , China , Magnoliopsida/crescimento & desenvolvimento , Altitude , Fenômenos Geológicos , Ecossistema
2.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1177-1186, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886415

RESUMO

The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.


Assuntos
Mudança Climática , Larix , China , Larix/crescimento & desenvolvimento , Juniperus/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Ecossistema , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Temperatura , Caules de Planta/crescimento & desenvolvimento , Altitude
3.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1196-1204, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886417

RESUMO

Picea schrenkiana is the dominant tree species in Ili River Basin located in the western Tianshan Mountains of Xinjiang. We investigated the growth decline characteristics of P. schrenkiana at different altitudes (1800, 2300 and 2800 m) based on tree-ring index (TRI) and percentage growth change (GC), aiming to understand the growth response of P. schrenkiana to drought events at different altitudes and the impacts of altitude on tree growth decline in this region. The results showed that P. schrenkiana experienced multiple decline events at low-altitude (1800 m). TRI and GC identified inconsistent occurrence time of the decline events. The variations of TRI indicated that P. schrenkiana at low-altitude experienced two large-scale declines during 1927-1933 and 2017-2014, respectively. The variations of GC identified four decline events, including 1891-1893, 1924-1926, 1973-1975, and 2004-2009. The radial growth of P. schrenkiana across altitudes from low to high was significantly affected by the Palmer drought severity index (PDSI) of the previous growing season. The impact of current PDSI on P. schrenkiana during the growing season initially enhanced but later decreased with increasing altitude. In the extreme drought year 1917, the magnitude of growth decline increased with altitude. At low-altitude (1800 m), the TRI was 0.65, which was 35% lower than the normal level. At mid-altitude (2300 m) and high-altitude (2800 m), it was 0.56 and 0.54, respectively, being 40% lower than the average level. The drought event in 1917 had a 2-year legacy effect on the growth of P. schrenkiana at all the altitudes, with the TRI in 1920 recovered to exceeding 0.9, being close to the normal level. The impact of altitude on drought-induced forest decline was significant. Tree growth in low-altitude areas was more vulnerable to drought events due to the relatively poorer water and temperature conditions at low-altitude, which could lead to multiple large-scale decline events. In mid- and high-altitude areas, where hydrothermal conditions were more favorable, trees could experience even more severe decline during extreme droughts.


Assuntos
Altitude , Secas , Picea , China , Picea/crescimento & desenvolvimento , Ecossistema , Rios
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1260-1268, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886424

RESUMO

Climate change significantly affects plant biomass and phenological occurrence time in alpine grasslands of Tibetan Plateau. The changes in phenological periods are closely related to the length of vegetative and reproductive growth periods, which may further affect aboveground biomass accumulation. In this study, based on fixed-point observations of plant biomass and phenology as well as the corresponding climatic data from 1997 to 2020 in the alpine grasslands of Tibetan Plateau, we used statistical methods such as ordinary linear regression and piecewise structural equation model to explore the characteristics of interannual climate change in the study area, the variation trends of plant biomass and phenological periods, and the correlations between biomass and phenological and climatic factors. The results showed that mean annual temperature and annual precipitation in the study area increased significantly from 1997 to 2020, suggesting a clear "warm-wet" trend. Aboveground biomass and relative biomass of Stipa sareptana var. krylovii (the dominant species) decreased significantly. However, absolute and relative biomass of subdominant species (Kobresia humilis) increased significantly, indicating that the dominance of K. humilis increased. The warm-wet climates enhanced aboveground biomass accumulation of K. humilis by extending the period of reproductive growth. Mean annual temperature and annual precipitation decreased aboveground biomass of S. sareptana by shortening the length of vegetative growth period. In a word, the warmer and wetter climate significantly affected aboveground biomass accumulation by regulating the changes in the phenological period, and the interspecific difference in their response resulted in a larger change in community composition. This study area may show a trend from alpine grassland to alpine meadow, and thus further works are urgently needed.


Assuntos
Biomassa , Mudança Climática , Pradaria , Poaceae , Tibet , Poaceae/crescimento & desenvolvimento , China , Altitude , Ecossistema
5.
Elife ; 122024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869160

RESUMO

Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.


