Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240017, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043473

RESUMO

OBJECTIVE: This work is aimed to formulate and evaluate Mucoadhesive Microspheres contain Amoxicillin for the effective use in the treatment of H.Pylori. METHODS: Microspheres were prepared using Emulsification-cross linking technique. To this guar gum (GG) and sodium alginate (SA) was dissolved in 200 ml of water and allowed to swell for 24 h at room temperature. And separately chitosan (CH) was dissolved in 2% (v/v) glacial acetic acid and this also kept for 24 h to swell or dissolve properly. After 24 h this swelled mixture was mixed under magnetic stirrer (Remi, India) at specific stirring rate for 1 h in order to find homogeneous mass of both the gum. Then slurry of chitosan also was homogenized for half an hour. The drug, Amoxicillin (1g) was then added to the chitosan solution and mixed homogeneously. RESULTS: The aim of the study was to formulate and evaluate microspheres, for SR of the chosen drug. The particle size of microspheres was in the range of 200-500 µ, maximum mucoadhesive property observed was 57.41% for Optimized formulation F-9, Drug release 68.52% till 8 h, and the maximum entrapment was 94.87% for F-9 formulation. The work also aims to study various parameters affecting the behavior of microspheres in oral dosage form. CONCLUSION: Drugs with short half life that are absorbed from the gastrointestinal tract (GIT) are eliminated rapidly from the blood flow. To avoid this, the oral SR was developed as this formulation released the drug slowly into the GIT and maintained a stable drug concentration in the serum for a longer duration of time.


Assuntos
Alginatos , Amoxicilina , Quitosana , Mananas , Microesferas , Gomas Vegetais , Amoxicilina/administração & dosagem , Amoxicilina/farmacocinética , Amoxicilina/química , Quitosana/química , Gomas Vegetais/química , Mananas/química , Alginatos/química , Helicobacter pylori/efeitos dos fármacos , Galactanos/química , Tamanho da Partícula
2.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792031

RESUMO

Amoxicillin and sulbactam are widely used in animal food compounding. Amoxicillin-sulbactam hybrid molecules are bicester compounds made by linking amoxicillin and sulbactam with methylene groups and have good application prospects. However, the residual elimination pattern of these hybrid molecules in animals needs to be explored. In the present study, the amoxicillin-sulbactam hybrid molecule (AS group) and a mixture of amoxicillin and sulbactam (mixture group) were administered to rats by gavage, and the levels of the major metabolites of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were determined by UPLC-MS/MS. The residue elimination patterns of the major metabolites in the liver, kidney, urine, and feces of rats in the AS group and the mixture group were compared. The results showed that the total amount of amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and the highest concentration of sulbactam in the liver and kidney samples of the AS group and the mixture group appeared at 1 h after drug withdrawal. Between 1 h and 12 h post discontinuation, the total amount of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine in the two tissues decreased rapidly, and the elimination half-life of the AS group was significantly higher than that in the mixture group (p < 0.05); the residual amount of sulbactam also decreased rapidly, and the elimination half-life was not significantly different (p > 0.05). In 72 h urine samples, the total excretion rates were 60.61 ± 2.13% and 62.62 ± 1.73% in the AS group and mixture group, respectively. The total excretion rates of fecal samples (at 72 h) for the AS group and mixture group were 9.54 ± 0.26% and 10.60 ± 0.24%, respectively. These results showed that the total quantity of amoxicillin, amoxicilloic acid, and amoxicillin diketopiperazine was eliminated more slowly in the liver and kidney of the AS group than those of the mixture group and that the excretion rate through urine and feces was essentially the same for both groups. The residual elimination pattern of the hybrid molecule in rats determined in this study provides a theoretical basis for the in-depth development and application of hybrid molecules, as well as guidelines for the development of similar drugs.


Assuntos
Amoxicilina , Sulbactam , Espectrometria de Massas em Tandem , Animais , Sulbactam/urina , Sulbactam/farmacocinética , Sulbactam/metabolismo , Amoxicilina/urina , Amoxicilina/farmacocinética , Amoxicilina/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Fígado/metabolismo , Ratos Sprague-Dawley , Rim/metabolismo , Fezes/química , Antibacterianos/urina , Antibacterianos/farmacocinética , Distribuição Tecidual , Espectrometria de Massa com Cromatografia Líquida
3.
Clin Drug Investig ; 44(5): 343-355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615091

