Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.390
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 316, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249607

RESUMO

Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.


Assuntos
Antibacterianos , Meios de Cultura , Fermentação , Streptomyces , Temperatura , Streptomyces/metabolismo , Streptomyces/crescimento & desenvolvimento , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Carbonato de Cálcio/metabolismo , Aminoglicosídeos/farmacologia , Microbiologia Industrial , Reatores Biológicos/microbiologia
2.
Sci Rep ; 14(1): 20713, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237684

RESUMO

Lidamycin (LDM) has been confirmed to have a strong anti-pancreatic cancer effect and can affect the mitochondrial function of pancreatic cancer cells. Mitofusin-2 (Mfn2) is located in the outer membrane of mitochondria, and Mfn2 is currently believed to play a role in cancer inhibition in pancreatic cancer. In order to explore whether the anti-pancreatic cancer effect of LDM is related to Mfn2-mediated mitophagy, Bioinformatics and in vitro cell experiments are used for experimental research. The experimental results demonstrated that Mfn2 is correlated with mitochondrial autophagy in pancreatic cancer. Lidamycin can increase the expression of Mfn2 in pancreatic cancer and affect the process of EMT, affect the level of reactive oxygen species and mitochondrial membrane potential, and increase the expression of mitochondrial autophagy marker proteins BNIP3L and Beclin1. These results demonstrate that Mfn2 affects mitophagy in pancreatic cancer cells by regulating the expression of Mfn2.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Membrana , Proteínas Mitocondriais , Mitofagia , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Mitofagia/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Linhagem Celular Tumoral , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Aminoglicosídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor
3.
Elife ; 132024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093940

RESUMO

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.


Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.


Assuntos
Aminoglicosídeos , Antibacterianos , Escherichia coli , Proteínas Ribossômicas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Metabolismo Energético/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Tolerância a Medicamentos , Proteômica , Ciclo do Ácido Cítrico/efeitos dos fármacos
4.
Cells ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120305

RESUMO

Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.


Assuntos
Aminoglicosídeos , Antibacterianos , Canais de Potencial de Receptor Transitório , Humanos , Animais , Antibacterianos/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Aminoglicosídeos/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos
5.
Biomedica ; 44(2): 182-190, 2024 05 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-39088528

RESUMO

Introduction: The Mycobacterium chelonae species and the M. avium and M. abscessus complexes are emerging pathogens that cause mycobacteriosis. Treatment depends on the species and subspecies identified. The drugs of choice are macrolides and aminoglycosides. However, due to the resistance identified to these drugs, determining the microbe's sensitivity profile will allow clinicians to improve the understanding of the prognosis and evolution of these pathologies. Objective: To describe the macrolide and aminoglycoside susceptibility profile of cultures identified by Colombia's Laboratorio Nacional de Referencia de Mycobacteria from 2018 to 2022, as Mycobacterium avium complex, M. abscessus complex, and M. chelonae. Materials and methods. This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method. Materials and methods: This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method. Results: We identified 159 (47.3 %) cultures as M. avium complex, of which 154 (96.9 %) were sensitive to macrolides, and 5 (3.1 %) were resistant; all were sensitive to aminoglycosides. From the 125 (37.2 %) cultures identified as M. abscessus complex, 68 (54.4 %) were sensitive to macrolides, 57 (45.6 %) were resistant to aminoglycosides, and just one (0.8 %) showed resistance to aminoglycosides. The 52 cultures (15.5 %) identified as M. chelonae were sensitive to macrolides and aminoglycosides. Conclusions: The three studied species of mycobacteria have the least resistance to Amikacin. Subspecies identification and their susceptibility profiles allow the establishment of appropriate treatment schemes, especially against M. abscessus.


