Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.602
Filtrar
1.
Food Chem ; 462: 140974, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197239

RESUMO

Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.


Assuntos
Chenopodium quinoa , Emulsificantes , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Amido , Chenopodium quinoa/química , Amido/química , Emulsões/química , Emulsificantes/química , Proteínas de Plantas/química , Tamanho da Partícula , Reologia
2.
Food Chem ; 462: 140949, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213976

RESUMO

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.


Assuntos
Antioxidantes , Hidrogéis , Mangifera , Extratos Vegetais , Reologia , Amido , Mangifera/química , Hidrogéis/química , Extratos Vegetais/química , Amido/química , Antioxidantes/química , Viscosidade , Frutas/química , Fenóis/química
3.
Food Chem ; 462: 140987, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217748

RESUMO

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Assuntos
Culinária , Congelamento , Germinação , Campos Magnéticos , Oryza , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Farinha/análise , Amido/química , Amido/metabolismo , Água/química , Dureza , Manipulação de Alimentos , Sementes/química , Sementes/crescimento & desenvolvimento
4.
Food Chem ; 462: 140847, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226647

RESUMO

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Assuntos
Culinária , Fibras na Dieta , Oryza , Sementes , Oryza/química , Fibras na Dieta/análise , Sementes/química , Valor Nutritivo , Paladar , Humanos , Manipulação de Alimentos , Amido/química , Amilose/química , Amilose/análise
5.
Food Chem ; 462: 140993, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197246

RESUMO

To improve paste stability of cassava starch, including acid resistance, high-temperature shear resistance and freeze-thaw stability, cassava starch was modified by sequential maltogenic amylase and transglucosidase to form an optimally denser structure, or branched density (12.76 %), molecular density (15.17 g/mol/nm3), and the proportions of short-branched chains (41.41 % of A chains and 44.01 % of B1 chains). Viscosity stability (88.52 %) of modified starch was higher than that (64.92 %) of native starch. After acidic treatment for 1 h, the viscosity of modified starch and native starch decreased by 56.53 % and 65.70 %, respectively. Compared to native starch, modified starch had lower water loss in freeze-thaw cycles and less viscosity reduction during high-temperature and high-shear processing. So, the appropriate molecular density and denser molecule structure enhanced paste stabilities of modified starch. The outcome expands the food and non-food applications of cassava starch.


Assuntos
Manihot , Amido , Amido/química , Manihot/química , Viscosidade , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Glucosiltransferases/química , Glucosiltransferases/metabolismo
6.
Food Chem ; 462: 140992, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208723

RESUMO

The development and manufacture of high-quality starch are a new research focus in food science. Here, transglutaminase was used in the wet processing of glutinous rice flour to prepare customized sweet dumplings. Transglutaminase (0.2 %) lowered protein loss in wet processing and reduced the crystallinity and viscosity of glutinous rice flour. Moreover, it lowered the cracking and cooking loss of sweet dumplings after freeze-thaw cycles, and produced sweet dumplings with reduced hardness and viscosity, making them more suitable for people with swallowing difficulties. Additionally, in sweet dumplings with 0.2 % transglutaminase, the encapsulation of starch granules by the protein slowed down the digestion and reduced the final hydrolysis rate, which are beneficial for people with weight and glycemic control issues. In conclusion, this study contributes to the production of tasty, customized sweet dumplings.


Assuntos
Digestão , Farinha , Oryza , Amido , Transglutaminases , Oryza/química , Oryza/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Farinha/análise , Amido/química , Amido/metabolismo , Manipulação de Alimentos , Humanos , Viscosidade , Culinária , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biocatálise
7.
PeerJ ; 12: e18038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314842