RESUMO

BACKGROUND: Tegoprazan is a potassium-competitive acid blocker that inhibits gastric acid and which may be used for eradicating Helicobacter pylori. This study focuses on the pharmacokinetic interaction and safety between tegoprazan and the combination of clarithromycin, amoxicillin and bismuth in healthy Chinese subjects. METHODS: An open-label, three-period, single-center, multiple-dosage, single-sequence, phase I trial was conducted in 22 healthy subjects. In period 1, the subjects took tegoprazan 50 mg twice daily for 7 days, and in period 2 they were administered clarithromycin 500 mg, amoxicillin 1000 mg and bismuth potassium citrate 600 mg twice daily for 7 days (days 14-20). Tegoprazan, clarithromycin, amoxicillin and bismuth potassium citrate were then administered in combination for 7 days (days 21-27) in period 3. Blood samples were collected up to 12 h after the last dose of each period. Safety assessments were performed in each period. RESULTS: The geometric mean ratios (GMRs) [90% confidence interval (CI)] of maximum plasma concentration at steady state (Cmax,ss) and area under the plasma concentration-time curve over the dosing interval (AUCτ) at steady state were 195.93% (175.52-218.71%) and 287.54% (263.28-314.04%) for tegoprazan and 423.23% (382.57-468.22%) and 385.61% (354.62-419.30%) for tegoprazan metabolite M1, respectively. The GMRs (90% CI) of Cmax,ss and AUCτ were 83.69% (77.44-90.45%) and 110.30% (102.74-118.41%) for clarithromycin, 126.25% (114.73-138.93%) and 146.94% (135.33-159.55%) for 14-hydroxyclarithromycin, 75.89% (69.73-82.60%) and 94.34% (87.94-101.20%) for amoxicillin, and 158.43% (125.43-200.11%) and 183.63% (156.42-215.58%) for bismuth, respectively. All reported adverse events were mild. The frequency of adverse events during the coadministration stage was not higher than that during the single- or triple-drug administration stages. CONCLUSION: The plasma exposure of tegoprazan, M1, 14-hydroxyclarithromycin and bismuth was increased after the coadministration of tegoprazan, clarithromycin, amoxicillin and bismuth. The coadministration exhibited favorable safety and tolerability. CLINICAL TRIALS REGISTRATION: CTR20230643.


Assuntos
Amoxicilina , Derivados de Benzeno , Bismuto , Claritromicina , Interações Medicamentosas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Amoxicilina/efeitos adversos , Amoxicilina/farmacocinética , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Área Sob a Curva , Bismuto/efeitos adversos , Bismuto/farmacocinética , China , Claritromicina/efeitos adversos , Claritromicina/farmacocinética , População do Leste Asiático , Voluntários Saudáveis , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Imidazóis/efeitos adversos , Imidazóis/farmacocinética , Derivados de Benzeno/efeitos adversos , Derivados de Benzeno/farmacocinética
4.
Eur J Pharm Sci ; 189: 106534, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480962

RESUMO

OBJECTIVE: This study aimed to assess the pharmacokinetic (PK) interactions of anaprazole, clarithromycin, and amoxicillin using physiologically based pharmacokinetic (PBPK) models. METHODS: The PBPK models for anaprazole, clarithromycin, and amoxicillin were constructed using the GastroPlus™ software (Version 9.7) based on the physicochemical data and PK parameters obtained from literature, then were optimized and validated in healthy subjects to predict the plasma concentration-time profiles of these three drugs and assess the predictive performance of each model. According to the analysis of the properties of each drug, the developed and validated models were applied to evaluate potential drug-drug interactions (DDIs) of anaprazole, clarithromycin, and amoxicillin. RESULTS: The developed PBPK models properly described the pharmacokinetics of anaprazole, clarithromycin, and amoxicillin well, and all predicted PK parameters (Cmax,ss, AUC0-τ,ss) ratios were within 2.0-fold of the observed values. Furthermore, the application of these models to predict the anaprazole-clarithromycin and anaprazole-amoxicillin DDIs demonstrates their good performance, with the predicted DDI Cmax,ss ratios and DDI AUC0-τ,ss ratios within 1.25-fold of the observed values, and all predicted DDI Cmax,ss, and AUC0-τ,ss ratios within 2.0-fold. The simulated results show no need to adjust the dosage when co-administered with anaprazole in patients undergoing eradication therapy of H. pylori infection since the dose remained in the therapeutic range. CONCLUSION: The whole-body PBPK models of anaprazole, clarithromycin, and amoxicillin were built and qualified, which can predict DDIs that are mediated by gastric pH change and inhibition of metabolic enzymes, providing a mechanistic understanding of the DDIs observed in the clinic of clarithromycin, amoxicillin with anaprazole.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/efeitos adversos , Amoxicilina/efeitos adversos , Amoxicilina/farmacocinética , Infecções por Helicobacter/tratamento farmacológico , Interações Medicamentosas , Modelos Biológicos
5.
Eur J Drug Metab Pharmacokinet ; 48(2): 121-132, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36520316

