Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.978
Filtrar
1.
Nat Commun ; 15(1): 7241, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174557

RESUMO

Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid ß-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Carnitina O-Palmitoiltransferase , Ácidos Graxos , Mitocôndrias , Oxirredução , Síndrome do Desconforto Respiratório , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Mitocôndrias/metabolismo , Células Epiteliais Alveolares/metabolismo , Ácidos Graxos/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/genética , Camundongos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/genética , Masculino , Humanos , Quimiocina CXCL2/metabolismo , Quimiocina CXCL2/genética , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos Knockout , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Inflamação/metabolismo , Inflamação/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/imunologia , Trifosfato de Adenosina/metabolismo , Pneumonia/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/genética
2.
Biochem Biophys Res Commun ; 727: 150308, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968769

RESUMO

Excessive autophagy may lead to degradation and damage of alveolar epithelial cells after lung transplantation, eventually leading to alveolar epithelial cell loss, affecting the structural integrity and function of alveoli. Glutamine (Gln), a nutritional supplement, regulates autophagy through multiple signaling pathways. In this study, we explored the protective role of Gln on alveolar epithelial cells by inhibiting autophagy. In vivo, a rat orthotopic lung transplant model was carried out to evaluate the therapeutic effect of glutamine. Ischemia/reperfusion (I/R) induced alveolar collapse, edema, epithelial cell apoptosis, and inflammation, which led to a reduction of alveolar physiological function, such as an increase in peak airway pressure, and a decrease in lung compliance and oxygenation index. In comparison, Gln preserved alveolar structure and function by reducing alveolar apoptosis, inflammation, and edema. In vitro, a hypoxia/reoxygenation (H/R) cell model was performed to simulate IR injury on mouse lung epithelial (MLE) cells and human lung bronchus epithelial (Beas-2B) cells. H/R impaired the proliferation of epithelial cells and triggered cell apoptosis. In contrast, Gln normalized cell proliferation and suppressed I/R-induced cell apoptosis. The activation of mTOR and the downregulation of autophagy-related proteins (LC3, Atg5, Beclin1) were observed in Gln-treated lung tissues and alveolar epithelial cells. Both in vivo and in vitro, rapamycin, a classical mTOR inhibitor, reversed the beneficial effects of Gln on alveolar structure and function. Taken together, Glnpreserved alveolar structure and function after lung transplantation by inhibiting autophagy.


Assuntos
Autofagia , Glutamina , Transplante de Pulmão , Alvéolos Pulmonares , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Autofagia/efeitos dos fármacos , Animais , Glutamina/metabolismo , Glutamina/farmacologia , Masculino , Humanos , Camundongos , Ratos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia
3.
Nature ; 631(8021): 627-634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987592

RESUMO

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Assuntos
Lesão Pulmonar Aguda , Linhagem da Célula , Fibroblastos , Pneumonia , Alvéolos Pulmonares , Fibrose Pulmonar , Animais , Feminino , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular , Fibroblastos/patologia , Fibroblastos/metabolismo , Homeostase , Pneumonia/patologia , Pneumonia/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo
4.
Sci Rep ; 14(1): 16350, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014011

RESUMO

Chronic interstitial lung diseases (ILDs) require frequent point-of-care monitoring. X-ray-based methods lack resolution and are ionizing. Chest computerized tomographic (CT) scans are expensive and provide more radiation. Conventional ultrasound can detect severe lung damage via vertical artifacts (B-lines). However, this information is not quantitative, and the appearance of B-lines is operator- and system-dependent. Here we demonstrate novel ultrasound-based biomarkers to assess severity of ILDs. Lung alveoli scatter ultrasound waves, leading to a complex acoustic signature, which is affected by changes in alveolar density due to ILDs. We exploit ultrasound scattering in the lung and combine quantitative ultrasound (QUS) parameters, to develop ultrasound-based biomarkers that significantly correlate (p = 1e-4 for edema and p = 3e-7 for fibrosis) to the severity of pulmonary fibrosis and edema in rodent lungs. These innovative QUS biomarkers will be very significant for monitoring severity of chronic ILDs and response to treatment, especially in this new era of miniaturized and highly portable ultrasound devices.