RESUMO

Background: Seed hypocotyl germination signifies the initiation of the life cycle for plants and represents a critical stage that heavily influences subsequent plant growth and development. While previous studies have established the melatonin (MEL; N-acetyl-5-methoxytrytamine) effect to stimulate seed germination of some plants, its specific role in peony germination and underlying physiological mechanism have yet to be determined. This study aims to evaluate the MEL effect for the hypocotyl germination of peony seeds, further ascertain its physiological regulation factors. Methods: In this work, seeds of Paeonia ostia 'Fengdan' were soaked into MEL solution at concentrations of 50, 100, 200, and 400 µM for 48 h and then germinated in darkness in incubators. Seeds immersed in distilled water without MEL for the same time were served as the control group. Results: At concentrations of 100 and 200 µM, MEL treatments improved the rooting rate of peony seeds, while 400 µM inhibited the process. During seed germination, the 100 and 200 µM MEL treatments significantly reduced the starch concentration, and α-amylase was the primary amylase involved in the action of melatonin. Additionally, compared to the control group, 100 µM MEL treatment significantly increased the GA3 concentration and radicle thickness of seeds, but decreased ABA concentration. The promotion effect of 200 µM MEL pretreatment on GA1 and GA7 was the most pronounced, while GA4 concentration was most significantly impacted by 50 µM and 100 µM MEL. Conclusion: Correlation analysis established that 100 µM MEL pretreatment most effectively improved the rooting rate characterized by increasing α-amylase activity to facilitate starch decomposition, boosting GA3 levels, inhibiting ABA production to increase the relative ratio of GA3 to ABA. Moreover, MEL increased radicle thickness of peony seeds correlating with promoting starch decomposition and enhancing the synthesis of GA1 and GA7.


Assuntos
Germinação , Hipocótilo , Melatonina , Paeonia , Reguladores de Crescimento de Plantas , Sementes , Amido , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Paeonia/efeitos dos fármacos , Paeonia/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , alfa-Amilases/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273191

RESUMO

Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.


Assuntos
Mapeamento Cromossômico , Fagopyrum , Locos de Características Quantitativas , Amido , Fagopyrum/genética , Fagopyrum/metabolismo , Amido/genética , Amido/metabolismo , Polimorfismo de Nucleotídeo Único , Fenótipo , Amilose/metabolismo , Amilose/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Amilopectina/metabolismo , Amilopectina/genética , Genes de Plantas
9.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273232

RESUMO

Foxtail millet is one of the oldest crops, and its endosperm contains up to 70% of starch. Grain filling is an important starch accumulation process associated with foxtail millet yield and quality. However, the molecular mechanisms of grain filling in foxtail millet are relatively unclear. Here, we investigate the genes and regulated miRNAs associated with starch synthesis and metabolism in foxtail millet using high-throughput small RNA, mRNA and degradome sequencing. The regulation of starch synthesis and quality is carried out mainly at the 15 DAA to 35 DAA stage during grain filling. The DEGs between waxy and non-waxy foxtail millet were significant, especially for GBSS. Additionally, ptc-miR169i_R+2_1ss21GA, fve-miR396e_L-1R+1, mtr-miR162 and PC-5p-221_23413 regulate the expression of genes associated with the starch synthesis pathway in foxtail millet. This study provides new insights into the molecular mechanisms of starch synthesis and quality formation in foxtail millet.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , MicroRNAs , Setaria (Planta) , Amido , MicroRNAs/genética , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Amido/biossíntese , Endosperma/genética , Endosperma/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos , RNA de Plantas/genética , RNA de Plantas/biossíntese
10.
Plant Cell Rep ; 43(10): 240, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317879

