Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124644, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901235

RESUMO

Reaction between the polymeric [RuCl2(CO)2]n and the N,N-bidentate ligand, 8-amino-quinoline (Quin), in methanol, afforded the photoactivated CO releasing molecule with the formula of trans-(Cl,Cl)-[RuCl2(CO)2Quin]. In the presence of biomolecules or in solvents with varying polarity and coordinating abilities, the solvatochromic characteristics and dark stability were investigated. A new board band emerged in the visible spectrum during the illumination, and its position varies according to the type of solvent used, indicating the role of the solvent in controlling the nature of the CO-depleted species. Spectral methods were used in combination with density functional theory simulations to get insight into the local minimum structure and the electronic properties of the Ru(II) complex. The results of the myoglobin assay showed that within the first two hours of illumination, one of the two CO molecules was released. The cytotoxic properties of the Ru(II)-based complex were investigated against normal mice bone marrow stromal cells and malignant human acute monocytic leukaemia cells.


Assuntos
Aminoquinolinas , Monóxido de Carbono , Complexos de Coordenação , Rutênio , Animais , Camundongos , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Rutênio/química , Rutênio/farmacologia , Ligantes , Monóxido de Carbono/química , Mioglobina/química , Teoria da Densidade Funcional , Luz
2.
Anal Chem ; 96(24): 9885-9893, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848670

RESUMO

Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.


Assuntos
Arginina , Glutationa , Oxirredução , Espectrometria de Massas em Tandem , Animais , Arginina/metabolismo , Arginina/análise , Arginina/química , Glutationa/metabolismo , Glutationa/análise , Camundongos , Espectrometria de Massas em Tandem/métodos , Células RAW 264.7 , Carbamatos/metabolismo , Carbamatos/química , Cromatografia Líquida de Alta Pressão , Lipopolissacarídeos/farmacologia , Aminoquinolinas/química
3.
Bioorg Chem ; 148: 107472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788364

RESUMO

Patents tend to define a huge chemical space described by the combinatorial nature of Markush structures. However, the optimization of new principal active ingredient is frequently driven by a simple Free Wilson approach. This procedure leads to a highly focused study on the chemical space near a hit compound leaving many unexplored regions that may present highly biological active reservoirs. This study aims to demonstrate that this unveiled chemical space can hide compounds with interesting potential biological activity that would be worth pursuing. This underlines the value and necessity of broadening an approach beyond conventional strategies. Hence, we advocate for an alternative methodology that may be more efficient in the early drug discovery stages. We have selected the case of Tafenoquine, a single-dose treatment for the radical cure of P. vivax malaria approved by the FDA in 2018, as an example to illustrate the process. Through the deep exploration of the Tafenoquine chemical space, seven compounds with potential antimalarial activity have been rationally identified and synthesized. This small set is representative of the chemical diversity unexplored by the 58 analogs reported to date. After biological assessment, results evidence that our approach for rational design has proven to be a very efficient exploratory methodology suitable for the early drug discovery stages.


Assuntos
Aminoquinolinas , Antimaláricos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Parasitária , Plasmodium vivax/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos
4.
Chem Asian J ; 19(14): e202400248, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701035

RESUMO

The hydrogen bonding interaction between an amide N-H and the amide N of the preceding residue is prevalent in proline-containing proteins and peptides. However, the N-H⋅⋅⋅N hydrogen bonding interaction is rare in non-prolyl natural peptides due to restricted dihedral angles. Herein, we stabilize this type of interaction in 8-aminoquinoline appended non-prolyl peptides through bifurcated N⋅⋅⋅H⋅⋅⋅N hydrogen bond. The 8-aminoquinoline-incorporated model peptides 2 a-i were designed, synthesized, and the crystal structures of 2 a-c and 2 i were solved. Analysis of crystal data reveals that the amide N-H of aminoquinoline is involved in bifurcated hydrogen bonding interaction with the nitrogen of the preceding amino acid residue and the nitrogen in quinoline. Analysis of crystal packing, Hirshfeld surface and fingerprint plots confirms that the intermolecular O⋅⋅⋅H contacts significantly contribute to stabilizing bifurcated N⋅⋅⋅H⋅⋅⋅N hydrogen bonding interaction. Furthermore, NMR experiments and CD spectroscopy were conducted to examine the preferred conformation in solution, and the data corroborate with the crystal structure conformation.