Assuntos
Desenvolvimento Fetal , Placenta , Humanos , Feminino , Placenta/metabolismo , Masculino , Gravidez , Desenvolvimento Fetal/genética , Tibet , Recém-Nascido , Transcriptoma , Altitude , Fatores Sexuais , Caracteres Sexuais
6.
Eur J Sport Sci ; 24(6): 834-845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874991

RESUMO

This study investigates whether exercise as a strategy for improving physical fitness at sea level also offers comparable benefits in the unique context of high altitudes (HA), considering the physiological challenges of hypoxic conditions. Overall, 121 lowlanders who had lived on the Tibetan Plateau for >2 years and were still living at HA during the measurements were randomly classified into four groups. Each individual of the low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) groups performed 20 sessions of aerobic exercise at HA (3680 m) over 4 weeks, while the control group (CG) did not undergo any intervention. Physiological responses before and after the intervention were observed. The LI and MI groups experienced significant improvement in cardiopulmonary fitness (0.27 and 0.35 L/min increases in peak oxygen uptake [ V ˙ $\dot{\mathrm{V}}$ O2peak], both p < 0.05) after exercise intervention, while the hematocrit (HCT) remained unchanged (p > 0.05). However, HI exercise was less efficient for cardiopulmonary fitness of lowlanders (0.02 L/min decrease in V ˙ $\dot{\mathrm{V}}$ O2peak, p > 0.05), whereas both the HCT (1.74 %, p < 0.001) and glomerular filtration rate (18.41 mL/min, p < 0.001) increased with HI intervention. Therefore, LI and MI aerobic exercise, rather than HI, can help lowlanders in Tibet become more acclimated to the HA by increasing cardiopulmonary function and counteracting erythrocytosis.


Assuntos
Aclimatação , Altitude , Aptidão Cardiorrespiratória , Exercício Físico , Consumo de Oxigênio , Humanos , Tibet , Exercício Físico/fisiologia , Masculino , Adulto , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Feminino , Hematócrito , Adulto Jovem , Taxa de Filtração Glomerular/fisiologia , Aptidão Física/fisiologia , Frequência Cardíaca/fisiologia
7.
Clin Lab ; 70(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38868887

RESUMO

BACKGROUND: Polycythemia is a common medical problem, frequently acquired and reactive to secondary conditions. High-altitude-associated hypoxia contributes to the greater prevalence of polycythemia at altitude. Primary clonal polycythemia vera (PV), even though it is rare, requires a different therapeutic approach. Suspicion of PV usually drives the diagnostic workup of polycythemia. METHODS: In this retrospective lab record study, we collected all JAK2 tests requested over a three-year period. We analyzed requests that were made for the evaluation of polycythemia. Complete blood count (CBC) and imaging of the abdomen were collected. RESULTS: Out of 208 total requests, 136 were for the purpose of polycythemia evaluation. JAK2 mutation was positive (confirming the presence of PV) in 22 (16.7%) cases. PV patients have the usual demographics reported elsewhere. Additionally, PV patients exhibit distinct hemogram results featuring leukocytosis, thrombocytosis, and hypochromic microcytic red blood cells (RBCs) related to the associated iron deficiency. CONCLUSIONS: Many patients with polycythemia at altitude might be unnecessarily considered for an evaluation of PV, if hemoglobin/hematocrit is the sole deciding criterion. PV patients have a distinct CBC pattern that can be exploited to better select patients with polycythemia for further evaluation and thus reduce unnecessary workups.