RESUMO

KEY MESSAGE: Assembly of PUFA-attached TAGs is intimately correlated to turnover of newly formed membrane lipids in starch-deficient Chlamydomonas exposed to high light and nitrogen stress under air-aerated mixotrophic conditions. Triacylglycerols (TAGs) rich in polyunsaturated fatty acids (PUFAs) in microalgae have attracted extensive attention due to its promising application in nutraceuticals and other high-value compounds. Previous studies revealed that PUFAs accumulated in TAG primarily derived from the dominant membrane lipids, monogalactosyldiacylglycerolipid, digalactosyldiacylglycerol and diacylglycerol-N,N,N-trimethylhomoserine (DGTS), in the model alga Chlamydomonas reinhardtii. However, their respective contribution to PUFA-attached TAG integration has not been clearly deciphered, particularly in starchless Chlamydomonas that hyper-accumulates TAG. In this study, the starchless C. reinhardtii BAFJ5 was mixotrophically cultivated in photobioreactors aerated with air (0.04% CO2), and we monitored the dynamic changes in growth, cellular carbon and nitrogen content, photosynthetic activity, biochemical compositions, and glycerolipid remodeling under high light and nitrogen starvation conditions. The results indicated that multiple PUFAs continually accumulated in total lipids and TAG, and the primary distributors of these PUFAs gradually shifted from membrane lipids to TAG in stress-induced BAFJ5. The stoichiometry analyses showed that the PUFA-attached TAG assembly attributed to turnover of not only the major glycerolipids, but also the phospholipids, phosphatidylethanolamine (PE) and phosphatidylglycerol. Specifically, the augmented C16:3n3 and C18:3n3 in TAG mainly originated from de novo-synthesized galactolipids, while the cumulative C18:3n6 and C18:4n3 in TAG were intimately correlated with conversion of the newly formed DGTS and PE. These findings emphasized significance of PUFA-attached TAG formation dependent on turnover of de novo assembled membrane lipids in starch-deficient Chlamydomonas, beneficial for enhanced production of value-added lipids in microalgae.


Assuntos
Chlamydomonas reinhardtii , Ácidos Graxos Insaturados , Lipídeos de Membrana , Triglicerídeos , Triglicerídeos/metabolismo , Lipídeos de Membrana/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estresse Fisiológico , Amido/metabolismo , Nitrogênio/metabolismo , Galactolipídeos/metabolismo , Fotossíntese
11.
J Hazard Mater ; 479: 135592, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217930

RESUMO

Microplastics (MPs) are increasingly entering agricultural soils, often from the breakdown of agricultural plastics (e.g., mulching films). This study investigates the effects of realistic MPs from different mulching films: two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-blended polybutylene adipate co-terephthalate; PBAT-BD-1 and PBAT-BD-2). MPs were mixed into Lufa 2.2 soil at a concentration range from 0.005 % to 5 % (w/w dry soil), wide enough to reflect both realistic environmental levels and "worst-case scenarios". Effects on Enchytraeus crypticus reproduction over two generations and six important soil properties were studied. PBAT MPs notably reduced enchytraeid reproduction in the F0 generation, with a maximum decrease of 35.5 ± 9.6 % at 0.5 % concentration. F1 generation was unaffected by PBAT contamination. PE MPs had a more substantial reproductive impact, with up to a 55.3 ± 9.7 % decrease at 5 % PE-1 concentration compared to the control, showing a dose-related effect except for 1 %. Both MP types also significantly affected soil water holding capacity, pH, and total carbon. Other soil properties remained unaffected. Our results highlight the potential negative impacts of MPs originating from real agricultural plastics on soil health and raise concerns about the role of agricultural plastics in sustainable agriculture and food safety.


Assuntos
Agricultura , Microplásticos , Reprodução , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Microplásticos/toxicidade , Solo/química , Animais , Reprodução/efeitos dos fármacos , Polietileno/química , Oligoquetos/efeitos dos fármacos , Plásticos/química , Poliésteres/química , Amido/química
12.
Carbohydr Polym ; 344: 122525, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218548

RESUMO

Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.


Assuntos
Diabetes Mellitus , Amido , Amido/química , Amido/metabolismo , Humanos , Diabetes Mellitus/metabolismo , Sintase do Amido/metabolismo , Digestão , Estrutura Molecular , Animais
13.
Food Res Int ; 194: 114869, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232508

RESUMO

Genistein could interact with starch to slow starch digestion by forming starch-genistein complexes. However, genistein had low solubility in water, which hindered the interaction with starch and therefore the formation of the complexes. This study presented a pathway to promote the formation of starch-genistein complexes using an antisolvent method in two steps: (i) adding ethanol to the solution containing starch and genistein to increase genistein solubility, and (ii) evaporating ethanol from the solution to promote genistein interaction with starch. The complexes prepared using this antisolvent method had higher crystallinity (9.45 %), complex index (18.17 %), and higher content of resistant starch (RS) (19.04 %) compared to samples prepared in pure water or ethanol-containing aqueous solution without ethanol evaporation treatment (these samples showed crystallinity of 6.97 %-8.00 %, complex index of 9.09 %-11.4 2%, and RS of 4.45 %-14.38 %). Molecular dynamic simulation results confirmed that the changes in solution polarity significantly determined the formation of starch-genistein complexes. Findings offered a feasible pathway to efficiently promote starch interaction with genistein and in turn mitigate starch digestibility.