RESUMO

BACKGROUND AND OBJECTIVE: Helicobacter pylori-positive ulcers are treated with a proton pump inhibitor (PPI) + two antibiotics with/without bismuth. The objective of this study was to investigate the pharmacokinetic interaction of the novel PPI anaprazole, amoxicillin and clarithromycin with/without bismuth. METHODS: This single-centre, randomised, open-label phase 1 pharmacokinetic study included healthy Chinese male participants, comprising two cohorts (cohort 1, 4 × 4 crossover design; cohort 2, 2 × 2 crossover design). In cohort 1, 24 participants received four treatment cycles with a different treatment in each cycle; the washout period between cycles was 9 days. Participants were randomly assigned to one of the following four treatment sequences (1:1:1:1): anaprazole sodium enteric-coated tablet 20 mg monotherapy, amoxicillin 1000 mg monotherapy, clarithromycin 500 mg monotherapy, and a three-drug combination (anaprazole 20 mg, amoxicillin 1000 mg and clarithromycin 500 mg). During each treatment cycle, study drugs were administered twice daily for four consecutive days and once in the morning on the fifth day. Cohort 2 participants were administered a single dose of the three-drug combination and a single dose of a four-drug combination (three-drug combination + bismuth 0.6 g) with a washout period of 11 ± 2 days between treatments. Blood samples were collected for pharmacokinetic analysis. RESULTS: Twenty-nine of 32 enrolled participants (cohort 1, n = 24; cohort 2, n = 8) completed the study. There were no significant differences in exposure or time to reach maximum concentration (Tmax) between each single drug or the three-drug combination (cohort 1) or between the three- and four-drug combinations (cohort 1) for any of the drugs/metabolites. CONCLUSIONS: Dose adjustments for individual drugs are not necessary with combined dosing of anaprazole, amoxicillin, clarithromycin and bismuth.


Assuntos
Amoxicilina , Antibacterianos , Claritromicina , Inibidores da Bomba de Prótons , Humanos , Masculino , Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Bismuto/farmacocinética , Claritromicina/farmacocinética , Combinação de Medicamentos , População do Leste Asiático , Infecções por Helicobacter/tratamento farmacológico , Inibidores da Bomba de Prótons/farmacocinética
6.
Br Poult Sci ; 63(4): 493-498, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35118922

RESUMO

1. Although amoxicillin has broad-spectrum antibiotic activity and is extensively used in poultry, its use has never been investigated in geese. This study aimed to evaluate the pharmacokinetics of amoxicillin after a single and multiple oral doses in geese.2. A total of 20 geese were enrolled in this study and randomly pooled in two groups (n = 10). In group I, animals were treated with a single oral 20 mg/kg dose of amoxicillin, while geese in group II were administered multiple doses (20 mg/kg/day for 4 d). Concentrations of amoxicillin in plasma were analysed using a validated HPLC-UV method and drug plasma concentrations were modelled for each subject using a non-compartmental approach.3. amoxicillin showed rapid absorption after a single-dose treatment, with an elimination half-life of approximately 1 h. Cmax, Tmax and AUC values differed statistically between groups I and II (after the first dose administered). A large variability was observed in the pharmacokinetic profiles and drug accumulation may occur after the multiple administration.4. No accumulation in plasma was predicted from an in-silico simulation performed using the same multiple dosage schedule. The in-silico simulation does not seem to accurately predict in-field conditions.


Assuntos
Amoxicilina , Gansos , Administração Oral , Amoxicilina/farmacocinética , Animais , Área Sob a Curva , Galinhas , Meia-Vida
7.
Mol Pharm ; 18(10): 3795-3810, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482691

RESUMO

Amoxicillin (AMX) is a semisynthetic antibiotic, an analogue of ampicillin, with a wide spectrum of bacterial activity against many microorganisms but possesses some limits. To increase the drug effectiveness, supramolecule nanocomposites composed of ß-cyclodextrin (ß-CD) and chitosan/sodium alginate/GO were chosen in the present study as a sustained release formulation. Nanocomposites of chitosan (CH), sodium alginate (ALG), and graphene oxide (GO) were synthesized at 50 °C. The inclusion complexes (ICs) were processed via the physical mixture (PM), kneading (KM), microwave (MW) method, or coprecipitation (CP) and directly loaded into the nanocomposite. To confirm the formation of true ICs, the ICs were analyzed by DSC, SEM, 1H NMR, 2D NMR ROESY, and XRD. A drug release study was performed to find out which method is best for the controlled release of drugs in different environments of pH 2, 7, and 7.4 at 37 °C. From the observed drug release data, it was found that PM and KM showed a burst release of drugs and the microwave method was the most suitable method to prepare exact ICs of AMX and ß-CD for sustained release of drugs. Kinetics of drug release was analyzed by various kinetic models, and it was observed that the Korsmeyer-Peppas and Peppas-Sahlin models were best fit for drug release in all cases. A Phase solubility study was carried out to find the stoichiometry of IC formation and the complexation constant. The drug release was controlled and pH-dependent, confirming that nanocomposites are pH-sensitive. From drug release analysis, it was acknowledged that ß-CD is capable of causing sustained drug release.