Introducción. Mycobacterium chelonae y los complejos Mycobacterium avium y M. abscessus, son agentes patógenos emergentes causantes de micobacteriosis. El tratamiento de esta infección depende de la especie y la subespecie identificadas. Los fármacos de elección son los macrólidos y aminoglucósidos, contra los cuales se ha reportado resistencia; por esta razón, el determinar el perfil de sensibilidad le permite al médico tratante comprender mejor el pronóstico y la evolución de estas infecciones. Objetivo. Describir los perfiles de sensibilidad ante macrólidos y aminoglucósidos, de los cultivos identificados como complejo Mycobacterium avium, complejo M. abscessus o especie M. chelonae, en el Laboratorio Nacional de Referencia de Micobacterias durante los años 2018 a 2022. Materiales y métodos. Se llevó a cabo un estudio descriptivo del perfil de sensibilidad a macrólidos y aminoglucósidos, de los cultivos identificados como complejo M. avium, complejo M. abscessus o M. chelonae, mediante la metodología GenoType® NTM-DR. Resultados. Los cultivos del complejo M. avium fueron 159 (47,3 %), de los cuales, 154 (96,9 %) fueron sensibles y 5 (3,1 %) resistentes a los macrólidos; todos fueron sensibles a los aminoglucósidos. Del complejo M. abscessus se estudiaron 125 (37,2 %) cultivos, 68 (54,4 %) resultaron sensibles y 57 (45,6 %) resistentes a los macrólidos; solo un cultivo (0,8 %) fue resistente a los aminoglucósidos. De M. chelonae se analizaron 52 cultivos (15,5 %), todos sensibles a los macrólidos y aminoglucósidos. Conclusiones. En las tres especies de micobacterias estudiadas, la resistencia contra la amikacina fue la menos frecuente. La identificación de las subespecies y los perfiles de sensibilidad permiten instaurar esquemas de tratamiento adecuados, especialmente en las micobacteriosis causadas por M. abscessus.


Assuntos
Aminoglicosídeos , Macrolídeos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Complexo Mycobacterium avium , Mycobacterium chelonae , Macrolídeos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação , Colômbia/epidemiologia , Mycobacterium chelonae/efeitos dos fármacos , Mycobacterium chelonae/genética , Mycobacterium chelonae/isolamento & purificação , Aminoglicosídeos/farmacologia , Humanos , Complexo Mycobacterium avium/efeitos dos fármacos , Complexo Mycobacterium avium/genética , Complexo Mycobacterium avium/isolamento & purificação , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Prevalência , Farmacorresistência Bacteriana Múltipla
6.
Front Cell Infect Microbiol ; 14: 1435123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139766

RESUMO

Background: Aminoglycoside-modifying enzymes (AMEs) play an essential role in bacterial resistance to aminoglycoside antimicrobials. With the development of sequencing techniques, more bacterial genomes have been sequenced, which has aided in the discovery of an increasing number of novel resistance mechanisms. Methods: The bacterial species was identified by 16S rRNA gene homology and average nucleotide identity (ANI) analyses. The minimum inhibitory concentration (MIC) of each antimicrobial was determined by the agar dilution method. The protein was expressed with the pCold I vector in E. coli BL21, and enzyme kinetic parameters were examined. The whole-genome sequence of the bacterium was obtained via the Illumina and PacBio sequencing platforms. Reconstruction of the phylogenetic tree, identification of conserved functional residues, and gene context analysis were performed using the corresponding bioinformatic techniques. Results: A novel aminoglycoside resistance gene, designated aph(3')-Ie, which confers resistance to ribostamycin, kanamycin, sisomicin and paromomycin, was identified in the chromosome of the animal bacterium Citrobacter gillenii DW61, which exhibited a multidrug resistance phenotype. APH(3')-Ie showed the highest amino acid identity of 74.90% with the functionally characterized enzyme APH(3')-Ia. Enzyme kinetics analysis demonstrated that it had phosphorylation activity toward four aminoglycoside substrates, exhibiting the highest affinity (K m, 4.22 ± 0.88 µM) and the highest catalytic efficiency [k cat/K m, (32.27 ± 8.14) × 104] for ribomycin. Similar to the other APH(3') proteins, APH(3')-Ie contained all the conserved functional sites of the APH family. The aph(3')-Ie homologous genes were present in C. gillenii isolates from different sources, including some of clinical significance. Conclusion: In this work, a novel chromosomal aminoglycoside resistance gene, designated aph(3')-Ie, conferring resistance to aminoglycoside antimicrobials, was identified in a rabbit isolate C. gillenii DW61. The elucidation of the novel resistance mechanism will aid in the effective treatment of infections caused by pathogens carrying such resistance genes.