Assuntos
Digestão , Genisteína , Solubilidade , Amido , Amido/química , Genisteína/química , Etanol/química , Solventes/química , Simulação de Dinâmica Molecular
14.
Food Res Int ; 194: 114878, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232516

RESUMO

There has been a growing interest in incorporating sprouted wheat wholemeal (SWW) into whole grain baking, driven by its heightened nutritional content and improved nutrient bioavailability. This study aimed to assess how substituting soft wheat flour (SWF) with various levels of wheat wholemeal (unsprouted and sprouted) impacts the quality and sensory characteristics of hard pretzel sticks, which are globally enjoyed as popular snacks. The dough samples containing wholemeal did not demonstrate the same extensibility as the SWF dough sample. Additionally, substituting SWF with wholemeal increased the resistance to extension. Analysis of the Raman spectra of SWF and two other selected dough samples containing 75 % unsprouted wheat wholemeal (UWW) or SWW indicated α-helix as the dominant protein secondary structure. As the ratio of wholemeal to SWF increased in both unsprouted and sprouted wheat pretzel samples, protein and fiber content increased and starch content decreased, resulting in a decreased peak viscosity in an RVA (Rapid Visco Analyzer) test. The findings also showed no significant difference in hardness between the SWF pretzel sample and all other samples (p > 0.05), except when SWF was replaced with the highest level (75 %) of SWW, resulting in a significantly softer texture. Color analysis revealed that the introduction of wholemeal led to a decrease in the L* value, indicating a darker surface appearance in the samples, likely due to the presence of bran. Finally, sensory evaluation determined that replacing SWF with 25 % SWW resulted in the creation of a sample most similar to SWF in terms of sensory attributes. This research paves the way for future studies and advancements in the formulation and analysis of pretzel dough, creating opportunities to improve both the quality of the product and consumer satisfaction.


Assuntos
Farinha , Triticum , Triticum/química , Farinha/análise , Humanos , Valor Nutritivo , Paladar , Fibras na Dieta/análise , Viscosidade , Dureza , Pão/análise , Grãos Integrais/química , Manipulação de Alimentos/métodos , Lanches , Feminino , Masculino , Adulto , Amido/química , Culinária/métodos
15.
Food Res Int ; 194: 114887, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232521

RESUMO

White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.


Assuntos
Culinária , Digestão , Oryza , Amido , Oryza/química , Amido/química , Amido/metabolismo , Amilopectina/química , Humanos , Amilose/química , Relação Estrutura-Atividade , Estrutura Molecular , Paladar
16.
Food Res Int ; 194: 114913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232536

RESUMO

The formation of starch-polyphenol complexes through high-pressure homogenization (HPH) is a promising method to reduce starch digestibility and control postprandial glycemic responses. This study investigated the combined effect of pH (5, 7, 9) and polyphenol structures (gallic acid, ferulic acid, quercetin, and tannic acid) on the formation, muti-scale structure, physicochemical properties, and digestibility of pea starch (PS)-polyphenol complexes prepared by HPH. Results revealed that reducing pH from 9 to 5 significantly strengthened the non-covalent binding between polyphenols and PS, achieving a maximum complex index of 13.89 %. This led to the formation of complexes with higher crystallinity and denser structures, promoting a robust network post-gelatinization with superior viscoelastic and thermal properties. These complexes showed increased resistance to enzymatic digestion, with the content of resistant starch increasing from 28.66 % to 42.00 %, rapidly digestible starch decreasing from 42.82 % to 21.88 %, and slowly digestible starch reducing from 71.34 % to 58.00 %. Gallic acid formed the strongest hydrogen bonds with PS, especially at pH 5, leading to the highest enzymatic resistance in PS-gallic acid complexes, with the content of resistant starch of 42.00 %, rapidly digestible starch of 23.35 % and slowly digestible starch of 58.00 %, and starch digestion rates at two digestive stages of 1.82 × 10-2 min-1 and 0.34 × 10-2 min-1. These insights advance our understanding of starch-polyphenol interactions and support the development of functional food products to improve metabolic health by mitigating rapid glucose release.