Assuntos
Altitude , Janus Quinase 2 , Policitemia Vera , Humanos , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Policitemia Vera/sangue , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Janus Quinase 2/genética , Adulto , Contagem de Células Sanguíneas , Idoso , Mutação , Policitemia/diagnóstico , Policitemia/sangue
8.
Planta ; 260(1): 25, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861219

RESUMO

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Assuntos
Clorofila , Luz , Magnoliopsida , Temperatura , Clorofila/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Magnoliopsida/genética , Água/metabolismo , Oxigênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Meio Ambiente , Altitude
9.
PLoS One ; 19(6): e0302564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865320

RESUMO

We investigated the effect of tactile guided slow deep breathing compared with that of spontaneous breathing on blood oxygen saturation (SpO2), alertness, and hypoxia symptoms during acute hypobaric hypoxia. We also evaluated the usability of this tactile breathing guidance. Twelve male military pilots were exposed to a simulated altitude of 4,572 m (15,000 ft) in a repeated measures study while breathing spontaneously and during tactile guided slow deep breathing. Under both breathing conditions, measurements were performed at rest and during the performance of a cognitive task. The Stanford Sleepiness Scale was used to rate alertness, and hypoxia symptoms were reported using a list of general hypoxia symptoms. Usability was evaluated in a questionnaire. Tactile guidance of slow deep breathing significantly increased (p <.001) the SpO2 - 88% (95% confidence interval (CI) [84%, 91%]) at rest and 85% (95% CI [81%, 88%]) during the cognitive task - compared with spontaneous breathing - 78% (95% CI [75%, 81%]) at rest and 78% (95% CI [76%, 80%]) during the cognitive task. This increase in SpO2 had no effect on the level of alertness and number of hypoxia symptoms. Pilots were positive about the intensity and sensation of the vibration signal, but had difficulty following the vibration pattern during the cognitive task. Pre-training may improve slow deep breathing technique during performance of cognitive tasks.


Assuntos
Hipóxia , Saturação de Oxigênio , Respiração , Humanos , Masculino , Hipóxia/fisiopatologia , Adulto , Saturação de Oxigênio/fisiologia , Militares , Tato/fisiologia , Cognição/fisiologia , Adulto Jovem , Pilotos , Altitude
10.
Sci Rep ; 14(1): 12859, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834673

RESUMO

External eye appearance in avian taxa has been proposed to be driven by social and ecological functions. Recent research in primates suggests, instead, that, photoprotective functions are important drivers of external eye appearance. Using similar methods, we examined the variation in external eye appearance of 132 parrot species (Psittaciformes) in relation to their ecology and sociality. Breeding systems, flock size and sexual dimorphism, as well as species' latitude and maximum living altitude, and estimated UV-B incidence in species' ranges were used to explore the contribution of social and ecological factors in driving external eye appearance. We measured the hue and brightness of visible parts of the eye and the difference in measurements of brightness between adjacent parts of the eye. We found no link between social variables and our measurements. We did, however, find a negative association between the brightness of the inner part of the iris and latitude and altitude. Darker inner irises were more prevalent farther away from the equator and for those species living at higher altitudes. We found no link between UV-B and brightness measurements of the iris, or tissue surrounding the eye. We speculate that these results are consistent with an adaptation for visual functions. While preliminary, these results suggest that external eye appearance in parrots is influenced by ecological, but not social factors.


Assuntos
Altitude , Papagaios , Animais , Papagaios/fisiologia , Olho/anatomia & histologia , Feminino , Masculino , Raios Ultravioleta
11.
Plant Physiol Biochem ; 212: 108801, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850729

RESUMO

Elevational variation in plant growing environment drives diversification of photosynthetic capacity, however, the mechanism behind this reaction is poorly understood. We measured leaf gas exchange, chlorophyll fluorescence, anatomical characteristics, and biochemical traits of Salvia przewalskii at elevations ranging from 2400 m to 3400 m above sea level (a.s.l) on the eastern Qinghai-Tibetan Plateau, China. We found that photosynthetic capacity showed an initial increase and then a decrease with rising elevation, and the best state observed at 2800 m a.s.l. Environmental factors indirectly regulated photosynthetic capacity by affecting stomatal conductance (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc max), and maximum capacity for photosynthetic electron transport (Jmax). The average temperature (T) and total precipitation (P) during the growing season had the highest contribution to the variation of photosynthetic capacity of S. przewalskii in subalpine areas, which were 25% and 24%, respectively. Photosynthetic capacity was mainly affected by diffusional limitations (71%-89%), and mesophyll limitation (lm) played a leading role. The variation of gm was attributed to the effects of environmental factors on the volume fraction of intercellular air space (fias), the thickness of cell wall (Tcw), the surface of mesophyll cells and chloroplasts exposed to intercellular airspace (Sm, Sc), and plasma membrane intrinsic protein (PIPs, PIP1, PIP2), independent of carbonic anhydrase (CA). Optimization of leaf tissue structure and adaptive physiological responses enabled plants to efficiently cope with variable climate conditions of high-elevation areas, and the while maintaining high levels of carbon assimilation.