Assuntos
Amoxicilina/administração & dosagem , Nanocompostos/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Alginatos , Amoxicilina/farmacocinética , Quitosana , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Humanos , Cinética , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética
8.
Pharm Dev Technol ; 26(9): 978-988, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387136

RESUMO

To cover the unpleasant taste of amoxicillin (250 mg), maize starch (baby food) and milk chocolate were co-formulated. The raw materials and the final formulations were characterized by means of Dynamic Light Scattering (DLS), Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared (FT-IR) spectroscopy. To evaluate the taste masking two different groups of volunteers were used, according to the Ethical Research Committee of the Aristotle University of Thessaloniki. The optimization of excipients' content in the tablet was determined by experimental design methodology (crossed D-optimal). Due to the matrix complexity, amoxicillin was extracted using liquid extraction and analyzed isocratically by HPLC. The developed chromatographic method was validated (%Recovery 98.7-101.3, %RSD = 1.3, LOD and LOQ 0.15 and 0.45 µg mL-1 respectively) according to the International Conference on Harmonization (ICH) guidelines. The physicochemical properties of the tablets were also examined demonstrating satisfactory quality characteristics (diameter: 15 mm, thickness: 6 mm, hardness <98 Newton, loss of mass <1.0%, disintegration time ∼25min). Additionally, dissolution (%Recovery >90) and in vitro digestion tests (%Recovery >95) were carried out. Stability experiments indicated that amoxicillin is stable in the prepared formulations for at least one year (%Recovery <91).


Assuntos
Amoxicilina/síntese química , Antibacterianos/síntese química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Paladar/efeitos dos fármacos , Administração Oral , Adolescente , Adulto , Amoxicilina/administração & dosagem , Amoxicilina/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Aspartame/administração & dosagem , Aspartame/síntese química , Aspartame/farmacocinética , Criança , Chocolate , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/administração & dosagem , Excipientes/síntese química , Excipientes/farmacocinética , Feminino , Humanos , Masculino , Mastigação/efeitos dos fármacos , Mastigação/fisiologia , Comprimidos , Paladar/fisiologia , Adulto Jovem , Zea mays
9.
AAPS J ; 23(3): 65, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33948771

RESUMO

To date, information on the ontogeny of renal transporters is limited. Here, we propose to estimate the in vivo functional ontogeny of transporters using a combined population pharmacokinetic (popPK) and physiology-based pharmacokinetic (PBPK) modeling approach called popPBPK. Clavulanic acid and amoxicillin were used as probes for glomerular filtration, combined glomerular filtration, and active secretion through OAT1,3, respectively. The predictive value of the estimated OAT1,3 ontogeny function was assessed by PBPK predictions of renal clearance (CLR) of other OAT1,3 substrates: cefazolin and piperacillin. Individual CLR post-hoc values, obtained from a published popPK model on the concomitant use of clavulanic acid and amoxicillin in critically ill children between 1 month and 15 years, were used as dependent variables in the popPBPK analysis. CLR was re-parameterized according to PBPK principles, resulting in the estimation of OAT1,3-mediated intrinsic clearance (CLint,OAT1,3,invivo) and its ontogeny. CLint,OAT1,3,invivo ontogeny was described by a sigmoidal function, reaching half of adult level around 7 months of age, comparable to findings based on renal transporter-specific protein expression data. PBPK-based CLR predictions including this ontogeny function were reasonably accurate for piperacillin in a similar age range (2.5 months-15 years) as well as for cefazolin in neonates as compared to published data (%RMSPE of 21.2 and 22.8%, respectively and %PE within ±50%). Using this novel approach, we estimated an in vivo functional ontogeny profile for CLint,OAT1,3,invivo that yields accurate CLR predictions for different OAT1,3 substrates across different ages. This approach deserves further study on functional ontogeny of other transporters.


Assuntos
Rim/metabolismo , Modelos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação Renal/fisiologia , Adolescente , Amoxicilina/administração & dosagem , Amoxicilina/farmacocinética , Variação Biológica da População , Cefazolina/administração & dosagem , Cefazolina/farmacocinética , Criança , Pré-Escolar , Ácido Clavulânico/administração & dosagem , Ácido Clavulânico/farmacocinética , Interações Medicamentosas , Taxa de Filtração Glomerular/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Piperacilina/administração & dosagem , Piperacilina/farmacocinética
10.
J Biomater Appl ; 35(9): 1085-1095, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611960

RESUMO

Wound infection and poor wound healing are the major challenges of wound treatment. Antibiotic drug treatment is the effective way to inhibit wound infection. It is necessary to achieve sustained release of antibiotics to get a longer treatment for wound infection. The double network hydrogels based on liposome, polyethylene glycol (PEG), α- cyclodextrin (α-CD) and acrylamide (AM) were developed, in which liposome acts as amoxicillin repository. Because the drug would release from the multiple barriers including two cavities of liposome and α-CD, as well as polyethylene glycol -α- cyclodextrin/acrylamide (PEG-CD/AM) double network, the PEG-α-CD/AM/liposome @amoxicillin double network hydrogels could achieve sustained drug release. The drug release assay showed that the dressing could release amoxicillin continuously until 12 days, than that of 8th day for single-network hydrogel releasing. The antibacterial ratio of the hydrogel could reach above 80%. What's more, the hydrogels present adjustable mechanical strength by changing the ratio of the components. The swelling ratio proved that the hydrogel had potential ability to absorb wound exudates. The cytotoxicity test of the hydrogels demonstrated excellent biocompatibility. These results indicated that this study can provide a new thought for antibacterial wound dressing and has a broad application prospect.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Bandagens , Preparações de Ação Retardada/química , Hidrogéis/química , Acrilamida/química , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Humanos , Hidrogéis/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/farmacocinética , Teste de Materiais , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos , Cicatrização , alfa-Ciclodextrinas/química
11.
J Clin Pharmacol ; 61(7): 913-922, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33341955