Assuntos
Doenças Pulmonares Intersticiais , Pulmão , Ultrassonografia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/patologia , Ultrassonografia/métodos , Animais , Pulmão/diagnóstico por imagem , Pulmão/patologia , Humanos , Biomarcadores/análise , Masculino , Camundongos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Ratos , Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/patologia , Índice de Gravidade de Doença
5.
ARP Rheumatol ; 3(2): 151-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38956997

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is an emerging adult-onset systemic autoinflammatory disorder affecting multiple organ systems. While lung involvement is common in this syndrome, literature regarding specific patterns is sparse. In this report, we present a case description of a patient with VEXAS syndrome who presented at the emergency department on two separate occasions with acute interstitial pneumonia (AIP) and diffuse alveolar hemorrhage (DAH). A literature review with a comparison of our observed findings to the general findings of VEXAS syndrome, AIP, and DAH is provided. This report underscores the rarity of specific pulmonary manifestations associated with VEXAS syndrome, contributing valuable insight to the limited literature available on this topic.


Assuntos
Hemorragia , Doenças Pulmonares Intersticiais , Alvéolos Pulmonares , Humanos , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico , Alvéolos Pulmonares/patologia , Masculino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Pneumopatias/patologia , Vacúolos/patologia , Pessoa de Meia-Idade , Síndrome , Enzimas Ativadoras de Ubiquitina
6.
Arkh Patol ; 86(4): 38-41, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39073540

RESUMO

Alveolar adenoma of the lung is a rare benign tumor first described in 1986. This article presents an observation of alveolar adenoma in a 72-year-old woman. Morphological and immunohistochemical methods of tumor diagnostics, issues of differential diagnosis are analyzed. The necessity of complex examination, including radiation methods, morphologic examination and immunohistochemical diagnostics to exclude other more dangerous diseases is shown.


Assuntos
Adenoma , Neoplasias Pulmonares , Humanos , Feminino , Idoso , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Adenoma/patologia , Adenoma/diagnóstico , Diagnóstico Diferencial , Alvéolos Pulmonares/patologia
7.
Physiol Rep ; 12(14): e16143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034131

RESUMO

Inflammation through activation of caspase-1, seems to play a role in pulmonary hypertension induced by alveolar hypoxia. Whether alveolar hypoxia induces caspase-1-mediated inflammation and influx of leukocytes in other organs than the lungs, is not known. Our aim was to explore sites of caspase-1-related inflammation in alveolar hypoxia. Wild type (WT) mice were exposed to environmental hypoxia or room-air, and organs were analyzed. Right heart catheterization was performed after 14 days of alveolar hypoxia in WT mice and mice transplanted with WT or caspase-1-/- bone marrow. Hypoxia induced leukocyte accumulation and increased caspase-1 protein in the lungs, not in other organs. WT mice transplanted with WT or caspase-1-/- bone marrow showed no difference in pulmonary leukocyte accumulation or development of pulmonary hypertension after alveolar hypoxia. Caspase-1 and IL-18 were detected in bronchial epithelium in WT mice, and hypoxia induced IL-18 secretion from bronchial epithelial cells. IL-18 stimulation generated IL-6 mRNA in monocytes. Phosphorylated STAT3 was increased in hypoxic lungs, not in other organs. Alveolar hypoxia induces caspase-1 activation and leukocyte accumulation specific to the lungs, not in other organs. Caspase-1 activation and IL-18 secretion from bronchial epithelial cells might initiate hypoxia-induced inflammation, leading to pulmonary hypertension.


Assuntos
Caspase 1 , Hipóxia , Inflamassomos , Interleucina-18 , Pulmão , Camundongos Endogâmicos C57BL , Animais , Masculino , Inflamassomos/metabolismo , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Pulmão/metabolismo , Pulmão/patologia , Interleucina-18/metabolismo , Interleucina-18/genética , Hipóxia/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos Knockout , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia
8.
Acta Histochem ; 126(4): 152169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38850586

RESUMO

Alveolar, the smallest structural and functional units within the respiratory system, play a crucial role in maintaining lung function. Alveolar damage is a typical pathological hallmark of respiratory diseases. Nevertheless, there is currently no simple, rapid, economical, and unbiased method for quantifying alveolar size for entire lung tissue. Here, firstly, we conducted lung sample slicing based on the size, shape, and distribution of airway branches of different lobes. Next, we performed HE staining on different slices. Then, we provided an unbiased quantification of alveolar size using free software ImageJ. Through this protocol, we demonstrated that C57Bl/6 mice exhibit varying alveolar sizes among different lobes. Collectively, we provided a simple and unbiased method for a more comprehensive quantification of alveolar size in mice, which holds promise for a broader range of respiratory research using mouse models.