Assuntos
Digestão , Ácido Gálico , Pisum sativum , Polifenóis , Amido , Concentração de Íons de Hidrogênio , Polifenóis/química , Amido/química , Amido/metabolismo , Pisum sativum/química , Ácido Gálico/química , Taninos/química , Pressão , Ácidos Cumáricos/química , Manipulação de Alimentos/métodos , Quercetina/química
17.
Int J Biol Macromol ; 278(Pt 4): 135205, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256129

RESUMO

Rising concerns around plastic pollution from single-use plastic (SUPs), especially food packaging, have driven interest in sustainable alternatives. As such, algae biomass has gained attention for bioplastic production due to algae's rapid growth and abundant polysaccharides. This research focuses on extracting carrageenan from Kappaphycus alvarezii, extensively cultivated in Sabah, Malaysia, and utilizing it in combination with starch and glycerol to develop algae-based films. The physicochemical properties and degradation rate of these films were evaluated, revealing that the addition of carrageenan enhanced overall thermal stability meanwhile increasing water solubility, water content but reducing the degradation rate and swelling degree. This is primarily due to the crystalline structures of carrageenan, which provide a more rigid arrangement compared to the network of starch polymers. However, the incorporation of starch into the blends has enhanced the elongation and surface morphology, resulting in more balanced properties. Overall, these carrageenan films displayed impressive thermal, mechanical, and biodegradability characteristics, establishing their viability as substitutes for conventional plastics.


Assuntos
Carragenina , Solubilidade , Amido , Carragenina/química , Amido/química , Rodófitas/química , Fenômenos Químicos , Água/química , Embalagem de Alimentos , Algas Comestíveis
18.
Nutrients ; 16(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275130

RESUMO

Amino acid (AA)-related inherited metabolic disorders (IMDs) and urea cycle disorders (UCDs) require strict dietary management including foods low in protein such as fruits, vegetables and starchy roots. Despite this recommendation, there are limited data on the AA content of many of these foods. The aim of this study is to describe an analysis of the protein and AA content of a range of fruits, vegetables and starchy roots, specifically focusing on amino acids (AAs) relevant to AA-related IMDs such as phenylalanine (Phe), methionine (Met), leucine (Leu), lysine (Lys) and tyrosine (Tyr). AA analysis was performed using high-performance liquid chromatography (HPLC) on 165 food samples. Protein analysis was also carried out using the Dumas method. Foods were classified as either 'Fruits', 'Dried fruits', 'Cruciferous vegetables', 'Legumes', 'Other vegetables' or 'Starchy roots'. 'Dried fruits' and 'Legumes' had the highest median values of protein, while 'Fruits' and 'Cruciferous vegetables' contained the lowest median results. 'Legumes' contained the highest and 'Fruits' had the lowest median values for all five AAs. Variations were seen in AA content for individual foods. The results presented in this study provide useful data on the protein and AA content of fruits, vegetables and starchy roots which can be used in clinical practice. This further expansion of the current literature will help to improve diet quality and metabolic control among individuals with AA-related IMDs and UCDs.


Assuntos
Aminoácidos , Proteínas Alimentares , Frutas , Raízes de Plantas , Amido , Verduras , Verduras/química , Frutas/química , Raízes de Plantas/química , Aminoácidos/análise , Proteínas Alimentares/análise , Amido/análise , Humanos , Doenças Metabólicas , Cromatografia Líquida de Alta Pressão/métodos , Valor Nutritivo
19.
Nutrients ; 16(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275354