RESUMO

This clinical trial was conducted to evaluate the pharmacokinetics and pharmacodynamics of tegoprazan when coadministered with amoxicillin/clarithromycin in healthy subjects. Cohort 1 was an open-label, randomized multiple-dose study to evaluate the mutual interaction of tegoprazan and amoxicillin/clarithromycin on the disposition of 3 tested drugs including tegoprazan M1 metabolite and 14-hydroxyclarithromycin (14-OH-clarithromycin). Cohort 2 was an open-label, randomized, active-controlled, parallel multiple-dose study to compare the intragastric pH profile after multiple oral doses of 50 or 100 mg tegoprazan coadministered with amoxicillin/clarithromycin 1000/500 mg for 7 days and pantoprazole-based triple therapy as the comparator arm. The coadministration of tegoprazan with amoxicillin/clarithromycin increased Css,max (2.2-fold) and AUCτ (2.7-fold) of tegoprazan and M1 (2.1- and 2.2-fold for Css,max and AUCτ , respectively) compared with administration of tegoprazan alone. The Css,max and AUCτ of 14-OH-clarithromycin increased by 1.7- and 1.8-fold, respectively; the disposition of amoxicillin and clarithromycin were not significantly changed. On days 1 and 7 of treatment, tegoprazan-based therapies (both 50- and 100-mg therapies) maintained pH above 6 for more than 88% of the 24-hour period, which was significantly longer compared with pantoprazole-based therapy. Tegoprazan either alone or in combination with amoxicillin/clarithromycin was well tolerated in healthy subjects. In conclusion, the exposure of tegoprazan was increased after coadministration of amoxicillin/clarithromycin, which led to increase pharmacodynamic response measured by intragastric pH compared with tegoprazan alone. Therefore, tegoprazan-based triple therapy would be effective therapeutic regimen to manage intragastric pH in terms of gastric or duodenal ulcers healing, treatment of gastroesophageal reflux disease, and Helicobacter pylori eradication.


Assuntos
Amoxicilina/farmacocinética , Derivados de Benzeno/farmacocinética , Claritromicina/farmacocinética , Fármacos Gastrointestinais/farmacocinética , Imidazóis/farmacocinética , Adulto , Amoxicilina/administração & dosagem , Amoxicilina/farmacologia , Área Sob a Curva , Derivados de Benzeno/administração & dosagem , Derivados de Benzeno/farmacologia , Claritromicina/administração & dosagem , Claritromicina/análogos & derivados , Claritromicina/metabolismo , Claritromicina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacologia , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
12.
J Clin Pharmacol ; 61(4): 538-546, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996155

RESUMO

Amoxicillin is used to treat various bacterial infections (eg, pneumonia, sepsis, meningitis) in infants. Despite its frequent use, there is a lack of population pharmacokinetic studies in infants, resulting in a substantial variability in dosing regimens used in clinical practice. Therefore, the objective of this study was to evaluate the population pharmacokinetics of intravenous amoxicillin in infants and suggest an optimal dosage regimen. Blood samples were collected for the determination of amoxicillin concentrations using an opportunistic sampling strategy. The amoxicillin plasma concentrations were determined using high-performance liquid chromatography. Population pharmacokinetic analysis was performed using NONMEM. A total of 62 pharmacokinetic samples from 47 infants (age range, 0.09 to 2.0 years) were available for analysis. A 2-compartment model with first-order elimination was most suitable to describe the population pharmacokinetics of amoxicillin, and covariate analysis showed that only current body weight was a significant covariate. Monte Carlo simulation demonstrated that the currently used dosage regimen (25 mg/kg twice daily) resulted in only 22.4% of infants reaching their pharmacodynamic target, using a minimum inhibitory concentration (MIC) break point of 2 mg/L, whereas a dosage regimen (60 mg/kg thrice daily), as supported by the British National Formulary for Children, resulted in 80.9% of infants achieving their pharmacodynamic target. It is recommended to change antibiotics for infections caused by Escherichia coli (MIC = 8.0 mg/L) because only 27.9% of infants reached target using 60 mg/kg thrice daily.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Modelos Biológicos , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Simulação por Computador , Humanos , Lactente , Testes de Sensibilidade Microbiana , Método de Monte Carlo
13.
Int J Nanomedicine ; 15: 4991-5004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764931