Assuntos
Aminoquinolinas , Ligação de Hidrogênio , Peptídeos , Peptídeos/química , Peptídeos/síntese química , Aminoquinolinas/química , Aminoquinolinas/síntese química , Cristalografia por Raios X , Modelos Moleculares
5.
Chem Biol Drug Des ; 103(5): e14509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684369

RESUMO

The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 µM, 0.98 µM, 0.38 µM, and 0.17 µM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Ensaios de Seleção de Medicamentos Antitumorais , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
6.
Food Chem ; 440: 138273, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154285

RESUMO

A simple and reliable HPLC method was developed for quantification of chondroitin sulfate (CS). The procedure is based on precolumn hydrolysis of CS to liberate galactosamine and subsequent derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Hydrolysis and derivatization conditions were optimized. A linear correlation coefficient of 0.9999 was calculated within the range of 10-1500 µg/mL from the standard curve. The method produces good precision and good accuracy (100.75 % recovery). An advantage over other common methods is its ability to quantify CS of all molecular weights and structures, as evidenced by the determination of CS fractions with narrow molecular weight distributions obtained through depolymerization by different methods, while enzymatic HPLC was proven to be infeasible. Extraction recoveries of CS from monosaccharide mixed samples were > 93 %. The reliability was also validated by a small difference (-1.95 % to 4.12 %) relative to enzymatic HPLC results in analysing representative CS samples of different animal origins and suppliers.


Assuntos
Aminoquinolinas , Carbamatos , Sulfatos de Condroitina , Animais , Peso Molecular , Reprodutibilidade dos Testes , Aminoquinolinas/química , Cromatografia Líquida de Alta Pressão/métodos
7.
Eur J Med Chem ; 264: 116043, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118392

RESUMO

Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.


Assuntos
Antimaláricos , Quinolinas , Plasmodium falciparum , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Aminoquinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
8.
ChemMedChem ; 18(11): e202200653, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882935

RESUMO

Reported herein is the identification of a novel class of 4-aminoquinoline-trifluormethyltriazoline compounds as possible antiplasmodial agents. The compounds were accessed through a silver-catalyzed three-component reaction of trifluorodiazoethane with in situ generated Schiff base from corresponding quinolinylamine and aldehydes. While attempting to incorporate a sulfonyl moiety, the triazoline formed underwent spontaneous oxidative aromatization to afford triazole derivatives. All synthesized compounds were tested for their antimalarial potential in vitro and in vivo. Out of 32 compounds, four showed the most promising antimalarial activity with IC50 values ranging from 4 to 20 nM against Pf3D7 (chloroquine-sensitive) and from 120 to 450 nM against PfK1 (chloroquine-resistant) strains. One of these compounds was also found to be effective in animal studies; it showed a 99.9 % decrease in parasitic load on day 7 post-infection along with a 40 % cure rate and longest host life span.


Assuntos
Antimaláricos , Animais , Antimaláricos/química , Plasmodium falciparum , Cloroquina , Aminoquinolinas/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-36027706

RESUMO

The determination of amino acids in food and feed by chromatography has a long history and is described in several official methods, including standards from ISO, AOAC, and the European Commission (EC) regulation 152/2009. The procedure usually consists of labor- and time-consuming preparation techniques and ion-exchange chromatography with challenging chromatographic conditions. Consequently, several approaches have been published to overcome these drawbacks but the knowledge about their suitability for complex matrices such as food and feed is limited. In this paper, we describe the development of two new methods to determine amino acids in food and feed. These methods involve microwave hydrolysis and reversed-phase UHPLC-MS/MS with pre-column derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC). Both methods provide streamlined sample preparations and a dramatic reduction in analysis time while offering a high degree of specificity and selectivity. Selectivity also enabled the simultaneous determination of the more uncommon substances hydroxyproline, hydroxylysine, taurine, ornithine, and γ-amino butyric acid (GABA) along with amino acids typically present in food and feed. The results were all satisfactory with regards to sensitivity, accuracy, precision, and comparability with laboratories that use other methods, for example from ISO, AOAC, or regulation (EC) 152/2009. We therefore concluded that both methods provide a reliable and modern approach to overcome many of the drawbacks that occur with the conventional standard methods.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Aminoácidos/análise , Aminoquinolinas/química , Cromatografia Líquida de Alta Pressão/métodos , Hidrólise , Micro-Ondas
10.
ACS Infect Dis ; 8(8): 1700-1710, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848708