Assuntos
Aminoglicosídeos , Antibacterianos , Citrobacter , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Citrobacter/enzimologia , Citrobacter/genética , Citrobacter/metabolismo , Citrobacter/classificação , Aminoglicosídeos/farmacologia , Aminoglicosídeos/metabolismo , RNA Ribossômico 16S/genética , Coelhos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Sequenciamento Completo do Genoma , Sisomicina/farmacologia , Sisomicina/análogos & derivados , Sisomicina/metabolismo , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Ribostamicina/metabolismo , Farmacorresistência Bacteriana/genética , Canamicina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Enterobacteriaceae/microbiologia
7.
Sci Transl Med ; 16(759): eadn2140, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110778

RESUMO

Hearing loss is a major health concern in our society, affecting more than 400 million people worldwide. Among the causes, aminoglycoside therapy can result in permanent hearing loss in 40% to 60% of patients receiving treatment, and despite these high numbers, no drug for preventing or treating this type of hearing loss has yet been approved by the US Food and Drug Administration. We have previously conducted high-throughput screenings of bioactive compounds, using zebrafish as our discovery platform, and identified piplartine as a potential therapeutic molecule. In the present study, we expanded this work and characterized piplartine's physicochemical and therapeutic properties. We showed that piplartine had a wide therapeutic window and neither induced nephrotoxicity in vivo in zebrafish nor interfered with aminoglycoside antibacterial activity. In addition, a fluorescence-based assay demonstrated that piplartine did not inhibit cytochrome C activity in microsomes. Coadministration of piplartine protected from kanamycin-induced hair cell loss in zebrafish and protected hearing function, outer hair cells, and presynaptic ribbons in a mouse model of kanamycin ototoxicity. Last, we investigated piplartine's mechanism of action by phospho-omics, immunoblotting, immunohistochemistry, and molecular dynamics experiments. We found an up-regulation of AKT1 signaling in the cochleas of mice cotreated with piplartine. Piplartine treatment normalized kanamycin-induced up-regulation of TRPV1 expression and modulated the gating properties of this receptor. Because aminoglycoside entrance to the inner ear is, in part, mediated by TRPV1, these results suggested that by regulating TRPV1 expression, piplartine blocked aminoglycoside's entrance, thereby preventing the long-term deleterious effects of aminoglycoside accumulation in the inner ear compartment.


Assuntos
Aminoglicosídeos , Perda Auditiva , Canais de Cátion TRPV , Peixe-Zebra , Animais , Canais de Cátion TRPV/metabolismo , Aminoglicosídeos/farmacologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/metabolismo , Perda Auditiva/prevenção & controle , Perda Auditiva/patologia , Camundongos , Ototoxicidade/metabolismo , Canamicina , Dioxolanos/farmacologia , Piperidonas
8.
BMC Infect Dis ; 24(1): 680, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982386

RESUMO

BACKGROUND: Aminoglycosides have been a cornerstone of the treatment of nosocomial infections caused by Pseudomonas aeruginosa for over 80 years. However, escalating emergence of resistance poses a significant challenge. Therefore, this study aimed to investigate the prevailing patterns of aminoglycoside resistance among clinical isolates of P. aeruginosa in Iran; as well as the underlying resistance mechanisms observed in patients referred to Ardabil hospitals. METHODS: A total of 200 isolates from five hospitals were evaluated. The resistance profiles of P. aeruginosa isolates to tobramycin, amikacin, and netilmicin were determined using the disk diffusion method. The capacity of aminoglycoside-resistant isolates to form biofilms was assessed through a phenotypic assay, and the results were confirmed using the gene amplification technique. The presence of genes associated with aminoglycoside resistance was detected using polymerase chain reaction (PCR). Quantitative reverse transcription PCR (qRT-PCR) was performed to measure the expression levels of genes encoding the MexXY-OprM efflux pump and PhoPQ two-component system (TCS). RESULTS: The prevalence of aminoglycoside-resistant P. aeruginosa isolates was 48%, with 94.7% demonstrating multidrug resistance (MDR). All aminoglycoside-resistant P. aeruginosa strains exhibited biofilm-forming capabilities and harbored all the genes associated with biofilm production. Among the nine genes encoding 16S rRNA methylase and aminoglycoside-modifying enzymes, three genes were detected in these isolates: aac(6')-Ib (85.4%), ant(2'')-Ia (18.7%), and aph(3')-VI (3.1%). Additionally, all aminoglycoside-resistant P. aeruginosa isolates carried mexY and phoP genes, although the expression levels of mexY and phoP were 75% and 87.5%, respectively. CONCLUSION: Given the considerably high prevalence of aminoglycoside-resistant P. aeruginosa strains, urgent measures are warranted to transition towards the use of novel aminoglycosides and to uphold vigilant surveillance of resistance patterns.