RESUMO

INTRODUCTION: Various materials and approaches have been used to reduce the mesh-induced inflammatory response and modify the mesh with tissue-matched mechanical properties, aiming to improve the repair of abdominal wall defects. MATERIALS AND METHODS: In this study, we fabricated a polycaprolactone (PCL)/silk fibroin (SF) mesh integrated with amoxicillin (AMX)-incorporating multiwalled carbon nanotubes (MWCNTs) via electrospinning, grafting and crosslinking, developing a sustainable antibiotic and flexible mesh. AMX was loaded into the hollow tubular MWCNTs by physical adsorption, and a nanofibrous structure was constructed by electrospinning PCL and SF (40:60 w/w). The AMX@MWCNTs were then chemically grafted onto the surfaces of the PCL/SF nanofibers by treating with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) solution for simultaneous crosslinking and coating. The incorporation of AMX into the MWCNTs (AMX@MWCNTs) and the integration of the AMX@MWCNTs with the PCL/SF nanofibers were characterized. Then, the functional mesh was fabricated and fully evaluated in terms of antibacterial activity, mechanical properties and host response. RESULTS: Our results demonstrated that the PCL/SF nanofibrous structure was fabricated successfully by electrospinning. After integrating with AMX@MWCNT by grafting and crosslinking, the functional mesh showed undeformed structure, modified surface hydrophilicity and biocompatible interfaces, abdominal wall-matched mechanical properties, and a sustained-release antibiotic profile in E. coli growth inhibition compared to those of PCL/SF mesh in vitro. In a rat model with subcutaneous implantation, the functional mesh incited less mesh-induced inflammatory and foreign body responses than PCL/SF mesh within 14 days. The histological analysis revealed less infiltration of granulocytes and macrophages during this period, resulting in the loosely packed collagen deposition on the functional mesh and prominent collagen incorporation. DISCUSSION: Therefore, this designed PCL/SF-AMX@MWCNT nanofibrous mesh, functionalized with antibacterial and tissue-matched mechanical properties, provides a promising alternative for the repair of abdominal wall defects.


Assuntos
Amoxicilina/química , Antibacterianos/química , Nanofibras/química , Nanotecnologia/métodos , Telas Cirúrgicas , Amoxicilina/farmacocinética , Amoxicilina/farmacologia , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Colágeno/química , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroínas/química , Inflamação/etiologia , Masculino , Teste de Materiais , Camundongos , Nanotubos de Carbono/química , Poliésteres/química , Ratos Sprague-Dawley , Telas Cirúrgicas/efeitos adversos
14.
J Pharmacokinet Pharmacodyn ; 47(4): 341-359, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32748112

RESUMO

The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for amoxicillin for non-pregnant, pregnant and postpartum populations by compiling a database incorporating reported changes in the anatomy and physiology throughout the postpartum period. A systematic literature search was conducted to collect data on anatomical and physiological changes in postpartum women. Empirical functions were generated describing the observed changes providing the basis for a generic PBPK framework. The fraction unbound ([Formula: see text]) of predominantly albumin-bound drugs was predicted in postpartum women and compared with experimentally observed values. Finally, a specific amoxicillin PBPK model was newly developed, verified for non-pregnant populations and translated into the third trimester of pregnancy (29.4-36.9 gestational weeks) and early postpartum period (drug administration 1.5-3.8 h after delivery). Pharmacokinetic predictions were evaluated using published clinical data. The literature search yielded 105 studies with 1092 anatomical and physiological data values on 3742 postpartum women which were used to generate various functions describing the observed trends. The [Formula: see text] could be adequately scaled to postpartum women. The pregnancy PBPK model predicted amoxicillin disposition adequately as did the postpartum PBPK model, although clearance was somewhat underestimated. While more research is needed to establish fully verified postpartum PBPK models, this study provides a repository of anatomical and physiological changes in postpartum women that can be applied to future modeling efforts. Ultimately, structural refinement of the developed postpartum PBPK model could be used to investigate drug transfer to the neonate via breast-feeding in silico.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Modelos Biológicos , Período Pós-Parto/metabolismo , Complicações Infecciosas na Gravidez/tratamento farmacológico , Adulto , Amoxicilina/administração & dosagem , Amoxicilina/efeitos adversos , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Aleitamento Materno , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Humanos , Recém-Nascido , Idade Materna , Troca Materno-Fetal , Taxa de Depuração Metabólica , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Terceiro Trimestre da Gravidez/metabolismo , Distribuição Tecidual , Adulto Jovem
15.
Arch Dis Child ; 105(12): 1208-1214, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32404437