Assuntos
Amarelo de Eosina-(YS) , Hematoxilina , Pulmão , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares , Coloração e Rotulagem , Animais , Camundongos , Alvéolos Pulmonares/patologia , Coloração e Rotulagem/métodos , Pulmão/patologia , Masculino
10.
Sci Adv ; 10(24): eado4791, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865465

RESUMO

The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.


Assuntos
Bleomicina , Muco , Nanopartículas , Animais , Nanopartículas/química , Camundongos , Muco/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Modelos Animais de Doenças , Administração por Inalação , Lipídeos/química , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Lipossomos
11.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L160-L172, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771132

RESUMO

The alveolar type II epithelial cells (AEC2s) act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine C-X-C motif chemokine 10 (CXCL10) is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a three-dimensional (3-D) organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using Cxcr3-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.NEW & NOTEWORTHY CXCL10 may aid in lung injury recovery by promoting the proliferation of alveolar stem cells and using a distinct regulatory pathway from the classical one.


Assuntos
Células Epiteliais Alveolares , Quimiocina CXCL10 , Receptores CXCR3 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Proliferação de Células , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Regeneração , Transdução de Sinais
12.
Int J Biochem Cell Biol ; 172: 106587, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740281

RESUMO

Bronchopulmonary dysplasia (BPD) remains a significant challenge in neonatal care, the pathogenesis of which potentially involves altered lipid metabolism. Given the critical role of lipids in lung development and the injury response, we hypothesized that specific lipid species could serve as therapeutic agents in BPD. This study aimed to investigate the role of the lipid Phosphatidylcholine (PC) (16:0/14:0) in modulating BPD pathology and to elucidate its underlying mechanisms of action. Our approach integrated in vitro and in vivo methodologies to assess the effects of PC (16:0/14:0) on the histopathology, cellular proliferation, apoptosis, and molecular markers in lung tissue. In a hyperoxia-induced BPD rat model, we observed a reduction in alveolar number and an enlargement in alveolar size, which were ameliorated by PC (16:0/14:0) treatment. Correspondingly, in BPD cell models, PC (16:0/14:0) intervention led to increased cell viability, enhanced proliferation, reduced apoptosis, and elevated surfactant protein C (SPC) expression. RNA sequencing revealed significant gene expression differences between BPD and PC (16:0/14:0) treated groups, with a particular focus on Cldn1 (encoding claudin 1), which was significantly enriched in our analysis. Our findings suggest that PC (16:0/14:0) might protect against hyperoxia-induced alveolar type II cell damage by upregulating CLDN1 expression, potentially serving as a novel therapeutic target for BPD. This study not only advances our understanding of the role of lipids in BPD pathogenesis, but also highlights the significance of PC (16:0/14:0) in the prevention and treatment of BPD, offering new avenues for future research and therapeutic development.


Assuntos
Células Epiteliais Alveolares , Displasia Broncopulmonar , Claudina-1 , Hiperóxia , Fosfatidilcolinas , Regulação para Cima , Animais , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/etiologia , Hiperóxia/metabolismo , Hiperóxia/complicações , Hiperóxia/patologia , Ratos , Claudina-1/metabolismo , Claudina-1/genética , Fosfatidilcolinas/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Ratos Sprague-Dawley , Apoptose , Proliferação de Células , Humanos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Animais Recém-Nascidos , Modelos Animais de Doenças
13.
PLoS One ; 19(5): e0300751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717999

RESUMO

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Assuntos
Proteínas Reguladoras de Apoptose , Alvéolos Pulmonares , Proteínas Repressoras , Animais , Feminino , Masculino , Camundongos , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Ácidos Graxos/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
14.
Acta Biomater ; 181: 282-296, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705223