RESUMO

Pyrido[1,2-a]benzimidazoles (PBIs) are synthetic antiplasmodium agents with potent activity and are structurally differentiated from benchmark antimalarials. To study the cellular uptake of PBIs and understand the underlying phenotype of their antiplasmodium activity, their antiparasitic activities were examined in chloroquine (CQ)-susceptible and CQ-resistant Plasmodium falciparumin vitro. Moreover, drug uptake and heme detoxification suppression were examined in Plasmodium berghei-infected mice. The in vitro potency of PBIs is comparable to most 4-aminoquinolines. They have a speed of action in vitro that is superior to that of atovaquone and an ability to kill rings and trophozoites. The antiparasitic effects observed for the PBIs in cell culture and in infected mice are similar in terms of potency and efficacy and are comparable to CQ but with the added advantage of demonstrating equipotency against both CQ susceptible and resistant parasite strains. PBIs have a high rate of uptake by parasite cells and, conversely, a limited rate of uptake by host cells. The mechanism of cellular uptake of the PBIs differs from the ion-trap mechanism typically observed for 4-aminoquinolines, although they share key structural features. The high cellular uptake, attractive parasiticidal profile, and susceptibility of resistant strains to PBIs are desirable characteristics for new antimalarial agents.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antiparasitários/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Cloroquina/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Heme , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Plasmodium falciparum
11.
J Inorg Biochem ; 234: 111905, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752063

RESUMO

A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.


Assuntos
Antimaláricos , Rênio , Aminoquinolinas/química , Antimaláricos/química , Cloroquina/farmacologia , Resistência a Medicamentos , Ligantes , Plasmodium falciparum , Rênio/farmacologia
12.
J Biol Chem ; 298(3): 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101449

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Assuntos
Aminoquinolinas , Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Internalização do Vírus/efeitos dos fármacos
13.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164325

RESUMO

Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 µM, IC50(BChE) = 0.13-0.067 µM, and 14-18% propidium displacement at 20 µM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aß42 aggregation. Conjugates 3 had no effect on Aß42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/química , Antioxidantes/farmacologia , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Antioxidantes/química , Inibidores da Colinesterase/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
14.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995458

RESUMO

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Assuntos
Aminoquinolinas/química , Desenho de Fármacos , Proteínas/metabolismo , Administração Oral , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Animais , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Masculino , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Proteínas/antagonistas & inibidores , Ratos , Relação Estrutura-Atividade
15.
Eur J Pharmacol ; 916: 174659, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34871559

RESUMO

The development of sub-type selective α1 adrenoceptor ligands has been hampered by the high sequence similarity of the amino acids forming the orthosteric binding pocket of the three α1 adrenoceptor subtypes, along with other biogenic amine receptors. One possible approach to overcome this issue is to target allosteric sites on the α1 adrenoceptors. Previous docking studies suggested that one of the quinoline moieties of a bis(4-aminoquinoline), comprising a 9-carbon methylene linker attached via the amine groups, could interact with residues outside of the orthosteric binding site while, simultaneously, the other quinoline moiety bound within the orthosteric site. We therefore hypothesized that this compound could act in a bitopic manner, displaying both orthosteric and allosteric binding properties. To test this proposition, we investigated the allosteric activity of a series of bis(4-aminoquinoline)s with linker lengths ranging from 2 to 12 methylene units (designated C2-C12). A linear trend of increasing [3H]prazosin dissociation rate with increasing linker length between C7 and C11 was observed, confirming their action as allosteric modulators. These data suggest that the optimal linker length for the bis(4-aminoquinoline)s to occupy the allosteric site of the α1A adrenoceptor is between 7 and 11 methylene units. In addition, the ability of C9 bis(4-aminoquinoline) to modulate the activation of the α1A adrenoceptor by norepinephrine was subsequently examined, showing that C9 acts as a non-competitive antagonist. Our findings indicate that the bis(4-aminoquinolines) are acting as allosteric modulators of orthosteric ligand binding, but not efficacy, in a bitopic manner.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Regulação Alostérica/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Aminoquinolinas/farmacocinética , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cinética , Norepinefrina/farmacologia , Prazosina/farmacologia
16.
Nucleic Acids Res ; 49(19): 11323-11336, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614161