RESUMO

BACKGROUND: WHO recommends simplified antibiotics for young infants with sepsis in countries where hospitalisation is not feasible. Amoxicillin provides safe, Gram-positive coverage. This study was done to determine pharmacokinetics, drug disposition and interpopulation variability of oral amoxicillin in this demographic. METHODS: Young infants with signs of sepsis enrolled in an oral amoxicillin/intramuscular gentamicin treatment arm of a sepsis trial in Karachi, Pakistan, were studied. Limited pharmacokinetic (PK) sampling was performed at 0, 2-3 and 6-8 hours following an index dose of oral amoxicillin. Plasma concentrations were determined by high-performance liquid chromatography/mass spectrometry. Values of ≥2 mg/L were considered as the effect threshold, given the regional minimal inhibitory concentration (MIC) of resistant Streptococcus pneumoniae. RESULTS: Amoxicillin concentrations were determined in 129 samples from 60 young infants. Six of 44 infants had positive blood cultures with predominant Gram-positive organisms. Forty-four infants contributing blood at ≥2 of 3 specified timepoints were included in the analysis. Mean amoxicillin levels at 2-3 hours (11.6±9.5 mg/L, n=44) and 6-8 hours (16.4±9.3 mg/L, n=20) following the index dose exceeded the MIC for amoxicillin (2.0 mg/L) against resistant S. pneumoniae strains. Of 20 infants with three serum levels, 7 showed a classic dose-exposure profile and 13 showed increasing concentrations with time, implying delayed absorption or excretion. CONCLUSION: Amoxicillin concentrations in sera of young infants following oral administration at 75-100 mg/kg/day daily divided doses exceeds the susceptibility breakpoint for >50% of a 12-hour dosing interval.Oral amoxicillin may hold potential as a safe replacement of parenteral ampicillin in newborn sepsis regimens, including aminoglycosides, where hospitalisation is not feasible. TRIAL REGISTRATION NUMBER: NCT01027429.


Assuntos
Amoxicilina/sangue , Amoxicilina/farmacocinética , Antibacterianos/sangue , Antibacterianos/farmacocinética , Sepse/tratamento farmacológico , Administração Oral , Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Quimioterapia Combinada , Feminino , Gentamicinas/administração & dosagem , Humanos , Lactente , Recém-Nascido , Injeções Intramusculares , Masculino , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/efeitos dos fármacos , Fatores de Tempo
16.
Drug Metab Pers Ther ; 35(1)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134728

RESUMO

Background Probiotics are live microbial organisms that provide benefit to the host while co-habitating in the gastrointestinal tract. Probiotics are safe, available over the counter, and have clinical benefit by reducing the number of antibiotic-associated diarrhea days. Prescriptions from providers and direct consumer demand of probiotics appear to be on the rise. Several recent animal studies have demonstrated that probiotics may have significant effect on absorption of co-administered drugs. However, to date, most probiotic-drug interaction studies in animal models have been limited to bacterial probiotics and nonantibiotic drugs. Methods We performed a traditional pharmacokinetic mouse study examining the interactions between a common commercially available yeast probiotic, Saccharomyces boulardii CNCM I-745 (Florastor®) and an orally administered amoxicillin. Results We showed that there were no significant differences in pharmacokinetic parameters (half-life, area under the curve, peak concentrations, time to reach maximum concentration, elimination rate constant) of amoxicillin between the probiotic treated and untreated control groups. Conclusions Altogether, our findings suggest that coadministration or concurrent use of S. boulardii probiotic and amoxicillin would not likely alter the efficacy of amoxicillin therapy.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Probióticos/administração & dosagem , Saccharomyces boulardii/química , Administração Oral , Amoxicilina/administração & dosagem , Amoxicilina/análise , Animais , Antibacterianos/administração & dosagem , Antibacterianos/análise , Suplementos Nutricionais , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
17.
J Vet Pharmacol Ther ; 43(4): 307-312, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32112576

RESUMO

The aim of the present study was to elucidate the pharmacokinetic profiles of amoxicillin trihydrate (AMX) in Siamese freshwater crocodiles (Crocodylus siamensis). Crocodiles were administered a single intramuscular injection of AMX, at a dose of either 5 or 10 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 120 hr. The plasma concentrations of AMX were measured using a validated liquid chromatography tandem-mass spectrometry method. AMX plasma concentrations were quantifiable for up to 72 hr (5 mg/kg b.w.) and 96 hr (10 mg/kg b.w.). The elimination half-life (t1/2λ z ) of AMX following dosing at 5 mg/kg b.w. (8.72 ± 0.61 hr) was almost identical to that following administration at 10 mg/kg b.w (8.98 ± 1.13 hr). The maximum concentration and area under the curve from zero to the last values of AMX increased in a dose-dependent fashion. The average binding percentage of AMX to plasma protein was 21.24%. Based on the pharmacokinetic data, susceptibility break point, and the surrogate PK-PD index (T > MIC, 0.25 µg/ml), intramuscular administration of AMX at dose of 5 mg/kg b.w. every 4 days might be appropriate for the treatment of susceptible bacterial infections in freshwater crocodiles.


Assuntos
Jacarés e Crocodilos/metabolismo , Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Jacarés e Crocodilos/sangue , Amoxicilina/administração & dosagem , Amoxicilina/sangue , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Área Sob a Curva , Esquema de Medicação , Água Doce , Meia-Vida , Injeções Intramusculares/veterinária , Masculino , Distribuição Aleatória
18.
J Vet Pharmacol Ther ; 43(2): 115-122, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31183878