RESUMO

Irreversible alveolar airspace enlargement is the main characteristic of pulmonary emphysema, which has been extensively studied using animal models. While the alterations in lung mechanics associated with these morphological changes have been documented in the literature, the study of the mechanical behavior of parenchymal tissue from emphysematous lungs has been poorly investigated. In this work, we characterize the mechanical and morphological properties of lung tissue in elastase-induced emphysema rat models under varying severity conditions. We analyze the non-linear tissue behavior using suitable hyperelastic constitutive models that enable to compare different non-linear responses in terms of hyperelastic material parameters. We further analyze the effect of the elastase dose on alveolar morphology and tissue material parameters and study their connection with respiratory-system mechanical parameters. Our results show that while the lung mechanical function is not significantly influenced by the elastase treatment, the tissue mechanical behavior and alveolar morphology are markedly affected by it. We further show a strong association between alveolar enlargement and tissue softening, not evidenced by respiratory-system compliance. Our findings highlight the importance of understanding tissue mechanics in emphysematous lungs, as changes in tissue properties could detect the early stages of emphysema remodeling. STATEMENT OF SIGNIFICANCE: Gas exchange is vital for life and strongly relies on the mechanical function of the lungs. Pulmonary emphysema is a prevalent respiratory disease where alveolar walls are damaged, causing alveolar enlargement that induces harmful changes in the mechanical response of the lungs. In this work, we study how the mechanical properties of lung tissue change during emphysema. Our results from animal models show that tissue properties are more sensitive to alveolar enlargement due to emphysema than other mechanical properties that describe the function of the whole respiratory system.


Assuntos
Elastase Pancreática , Enfisema Pulmonar , Animais , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia , Pulmão/patologia , Ratos , Masculino , Alvéolos Pulmonares/patologia , Fenômenos Biomecânicos
15.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L19-L39, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712429

RESUMO

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.


Assuntos
Respiração com Pressão Positiva , Alvéolos Pulmonares , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Ratos , Masculino , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Bleomicina/toxicidade , Bleomicina/efeitos adversos , Ratos Sprague-Dawley , Pulmão/patologia , Pulmão/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Mecânica Respiratória , Atelectasia Pulmonar/patologia , Atelectasia Pulmonar/fisiopatologia
16.
Part Fibre Toxicol ; 21(1): 25, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760786

RESUMO

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Assuntos
Poluição do Ar em Ambientes Fechados , Sobrevivência Celular , Material Particulado , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Material Particulado/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Citocinas/metabolismo , Células THP-1 , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Poluentes Atmosféricos/toxicidade , Inflamação/induzido quimicamente , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
18.
Am J Respir Cell Mol Biol ; 71(1): 30-42, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579159

RESUMO

Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.


Assuntos
Comunicação Celular , Microambiente Celular , Fibroblastos , Lesão Pulmonar , Alvéolos Pulmonares , Humanos , Animais , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia
19.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648494

RESUMO

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Assuntos
Células Epiteliais Alveolares , Lesão Pulmonar , Regeneração , Humanos , Regeneração/fisiologia , Animais , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , Diferenciação Celular
20.
Mod Rheumatol Case Rep ; 8(2): 398-403, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676913

RESUMO

A 76-year-old man with bronchial asthma was admitted for respiratory failure and bloody sputum. A significant drop in haemoglobin and multiple consolidations supported clinical diagnosis of diffuse alveolar haemorrhage (AH). Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA) was positive and urinalysis suggested glomerulonephritis. Based on eosinophilia, sinusitis, peripheral nerve involvement, and leukocytoclastic vasculitis, he was diagnosed with eosinophilic granulomatosis with polyangiitis (EGPA) associated with AH. Our case-based review suggested that male predominance (65%), high positivity for ANCA (88%), and a high frequency of renal involvement (45%) may be characteristic of AH in EGPA. Although AH is rare in EGPA, we should be aware of this life-threatening complication.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Hemorragia , Alvéolos Pulmonares , Humanos , Masculino , Idoso , Hemorragia/etiologia , Hemorragia/diagnóstico , Anticorpos Anticitoplasma de Neutrófilos/sangue , Alvéolos Pulmonares/patologia , Pneumopatias/etiologia , Pneumopatias/diagnóstico , Síndrome de Churg-Strauss/diagnóstico , Síndrome de Churg-Strauss/complicações , Granulomatose com Poliangiite/complicações , Granulomatose com Poliangiite/diagnóstico , Peroxidase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...