Assuntos
Altitude , Fotossíntese , Salvia , Fotossíntese/fisiologia , Salvia/metabolismo , Salvia/fisiologia , China , Tibet , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Clorofila/metabolismo , Estômatos de Plantas/fisiologia
12.
Commun Biol ; 7(1): 698, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862827

RESUMO

Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA's role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.


Assuntos
Altitude , Voo Espacial , Telômero , Humanos , Telômero/metabolismo , Telômero/genética , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adulto , Pessoa de Meia-Idade , Quebras de DNA de Cadeia Dupla , Feminino , Dano ao DNA , Montanhismo , Homeostase do Telômero
13.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884222

RESUMO

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Nitrogênio , Folhas de Planta , Folhas de Planta/química , Folhas de Planta/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Tibet , China , Florestas , Altitude , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/química , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/química , Traqueófitas/metabolismo , Pradaria , Poaceae/crescimento & desenvolvimento , Poaceae/química , Poaceae/metabolismo
14.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884221

RESUMO

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Oxigênio , Isótopos de Oxigênio/análise , China , Isótopos de Carbono/análise , Clima , Altitude , Plantas/metabolismo , Plantas/classificação , Fenômenos Fisiológicos Vegetais , Tibet , Celulose/metabolismo , Celulose/análise
15.
Sci Total Environ ; 941: 173671, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825194

RESUMO

Polylepis trees grow at elevations above the continuous tree line (3000-5000 m a.s.l.) across the Andes. They tolerate extreme environmental conditions, making them sensitive bioindicators of global climate change. Therefore, investigating their ecohydrological role is key to understanding how the water cycle of Andean headwaters could be affected by predicted changes in environmental conditions, as well as ongoing Polylepis reforestation initiatives in the region. We estimate, for the first time, the annual water balance of a mature Polylepis forest (Polylepis reticulata) catchment (3780 m a.s.l.) located in the south Ecuadorian páramo using a unique set of field ecohydrological measurements including gross rainfall, throughfall, streamflow, and xylem sap flow in combination with the characterization of forest and soil features. We also compare the forest water balance with that of a tussock grass (Calamagrostis intermedia) catchment, the dominant páramo vegetation. Annual gross rainfall during the study period (April 2019-March 2020) was 1290.6 mm yr-1. Throughfall in the Polylepis forest represented 61.2 % of annual gross rainfall. Streamflow was the main component of the water balance of the forested site (59.6 %), while its change in soil water storage was negligible (<1 %). Forest evapotranspiration was 54.0 %, with evaporation from canopy interception (38.8 %) more than twice as high as transpiration (15.1 %). The error in the annual water balance of the Polylepis catchment was small (<15 %), providing confidence in the measurements and assumptions used to estimate its components. In comparison, streamflow and evapotranspiration at the grassland site accounted for 63.7 and 36.0 % of the water balance, respectively. Although evapotranspiration was larger in the forest catchment, its water yield was only marginally reduced (<4 %) in relation to the grassland catchment. The substantially higher soil organic matter content in the forest site (47.6 %) compared to the grassland site (31.8 %) suggests that even though Polylepis forests do not impair the hydrological function of high-Andean catchments, their presence contributes to carbon storage in the litter layer of the forest and the underlying soil. These findings provide key insights into the vegetation-water­carbon nexus in high Andean ecosystems, which can serve as a basis for future ecohydrological studies and improved management of páramo natural resources considering changes in land use and global climate.