RESUMO

Amoxicillin was administered as a single subcutaneous injection at 12.5 mg/kg to four koalas and changes in amoxicillin plasma concentrations over 24 hr were quantified. Amoxicillin had a relatively low average ± SD maximum plasma concentration (Cmax ) of 1.72 ± 0.47 µg/ml; at an average ± SD time to reach Cmax (Tmax ) of 2.25 ± 1.26 hr, and an elimination half-life of 4.38 ± 2.40 hr. The pharmacokinetic profile indicated relatively poor subcutaneous absorption. A metabolite was also identified, likely associated with glucuronic acid conjugation. Bacterial growth inhibition assays demonstrated that all plasma samples other than t = 0 hr, inhibited the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 to some extent. Calculated pharmacokinetic indices were used to predict whether this dose could attain a plasma concentration to inhibit some susceptible Gram-negative and Gram-positive pathogens. It was predicted that a twice daily dose of 12.5 mg/kg would be efficacious to inhibit susceptible bacteria with an amoxicillin minimum inhibitory concentration (MIC) ≤ 0.75 µg/ml such as susceptible Bordetella bronchiseptica, E. coli, Staphylococcus spp. and Streptococcus spp. pathogens.


Assuntos
Amoxicilina/farmacocinética , Antibacterianos/farmacocinética , Phascolarctidae/metabolismo , Amoxicilina/administração & dosagem , Amoxicilina/sangue , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Área Sob a Curva , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Feminino , Glucuronídeos/metabolismo , Meia-Vida , Injeções Subcutâneas/veterinária , Masculino , Espectrometria de Massas/veterinária , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
19.
Clin Microbiol Infect ; 26(7): 871-879, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31811919

RESUMO

BACKGROUND: Amoxicillin has been in use since the 1970s; it is the most widely used penicillin both alone and in combination with the ß-lactamase clavulanic acid. OBJECTIVES: In this narrative review, we re-examine the properties of oral amoxicillin and clavulanic acid and provide guidance on their use, with emphasis on the preferred use of amoxicillin alone. SOURCES: Published medical literature (MEDLINE database via Pubmed). CONTENT: While amoxicillin and clavulanic acid have similar half-lives, clavulanic acid is more protein bound and even less heat stable than amoxicillin, with primarily hepatic metabolism. It is also more strongly associated with gastrointestinal side effects, including Clostridium difficile infection, and, thus, in oral combination formulations, limits the maximum daily dose of amoxicillin that can be given. The first ratio for an amoxicillin-clavulanic acid combination was set at 4:1 due to clavulanic acid's high affinity for ß-lactamases; ratios of 2:1, 7:1, 14:1 and 16:1 are currently available in various regions. Comparative effectiveness data for the different ratios are scarce. Amoxicillin-clavulanic acid is often used as empiric therapy for many of the World Health Organization's Priority Infectious Syndromes in adults and children, leading to extensive consumption, when some of these syndromes could be handled with a delayed antibiotic prescription approach or amoxicillin alone. IMPLICATIONS: Using available epidemiological and pharmacokinetic data, we provide guidance on indications for amoxicillin versus amoxicillin-clavulanic acid and on optimal oral administration, including choice of combination ratio. More data are needed, particularly on heat stability, pharmacodynamic effects and emergence of resistance in 'real-world' clinical settings.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Amoxicilina/administração & dosagem , Administração Oral , Amoxicilina/farmacocinética , Combinação Amoxicilina e Clavulanato de Potássio/farmacocinética , Cálculos da Dosagem de Medicamento , Estabilidade de Medicamentos , Humanos , Guias de Prática Clínica como Assunto
20.
J Chromatogr A ; 1611: 460611, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31627968

RESUMO

This study presents the development of an efficient extraction protocol for amoxicillin from plasma with improved solubility and stability using pH control. Solubility and stability of amoxicillin in commonly used extraction solvents were determined using a newly developed stability-indicating high-performance liquid chromatography (HPLC) method. Following this, protein precipitation (PP) mediated sample purification protocol was developed and validated along with the HPLC method for the extracted amoxicillin from rabbit plasma. The protocol was applied in a pharmacokinetic study in rabbits. A five-fold increase in solubility and two-fold increase in stability of amoxicillin was found by addition of acetate buffer (0.1 M, pH 5.0) in acetonitrile. PP mediated extraction protocol containing acetate buffer-acetonitrile (1:18 v/v) resulted in an extraction recovery of >80% for all the samples. The HPLC assay following extraction was found linear (R2   >0.9999) over the range of 0.2-20 µg/mL with a lower limit of quantification of 0.2 µg/mL. The accuracy of the quality control samples was found between 97-115% and the relative standard deviation (RSD) was found to be below 6% for all samples. The samples were stable in the mobile phase (pH 5.0) for 72 h post-extraction. Amoxicillin-spiked plasma samples were found stable for up to three freeze-and-thaw cycles but, nearly 50% samples had degraded following storage for two months at -20 °C. Pharmacokinetic analysis indicated a half-life of amoxicillin of nearly 1 h following intravenous injection in rabbits, which is similar to that in humans. Thus, a simple and repeatable, extraction protocol was developed using pH control for quantification of amoxicillin from plasma based on its physicochemical properties.


Assuntos
Amoxicilina/sangue , Amoxicilina/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Amoxicilina/farmacocinética , Animais , Humanos , Cinética , Coelhos , Reprodutibilidade dos Testes , Solubilidade , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...