RESUMO

A diet with low content of fermentable oligo-, di-, and monosaccharides and polyols (FODMAP) is established treatment for irritable bowel syndrome (IBS), with well-documented efficiency. A starch- and sucrose-reduced diet (SSRD) has shown similar promising effects. The primary aim of this randomized, non-inferiority study was to test SSRD against low FODMAP and compare the responder rates (RR = ∆Total IBS-SSS ≥ -50) to a 4-week dietary intervention of either diet. Secondary aims were to estimate responders of ≥100 score and 50% reduction; effects on extraintestinal symptoms; saturation; sugar craving; anthropometric parameters; and blood pressure. 155 IBS patients were randomized to SSRD (n = 77) or low FODMAP (n = 78) for 4 weeks, with a follow-up 5 months later without food restrictions. The questionnaires Rome IV, IBS-severity scoring system (IBS-SSS), and visual analog scale for IBS (VAS-IBS) were completed at baseline and after 2 and 4 weeks and 6 months. Weight, height, waist circumference, and blood pressures were measured. Comparisons were made within the groups and between changes in the two groups. There were no differences between groups at baseline. The responder rate of SSRD was non-inferior compared with low FODMAPs at week 2 (79.2% vs. 73.1%; p = 0.661;95% confidence interval (CI) = -20-7.2) and week 4 (79.2% vs. 78.2%; p = 1.000;95%CI = -14-12). Responder rate was still high when defined stricter. All gastrointestinal and extraintestinal symptoms were equally improved (p < 0.001 in most variables). SSRD rendered greater reductions in weight (p = 0.006), body mass index (BMI) (p = 0.005), and sugar craving (p = 0.05), whereas waist circumference and blood pressure were equally decreased. Weight and BMI were regained at follow-up. In the SSRD group, responders at 6 months still had lowered weight (-0.7 (-2.5-0.1) vs. 0.2 (-0.7-2.2) kg; p = 0.005) and BMI (-0.25 (-0.85-0.03) vs. 0.07 (-0.35-0.77) kg/m2; p = 0.009) compared with baseline in contrast to non-responders. Those who had tested both diets preferred SSRD (p = 0.032). In conclusion, a 4-week SSRD intervention was non-inferior to low FODMAP regarding responder rates of gastrointestinal IBS symptoms. Furthermore, strong reductions of extraintestinal symptoms were found in both groups, whereas reductions in weight, BMI, and sugar craving were most pronounced following SSRD.


Assuntos
Síndrome do Intestino Irritável , Amido , Humanos , Síndrome do Intestino Irritável/dietoterapia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Amido/administração & dosagem , Resultado do Tratamento , Fermentação , Polímeros , Monossacarídeos , Dieta com Restrição de Carboidratos/métodos , Sacarose Alimentar/administração & dosagem , Oligossacarídeos , Dissacarídeos/administração & dosagem , Pressão Sanguínea
20.
Food Res Int ; 195: 114957, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277262

RESUMO

To reveal the effect of wheat flour particle size on the quality deterioration of quick-frozen dumpling wrappers (QFDW) during freeze-thawed (F/T) cycles, the components and physicochemical properties of wheat flours with five different particle sizes were determined and compared, along with the changes in texture and sensory properties, water status, and microstructure of QFDW during F/T cycles. Results showed that as particle size decreased, the damaged starch content and B-type starch content increased, the water absorption increased, and the gluten strength decreased. Furthermore, F/T cycles negatively impacted the quality of QFDW, evidenced by decreased texture properties and sensory evaluation score, water redistribution, higher freezable water content, and disruption of gluten network. Notably, QFDW made from larger particle size wheat flours required the shortest duration when traversing the maximum ice crystal formation zone. The QFDW made from larger particle size wheat flours formed a more stable starch-gluten matrix, which resisted the damage caused by ice recrystallization, demonstrating better water binding capacity and F/T resistance. The results may provide theoretical guidance for the study of QFDW quality and the moderate processing of wheat flour in actual production.


Assuntos
Farinha , Manipulação de Alimentos , Congelamento , Glutens , Tamanho da Partícula , Amido , Triticum , Água , Farinha/análise , Triticum/química , Amido/química , Amido/análise , Manipulação de Alimentos/métodos , Água/química , Glutens/análise , Glutens/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...