Assuntos
Aminoglicosídeos , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Irã (Geográfico)/epidemiologia , Humanos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prevalência , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Amicacina/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Tobramicina/farmacologia
9.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955378

RESUMO

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Assuntos
Aminoglicosídeos , Antibacterianos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Aminoglicosídeos/farmacologia , Tunísia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Infecções por Escherichia coli/microbiologia , Farmacorresistência Bacteriana/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Infecções por Klebsiella/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
J Mol Graph Model ; 131: 108817, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976944

RESUMO

The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.


Assuntos
Aminoglicosídeos , Escherichia coli , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ribossomos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Escherichia coli/efeitos dos fármacos , Ribossomos/química , Ribossomos/metabolismo , Sítios de Ligação , Ligantes , Fluxo de Trabalho , Antibacterianos/química , Antibacterianos/farmacologia
11.
Nature ; 632(8023): 39-49, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085542

RESUMO

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by ß-lactams that bind covalently to inhibit transpeptidases and ß-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed ß-strands of darobactins that target the undruggable ß-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.


Assuntos
Antibacterianos , Bactérias , Produtos Biológicos , Animais , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/metabolismo , Antibióticos beta Lactam/química , Antibióticos beta Lactam/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Sideróforos/metabolismo , Sideróforos/química , Sideróforos/farmacologia
12.
BMC Infect Dis ; 24(1): 763, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085804

RESUMO

BACKGROUND: One of the most prevalent bacteria that cause nosocomial infections is Pseudomonas aeruginosa. Fluoroquinolones (FQ) and aminoglycosides are vital antipseudomonal drugs, but resistance is increasingly prevalent. The study sought to investigate the diverse mechanisms underlying FQ and aminoglycoside resistance in various P. aeruginosa strains particularly during the COVID-19 crisis. METHODS: From various clinical and environmental samples, 110 P. aeruginosa isolates were identified and their susceptibility to several antibiotic classes was evaluated. Molecular techniques were used to track target gene mutations, the presence of genes encoding for quinolone resistance, modifying enzymes for aminoglycosides and resistance methyltransferase (RMT). Efflux pump role was assessed phenotypically and genotypically. Random amplified polymorphic DNA (RAPD) analysis was used to measure clonal diversity. RESULTS: QnrS was the most frequently encountered quinolone resistance gene (37.5%) followed by qnrA (31.2%) and qnrD (25%). Among aminoglycoside resistant isolates, 94.1% harbored modifying enzymes genes, while RMT genes were found in 55.9% of isolates. The aac(6')-Ib and rmtB were the most prevalent genes (79.4% and 32.3%, respectively). Most FQ resistant isolates overexpressed mexA (87.5%). RAPD fingerprinting showed 63.2% polymorphism. CONCLUSIONS: Aminoglycosides and FQ resistance observed in this study was attributed to several mechanisms with the potential for cross-contamination existence so, strict infection control practices are crucial.


Assuntos
Aminoglicosídeos , Antibacterianos , COVID-19 , Fluoroquinolonas , Genótipo , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Humanos , Aminoglicosídeos/farmacologia , Egito/epidemiologia , COVID-19/epidemiologia , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Hospitais , Técnica de Amplificação ao Acaso de DNA Polimórfico , Pandemias , Farmacorresistência Bacteriana Múltipla/genética
13.
Microb Pathog ; 194: 106822, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047802