RESUMO

RNA guanine quadruplexes (rG4) assume important roles in post-transcriptional regulations of gene expression, which are often modulated by rG4-binding proteins. Hence, understanding the biological functions of rG4s requires the identification and functional characterizations of rG4-recognition proteins. By employing a bioinformatic approach based on the analysis of overlap between peaks obtained from rG4-seq analysis and those detected in >230 eCLIP-seq datasets for RNA-binding proteins generated from the ENCODE project, we identified a large number of candidate rG4-binding proteins. We showed that one of these proteins, G3BP1, is able to bind directly to rG4 structures with high affinity and selectivity, where the binding entails its C-terminal RGG domain and is further enhanced by its RRM domain. Additionally, our seCLIP-Seq data revealed that pyridostatin, a small-molecule rG4 ligand, could displace G3BP1 from mRNA in cells, with the most pronounced effects being observed for the 3'-untranslated regions (3'-UTR) of mRNAs. Moreover, luciferase reporter assay results showed that G3BP1 positively regulates mRNA stability through its binding with rG4 structures. Together, we identified a number of candidate rG4-binding proteins and validated that G3BP1 can bind directly with rG4 structures and regulate the stabilities of mRNAs.


Assuntos
Regiões 3' não Traduzidas , Aminoquinolinas/farmacologia , DNA Helicases/genética , Quadruplex G , Ácidos Picolínicos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Aminoquinolinas/química , Sequência de Bases , Clonagem Molecular , Biologia Computacional/métodos , DNA Helicases/metabolismo , Conjuntos de Dados como Assunto , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Luciferases/genética , Luciferases/metabolismo , Ácidos Picolínicos/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Sci Rep ; 11(1): 19905, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620901

RESUMO

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Fígado/parasitologia , Malária Vivax/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium vivax/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Antimaláricos/química , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Sinergismo Farmacológico , Humanos , Estágios do Ciclo de Vida , Malária Vivax/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/crescimento & desenvolvimento , Curva ROC , Fatores de Tempo
18.
Chem Biol Drug Des ; 98(6): 997-1006, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570966

RESUMO

Cholinesterase (ChE) inhibitors can be divided into two categories: acetylcholinesterase (AChE) inhibitors and butylcholinesterase (BuChE) inhibitors. Therefore, the development of selective inhibition of AChE and BuChE activities is the central content of ChE pharmacochemistry research. In order to clarify the progress of AChE inhibitor-based design, synthesis, and activity studies, we reviewed the pharmacochemical and pharmacological properties of selective AChE inhibitors over the past decade. We hope that this review will make it easier for readers to understand the development of new drug chemistry methods for AChE inhibitors in order to develop more effective and selective AChE inhibitors.


Assuntos
Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Aminoquinolinas/química , Animais , Antraquinonas/química , Humanos , Salicilamidas/química , Estilbenos/química
19.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577001

RESUMO

A new series of compounds was prepared from 6-methoxyquinolin-8-amine or its N-(2-aminoethyl) analogue via Ugi-azide reaction. Their linkers between the quinoline and the tert-butyltetrazole moieties differ in chain length, basicity and substitution. Compounds were tested for their antiplasmodial activity against Plasmodium falciparum NF54 as well as their cytotoxicity against L-6-cells. The activity and the cytotoxicity were strongly influenced by the linker and its substitution. The most active compounds showed good activity and promising selectivity.


Assuntos
Aminoquinolinas/química , Antimaláricos/química , Antimaláricos/farmacologia , Quinolinas/química , Tetrazóis/química , Aminoquinolinas/farmacologia , Animais , Antimaláricos/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Primaquina/química , Quinolinas/farmacologia , Ratos , Tetrazóis/farmacologia
20.
Bioorg Med Chem Lett ; 51: 128371, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534673

RESUMO

Malignant gliomas are the most common brain tumors, with generally dismal prognosis, early clinical deterioration and high mortality. Recently, 2-aminoquinoline scaffold derivatives have shown pronounced activity in central nervous system disorders. We herein reported a series of 2-aminoquinoline-3-carboxamides as novel non-alkylator anti-glioblastoma agents. The synthesized compounds showed comparable activity to cisplatin against glioblastoma cell line U87 MG in vitro. Among them, we found that 6a displayed good inhibitory activity against A172 and U118 MG glioblastoma cell lines and induced cell cycle arrest in the G2/M phase and apoptosis in U87 MG by flow cytometry analysis. Additionally, 6a displayed low cytotoxicity to several normal human cell lines. In silico study showed 6a had promising physicochemical properties and was predicted to cross the blood-brain barrier. Moreover, preliminary structure-activity relationships are also investigated, shedding light on further modifications towards more potent agents on this series of compounds. Our results suggest this compound has a promising potential as an anti-glioblastoma agent with a differential effect between tumor and non-malignant cells.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...