Assuntos
Monitoramento Ambiental , Florestas , Equador , Clima Tropical , Hidrologia , Mudança Climática , Solo/química , Árvores , Altitude , Ciclo Hidrológico , Chuva , Água
16.
Sleep Med ; 119: 584-588, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833943

RESUMO

INTRODUCTION: Exhaled nitric oxide fraction (FeNO) is employed for the diagnosis and phenotyping of asthma as an inflammatory biomarker of the airway. Limited evidence exists regarding its behavior in the presence of asthma and obstructive sleep apnea (OSA). Our objective was to determine whether FeNO levels are associated with the severity of OSA or the coexistence of asthma and OSA in residents at high altitudes. MATERIALS AND METHODS: Observational, analytical, cross-sectional study in children aged 5-16 years residing at 2600 m above sea level treated at a Sleep Study Center between 2019 and 2021. We conducted a medical history, polysomnogram, and measurement of FeNO levels. The children were categorized into four groups: OSA, asthma, asthma with OSA, and controls (without asthma or OSA). FeNO levels among the groups were compared using the Kruskal-Wallis test, and correlations were explored using the Spearman correlation coefficient. Analyses considered statistical significance at a two-tailed p-value <0.05. RESULTS: Among the 261 included children, 68 (26.1 %) had OSA, 42 (16.1 %) were diagnosed with asthma, 109 (41.8 %) had both asthma and OSA, and 42 (16.1 %) were controls. Their FeNO medians were 10 ppb, 18.5 ppb, 15 ppb, and 14 ppb, respectively, with no significant differences between the evaluated groups (p = 0.263). We found no correlation between FeNO and apnea-hypopnea index and obstructive apnea index even for the groups of patients with FeNO >20 ppb and FeNO >35 ppb (>75th percentile). In the adjusted model, a significant association was observed between asthma and FeNO levels. CONCLUSIONS: Our findings suggest that FeNO measurements in children would not allow establishing this biomarker as part of the diagnosis of OSA. However, these findings may be related to high altitude.


Assuntos
Altitude , Asma , Óxido Nítrico , Polissonografia , Apneia Obstrutiva do Sono , Humanos , Asma/diagnóstico , Asma/complicações , Estudos Transversais , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/metabolismo , Criança , Masculino , Feminino , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Pré-Escolar , Biomarcadores/metabolismo , Biomarcadores/análise , Adolescente , Testes Respiratórios , Expiração
17.
PeerJ ; 12: e17500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827286

RESUMO

Plants growing along wide elevation gradients in mountains experience considerable variations in environmental factors that vary across elevations. The most pronounced elevational changes are in climate conditions with characteristic decrease in air temperature with an increase in elevation. Studying intraspecific elevational variations in plant morphological traits and biomass allocation gives opportunity to understand how plants adapted to steep environmental gradients that change with elevation and how they may respond to climate changes related to global warming. In this study, phenotypic variation of an alpine plant Soldanella carpatica Vierh. (Primulaceae) was investigated on 40 sites distributed continuously across a 1,480-m elevation gradient in the Tatra Mountains, Central Europe. Mixed-effects models, by which plant traits were fitted to elevation, revealed that on most part of the gradient total leaf mass, leaf size and scape height decreased gradually with an increase in elevation, whereas dry mass investment in roots and flowers as well as individual flower mass did not vary with elevation. Unexpectedly, in the uppermost part of the elevation gradient overall plant size, including both below-and aboveground plant parts, decreased rapidly causing abrupt plant miniaturization. Despite the plant miniaturization at the highest elevations, biomass partitioning traits changed gradually across the entire species elevation range, namely, the leaf mass fraction decreased continuously, whereas the flower mass fraction and the root:shoot ratio increased steadily from the lowest to the highest elevations. Observed variations in S. carpatica phenotypes are seen as structural adjustments to environmental changes across elevations that increase chances of plant survival and reproduction at different elevations. Moreover, results of the present study agreed with the observations that populations of species from the 'Soldanella' intrageneric group adapted to alpine and subnival zones still maintain typical 'Soldanella'-like appearance, despite considerable reduction in overall plant size.


Assuntos
Altitude , Biomassa , Folhas de Planta , Folhas de Planta/anatomia & histologia , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Mudança Climática
18.
Sleep Med Clin ; 19(2): 327-337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692756

RESUMO

In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.