RESUMO

Multidrug-resistant pathogens are now thought to be the primary global causes of disease and death. Therefore, it is imperative to develop new effective bioactive compounds from microbial sources, such as Streptomyces species. Nevertheless, the pharmaceutical industry suffered financial losses and low-quality end products as a result of Streptomyces bacteriophage contamination. To reduce the likelihood of phage-induced issues in the medical industry, it is crucial to develop a method for finding phage-resistant strains. Hence, we aimed to isolate and characterize Streptomyces spp. and Streptomyces phages from various rhizospheric soil samples in Egypt and to investigate their antibacterial activities. Moreover, we targeted development of a Streptomyces phage-resistant strain to extract its active metabolites and further testing its antibacterial activity. Herein, the antibacterial activities of the isolated 58 Streptomyces isolates showed that 10 (17.2 %) Streptomyces isolates had antibacterial activities against the tested bacteria including Listeria monocytogenes, E. coli O157, Acinetobacter baumannii, methicillin resistant-vancomycin-intermediate Staphylococcus aureus (MRSA-VISA) and Micrococcus luteus. Three lytic bacteriophages (ϕPRSC1, ϕPRSC2, and ϕPRSC4) belonging to the families Siphoviridae and Podoviridae were obtained from the rhizospheric soil samples using the most potent S. abietis isolate as the host strain. The three isolated Streptomyces phages were thermostable, ultraviolet stable, infectious, and had a wide range of hosts against the 10 tested Streptomyces isolates with antibacterial activities. The DNA of the ϕPRSC1 and ϕPRSC4 phages were resistant to digestion by EcoRI and HindIII, but the DNA of ϕPRSC2 was resistant to digestion by EcoRI and sensitive to digestion by HindIII. Of note, we developed a S. abietis strain resistant to the three isolated phages and its antibacterial activities were twice that of the wild strain. Finally, telomycin was recognized as an antibacterial metabolite extracted from phage-resistant S. abietis strain, which was potent against the tested Gram-positive bacteria including L. monocytogenes, MRSA-VISA, and M. luteus. Thus, our findings open new horizons for researching substitute antimicrobial medications for both existing and reemerging illnesses.


Assuntos
Antibacterianos , Microbiologia do Solo , Streptomyces , Streptomyces/virologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Egito , Podoviridae/isolamento & purificação , Siphoviridae/isolamento & purificação , Siphoviridae/genética , Bacteriófagos/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/virologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/virologia , Micrococcus luteus/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/virologia , Aminoglicosídeos/farmacologia , Testes de Sensibilidade Microbiana , Rizosfera
14.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38863730

RESUMO

Mutations in the TP53 tumor suppressor gene occur with high prevalence in a wide range of human tumors. A significant fraction of these mutations (around 10%) are nonsense mutations, creating a premature termination codon (PTC) that leads to the expression of truncated inactive p53 protein. Induction of translational readthrough across a PTC in nonsense mutant TP53 allows the production of full-length protein and potentially restoration of normal p53 function. Aminoglycoside antibiotics and a number of novel compounds have been shown to induce full-length p53 in tumor cells carrying various TP53 nonsense mutations. Full-length p53 protein generated by translational readthrough retains the capacity to transactivate p53 target genes and trigger tumor cell death. These findings raise hopes for efficient therapy of TP53 nonsense mutant tumors in the future.


Assuntos
Códon sem Sentido , Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Aminoglicosídeos/uso terapêutico , Aminoglicosídeos/farmacologia
15.
Int J Mycobacteriol ; 13(2): 197-205, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916392

RESUMO

BACKGROUND: Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS: The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS: We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION: As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mycobacterium tuberculosis , Proteômica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoglicosídeos/farmacologia , Cápsulas Bacterianas/metabolismo , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Biologia Computacional , Eletroforese em Gel Bidimensional , Tuberculose/microbiologia
16.
Mol Inform ; 43(7): e202300339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853661

RESUMO

Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.


Assuntos
Framicetina , Canamicina , RNA Bacteriano , RNA Ribossômico , Canamicina/química , Canamicina/farmacologia , Framicetina/química , Framicetina/farmacologia , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
17.
Virulence ; 15(1): 2367647, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38884466

RESUMO

The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.


Assuntos
Aminoglicosídeos , Antibacterianos , Edwardsiella tarda , NAD , Edwardsiella tarda/efeitos dos fármacos , Antibacterianos/farmacologia , NAD/metabolismo , Aminoglicosídeos/farmacologia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Neomicina/farmacologia , Sinergismo Farmacológico , Metabolômica , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
18.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38888319

RESUMO

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Assuntos
Aminoglicosídeos , Antraz , Antibacterianos , Bacillus anthracis , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Infecções Respiratórias , Animais , Lipoglicopeptídeos/farmacologia , Coelhos , Antraz/tratamento farmacológico , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Modelos Animais de Doenças , Levofloxacino/farmacologia , Feminino
19.
Int J Food Microbiol ; 419: 110747, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38772218

RESUMO

Campylobacter jejuni is recognized as a significant foodborne pathogen, and recent studies have indicated a rising trend of aminoglycosides resistance gene aph(2″)-If among C. jejuni isolates from food-producing animals in China. However, systematic information about aph(2″)-If-positive C. jejuni from food-producing animals and other sources worldwide based on whole-genome analysis remains a knowledge gap. In this study, we aimed to analyze the worldwide distribution, genetic environment and phylogenetic tree of aph(2″)-If by utilizing Whole Genome Sequencing (WGS) data obtained, coupled with information in the GenBank database. A total of 160C. jejuni isolates in the GenBank database and 14C. jejuni isolates in our laboratory carrying aph(2″)-If gene were performed for further analysis. WGS analysis revealed the global distribution of aph(2″)-If among C. jejuni from 6 countries. Multilocus Sequence Typing(MLST) results indicated that 70 STs were involved in the dissemination of aph(2″)-If, with ST10086 being the predominant ST. Whole-genome Multilocus Sequence Typing(wg-MLST) analysis according to times, countries, and origins of C. jejuni isolation further demonstrated a close relationship between aph(2″)-If carrying C. jejuni isolates from farm and food. The findings also revealed the existence of 32 distinct types of genetic environments surrounding aph(2″)-If among these isolates. Notably, Type 30, characterized by the arrangement ISsag10-deoD-ant(9)-hp-hp-aph(2″)-If, emerged as the predominant genetic environment. In conclusion, our analysis provides the inaugural perspective on the worldwide distribution of aph(2″)-If. This resistance gene demonstrates horizontal transferability and regional diffusion in a clonal pattern. The close association observed among aph(2″)-If-positive C. jejuni strains isolated from poultry, food, and clinical environments underscores the potential for zoonotic transmission from these isolates.


Assuntos
Aminoglicosídeos , Antibacterianos , Infecções por Campylobacter , Campylobacter jejuni , Farmacorresistência Bacteriana , Tipagem de Sequências Multilocus , Filogenia , Campylobacter jejuni/genética , Campylobacter jejuni/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/epidemiologia , Sequenciamento Completo do Genoma , Humanos , Prevalência , China , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana
20.
Indian J Med Microbiol ; 49: 100602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697481

RESUMO

PURPOSE: The study explores the impact of significant interpretative breakpoint changes for aminoglycosides and piperacillin-tazobactam in Enterobacterales and Pseudomonas aeruginosa, considering PK/PD, clinical data, and susceptibility on clinical reporting and use. PROCEDURE: Between January 2021 and June 2023, a total of 189,583 samples were processed for bacterial pathogens and antimicrobial susceptibility testing was performed using disc diffusion method/VITEK® 2 Compact system/broth microdilution. WHONET software was utilised to capture and analyse the changes in the interpretation of disc diffusion method, following updates to CLSI M100 documents in comparison to previous editions. Antimicrobial consumption data was collected and interpreted as DDD/100 bed days using AMC tool software. Here, we present data for 13,615 members of Order Enterobacterales and 1793 Pseudomonas aeruginosa isolates. FINDING: Enterobacterales exhibited a significant susceptibility drop of 14.7% for gentamicin and 21.7% for amikacin. Pseudomonas aeruginosa showed an increase in isolates with intermediate tobramycin susceptibility, from 0.6% to 29.7%, with relatively minor changes in piperacillin-tazobactam interpretation. CONCLUSION: The changes indicate a shift toward increased 'resistance' and 'intermediate susceptibility' for these antibiotics, emphasizing the need for cautious use and leveraging PK/PD knowledge for improved antibiotic utilization, patient outcomes, and antimicrobial stewardship.


Assuntos
Aminoglicosídeos , Antibacterianos , Combinação Piperacilina e Tazobactam , Pseudomonas aeruginosa , Combinação Piperacilina e Tazobactam/farmacologia , Combinação Piperacilina e Tazobactam/uso terapêutico , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Índia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/métodos , Enterobacteriaceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Amicacina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...