Assuntos
Altitude , Hipóxia , Síndromes da Apneia do Sono , Humanos , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/terapia , Doença Crônica , Pneumopatias/complicações
19.
Environ Res ; 255: 119206, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782346

RESUMO

Climate warming is a pressing global issue with substantial impacts on soil health and function. However, the influence of environmental context on the responses of soil microorganisms to warming remains largely elusive, particularly in alpine ecosystems. This study examined the responses of the soil microbiome to in situ experimental warming across three elevations (3850 m, 4100 m, and 4250 m) in the meadow of Gongga Mountain, eastern Tibetan Plateau. Our findings demonstrate that soil microbial diversity is highly resilient to warming, with significant impacts observed only at specific elevations. Furthermore, the influence of warming on the composition of the soil microbial community is also elevation-dependent, underscoring the importance of local environmental context in shaping microbial evolution in alpine soils under climate warming. Notably, we identified soil moisture at 3850 m and carbon-to-nitrogen ratio at 4250 m as indirect predictors regulating the responses of microbial diversity to warming at specific elevations. These findings underscore the paramount importance of considering pre-existing environmental conditions in predicting the response of alpine soil microbiomes to climate warming. Our study provides novel insights into the intricate interactions between climate warming, soil microbiome, and environmental context in alpine ecosystems, illuminating the complex mechanisms governing soil microbial ecology in these fragile and sensitive environments.


Assuntos
Microbiota , Microbiologia do Solo , Tibet , Solo/química , Aquecimento Global , Ecossistema , Altitude , Mudança Climática
20.
Immunobiology ; 229(3): 152809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38788361

RESUMO

OBJECTIVE: This study investigated the effect of oxidative stress and the TLR4/NF-κB/NLRP3 pathway on the pathogenesis of acute lung injury (ALI) induced by high-altitude hypoxia. METHODS: Rats were placed in an animal hyperbaric oxygen chamber to establish a rat model of ALI induced by high-altitude hypoxia after treatment with N-acetylcysteine (NAC; a reactive oxygen species [ROS] inhibitor) or/and MCC950 (an NLPR3 inflammasome inhibitor). After modeling, the wet-to-dry weight ratio (W/D) of rat lung tissues was calculated. In lung tissues, ROS levels were detected with immunofluorescence, the enzyme activity was tested with the kit, and the expression of TLR4/NF-κB/NLRP3 pathway-related genes and proteins was measured with western blotting and qRT-PCR. The levels of inflammatory factors in the serum were quantified with ELISA. RESULTS: After modeling, rats showed significantly increased W/D, ROS levels, and Malondialdehyde (MDA) concentrations and markedly diminished Superoxide dismutase (SOD) and Glutathione (GSH) concentrations in lung tissues (all P < 0.01), accompanied by substantially enhanced serum levels of TNF-α, IL-6, and IL-1ß, significantly reduced serum levels of IL-10, and remarkably augmented TLR4, NLRP3, p-NF-κB p65, NF-κB p65 mRNA, and Caspase-1 expression in lung tissues (all P < 0.01). Furthermore, treatment with NAC or MCC950 alone or in combination prominently lowered the W/D of lung tissues (P < 0.01), serum levels of TNF-α (P < 0.05), IL-6 (P < 0.05), and IL-1ß (P < 0.01), and NF-κB p65 expression and phosphorylation (P < 0.05, P < 0.01) while significantly increasing SOD and GSH concentrations (P < 0.05, P < 0.01) and serum levels of IL-10 (P < 0.01) in modeled rats. Meanwhile, treatment of NAC alone or combined with MCC950 significantly reduced MDA concentration and ROS levels (P < 0.05, P < 0.01) in modeled rats, and treatment of MCC950 alone or combined with NAC considerably declined TLR4, NLRP3, and Caspase-1 expression in modeled rats (P < 0.05, P < 0.01). CONCLUSION: Inhibition of oxidative stress and the TLR4/NF-κB/NLRP3 pathway can ameliorate ALI in rats exposed to high-altitude hypoxia.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Ratos , NF-kappa B/metabolismo , Masculino , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Hipóxia/metabolismo , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Altitude , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA