RESUMO
The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models.
Assuntos
Animais Selvagens , Evolução Biológica , Domesticação , Animais , Ratos , Animais Selvagens/genética , Filogenia , Simbiose , PopulaçãoRESUMO
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Assuntos
Animais Selvagens , Variação Genética , Genoma , Animais , Gatos/genética , Animais Selvagens/genética , Austrália , Ilhas , Evolução Molecular , Havaí , Genética Populacional , Sequenciamento Completo do Genoma , DomesticaçãoRESUMO
Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.
Assuntos
Espécies Introduzidas , Redes Neurais de Computação , Polimorfismo de Nucleotídeo Único , Animais , Estados Unidos , Suínos/genética , Sus scrofa/genética , Genótipo , Ecossistema , Animais Selvagens/genética , Genética PopulacionalRESUMO
Environmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user. The use of eDNA methods to inform conservationists, monitor biodiversity and impacts of climate change, and detect invasive species and pathogens shows confidence within the scientific community, making the acceptance of these methods by the criminal justice system highly possible. To contextualise the potential application of eDNA on forensic investigations, two test cases are explored involving i) species detection and ii) species localisation. Recommendations for future work within the forensic eDNA discipline include development of suitable standardised collection methods, considered collection strategies, forensically validated assays and publication of procedures and empirical research studies to support implementation within the legal system.
Assuntos
Crime , DNA Ambiental , Água Doce , Animais , Ciências Forenses/métodos , Conservação dos Recursos Naturais/legislação & jurisprudência , Manejo de Espécimes/métodos , Animais Selvagens/genética , Espécies Introduzidas , BiodiversidadeRESUMO
When facing challenges, vertebrates activate a hormonal stress response that can dramatically alter behaviour and physiology. Although this response can be costly, conceptual models suggest that it can also recalibrate the stress response system, priming more effective responses to future challenges. Little is known about whether this process occurs in wild animals, particularly in adulthood, and if so, how information about prior experience with stressors is encoded. One potential mechanism is hormonally mediated changes in DNA methylation. We simulated the spikes in corticosterone that accompany a stress response using non-invasive dosing in tree swallows (Tachycineta bicolor) and monitored the phenotypic effects 1 year later. In a subset of individuals, we characterized DNA methylation using reduced representation bisulfite sequencing shortly after treatment and a year later. The year after treatment, experimental females had stronger negative feedback and initiated breeding earlier-traits that are associated with stress resilience and reproductive performance in our population-and higher baseline corticosterone. We also found that natural variation in corticosterone predicted patterns of DNA methylation. Finally, corticosterone treatment influenced methylation on short (1-2 weeks) and long (1 year) time scales; however, these changes did not have clear links to functional regulation of the stress response. Taken together, our results are consistent with corticosterone-induced priming of future stress resilience and support DNA methylation as a potential mechanism, but more work is needed to demonstrate functional consequences. Uncovering the mechanisms linking experience with the response to future challenges has implications for understanding the drivers of stress resilience.
Assuntos
Corticosterona , Metilação de DNA , Andorinhas , Animais , Andorinhas/genética , Andorinhas/fisiologia , Feminino , Reprodução/genética , Reprodução/efeitos dos fármacos , Estresse Fisiológico/genética , Masculino , Cruzamento , Animais Selvagens/genéticaRESUMO
Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.
Assuntos
Genética Populacional , Espécies Introduzidas , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sus scrofa , Animais , Estados Unidos , Polimorfismo de Nucleotídeo Único/genética , Sus scrofa/genética , Genótipo , Hibridização Genética , Suínos/genética , Animais Selvagens/genética , Variação GenéticaRESUMO
Invasive alien species have extensively impacted the ecosystems, where they may affect the native biodiversity. The North American raccoon Procyon lotor is one of the most successful invaders in Europe since its introduction in the early twentieth century. In Italy, a wild population was first established in the North at the beginning of the 2000s following a local introduction event. A further self-sustaining population was reported ten years later in Central Italy. To support an official investigation by the authorities, who suspected a captive origin of the free-ranging raccoons in Central Italy, we used nuclear and mitochondrial DNA markers, combined with different statistical approaches, to characterise their gene pool and trace the source of the founders. Results revealed that founders came from a private zoo-park from which they had inadvertently escaped, soon establishing a reproductive population in the wild. Additionally, our mitochondrial DNA data were used to supplement the haplotype variability known to date in captive and wild raccoons from Europe, Asia and their native range. The comparisons allowed us to update previous networks based on the control region with a new mitochondrial lineage, which had not been detected so far.
Assuntos
DNA Mitocondrial , Haplótipos , Espécies Introduzidas , Guaxinins , Animais , Itália , Guaxinins/genética , DNA Mitocondrial/genética , Genética Forense/métodos , Variação Genética , Genética Populacional , Animais Selvagens/genéticaRESUMO
Age is a key parameter in population ecology, with a myriad of biological processes changing with age as organisms develop in early life then later senesce. As age is often hard to accurately measure with non-lethal methods, epigenetic methods of age estimation (epigenetic clocks) have become a popular tool in animal ecology and are often developed or calibrated using captive animals of known age. However, studies typically rely on invasive blood or tissue samples, which limit their application in more sensitive or elusive species. Moreover, few studies have directly assessed how methylation patterns and epigenetic age estimates compare across environmental contexts (e.g. captive or laboratory-based vs. wild animals). Here, we built a targeted epigenetic clock from laboratory house mice (strain C57BL/6, Mus musculus) using DNA from non-invasive faecal samples, and then used it to estimate age in a population of wild mice (Mus musculus domesticus) of unknown age. This laboratory mouse-derived epigenetic clock accurately predicted adult wild mice to be older than juveniles and showed that wild mice typically increased in epigenetic age over time, but with wide variation in epigenetic ageing rate among individuals. Our results also suggested that, for a given body mass, wild mice had higher methylation across targeted CpG sites than laboratory mice (and consistently higher epigenetic age estimates as a result), even among the smallest, juvenile mice. This suggests wild and laboratory mice may display different CpG methylation levels from very early in life and indicates caution is needed when developing epigenetic clocks on laboratory animals and applying them in the wild.
Assuntos
Envelhecimento , Metilação de DNA , Camundongos , Animais , Metilação de DNA/genética , Camundongos Endogâmicos C57BL , Envelhecimento/genética , Animais Selvagens/genética , Epigênese GenéticaRESUMO
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.
Assuntos
Variação Genética , Camundongos Endogâmicos , Fenótipo , Animais , Camundongos , Camundongos Endogâmicos/genética , Genômica/métodos , Animais Selvagens/genética , Genoma/genética , Polimorfismo de Nucleotídeo Único , Haplótipos , Sequenciamento Completo do GenomaRESUMO
Parasites play a pivotal role in ecosystem health, influencing human and zoonotic diseases, as well as biodiversity preservation. The genus Trypanosoma comprises approximately 500 species mostly found in wildlife animals. This study focuses on identifying trypanosomes found in the white-necked thrush (Turdus albicollis) and the yellow-legged thrush (Turdus flavipes) in the Neotropics. First, we demonstrate the utility of an 18S rDNA sequence-structure phylogeny as an alternative method for trypanosome classification, especially when gGAPDH sequences are unavailable. Subsequently, the sequence-structure phylogeny is employed to classify new trypanosome sequences discovered in wild birds, placing them within the Ornithotrypanum subgenus. This marks the first identification of Ornithotrypanum in Neotropical birds, contributing to the understanding of the distribution and ecological adaptation of avian trypanosomes. Beyond taxonomy, this study broadens our comprehension of the ecological implications of avian trypanosomes in the Neotropics, emphasizing the need for continued research in this field. These findings underscore the importance of alternative classification methods, which are essential to unravel the complex interactions between parasites, wildlife hosts, and their ecosystems.
Assuntos
Aves Canoras , Trypanosoma , Animais , Humanos , Ecossistema , RNA Ribossômico 18S/genética , Trypanosoma/genética , Filogenia , Animais Selvagens/genéticaRESUMO
Hunting has a long tradition in human evolutionary history and remains a common leisure activity or an important source of food. Herein, we first briefly review the literature on the demographic consequences of hunting and associated analytical methods. We then address the question of potential selective hunting and its possible genetic/evolutionary consequences. Birds have historically been popular models for demographic studies, and the huge amount of census and ringing data accumulated over the last century has paved the way for research about the demographic effects of harvesting. By contrast, the literature on the evolutionary consequences of harvesting is dominated by studies on mammals (especially ungulates) and fish. In these taxa, individuals selected for harvest often have particular traits such as large body size or extravagant secondary sexual characters (e.g. antlers, horns, etc.). Our review shows that targeting individuals according to such genetically heritable traits can exert strong selective pressures and alter the evolutionary trajectory of populations for these or correlated traits. Studies focusing on the evolutionary consequences of hunting in birds are extremely rare, likely because birds within populations appear much more similar, and do not display individual differences to the same extent as many mammals and fishes. Nevertheless, even without conscious choice by hunters, there remains the potential for selection through hunting in birds, for example by genetically inherited traits such as personality or pace-of-life. We emphasise that because so many bird species experience high hunting pressure, the possible selective effect of harvest in birds and its evolutionary consequences deserves far more attention, and that hunting may be one major driver of bird evolutionary trajectories that should be carefully considered in wildlife management schemes.
Assuntos
Evolução Biológica , Aves , Animais , Aves/genética , Aves/fisiologia , Caça , Animais Selvagens/genéticaRESUMO
Utilization of faeces has long been a popular approach for genetic and ecological studies of wildlife. However, the success of molecular marker genotyping and genome resequencing is often unpredictable due to insufficient enrichment of endogenous DNA in the total faecal DNA that is dominated by bacterial DNA. Here, we report a simple and cheap method named PEERS to predominantly lyse animal cells over bacteria by using sodium dodecyl sulphate so as to discharge endogenous DNA into liquid phase before bacterial DNA. By brief centrifugation, total DNA with enriched endogenous fraction can be extracted from the supernatant using routine methods. Our assessments showed that the endogenous DNA extracted by PEERS was significantly enriched for various types of faeces from different species, preservation time and conditions. It significantly improves the genotyping correctness and efficiency of genome resequencing with the total additional cost of $ 0.1 and a short incubation step to treat a faecal sample. We also provide methods to assess the enrichment efficiency of mitochondrial and nuclear DNA and models to predict the usability of faecal DNA for genotyping of short tandem repeat, single-nucleotide polymorphism and whole-genome resequencing.
Assuntos
DNA , Mamíferos , Animais , DNA Bacteriano/genética , DNA/genética , Fezes , Mamíferos/genética , Animais Selvagens/genéticaRESUMO
Age is a key demographic in conservation where age classes show differences in important population metrics such as morbidity and mortality. Several traits, including reproductive potential, also show senescence with ageing. Thus, the ability to estimate age of individuals in a population is critical in understanding the current structure as well as their future fitness. Many methods exist to determine age in wildlife, with most using morphological features that show inherent variability with age. These methods require significant expertise and become less accurate in adult age classes, often the most critical groups to model. Molecular methods have been applied to measuring key population attributes, and more recently epigenetic attributes such as methylation have been explored as biomarkers for age. There are, however, several factors such as permits, sample sovereignty, and costs that may preclude the use of extant methods in a conservation context. This study explored the utility of measuring age-related changes in methylation in candidate genes using mass array technology. Novel methods are described for using gene orthologues to identify and assay regions for differential methylation. To illustrate the potential application, African cheetah was used as a case study. Correlation analyses identified six methylation sites with an age relationship, used to develop a model with sufficient predictive power for most conservation contexts. This model was more accurate than previous attempts using PCR and performed similarly to candidate gene studies in other mammal species. Mass array presents an accurate and cost-effective method for age estimation in wildlife of conservation concern.
Assuntos
Acinonyx , Humanos , Animais , Acinonyx/genética , Animais Selvagens/genética , Sequência de Bases , MetilaçãoRESUMO
An accurate diagnostic test is an essential aspect of successfully monitoring and managing wildlife diseases. Lymphoproliferative Disease Virus (LPDV) is an avian retrovirus that was first identified in domestic turkeys in Europe and was first reported in a Wild Turkey (Meleagris gallopavo) in the United States in 2009. It has since been found to be widely distributed throughout North America. The majority of studies have utilized bone marrow and PCR primers targeting a 413-nucleotide sequence of the gag gene of the provirus to detect infection. While prior studies have evaluated the viability of other tissues for LPDV detection (whole blood, spleen, liver, cloacal swabs) none to date have studied differences in detection rates when utilizing different genomic regions of the provirus. This study examined the effectiveness of another section of the provirus, a 335-nucleotide sequence starting in the U3 region of the LTR (Long Terminal Repeat) and extending into the Matrix of the gag region (henceforth LTR), for detecting LPDV. Bone marrow samples from hunter-harvested Wild Turkeys (n = 925) were tested for LPDV with the gag gene and a subset (n = 417) including both those testing positive and those where LPDV was not detected was re-tested with LTR. The positive percent agreement (PPA) was 97.1% (68 of 70 gag positive samples tested positive with LTR) while the negative percent agreement (NPA) was only 68.0% (236 of 347 gag negative samples tested negative with LTR). Cohen's Kappa (κ = 0.402, Z = 10.26, p<0.0001) and the McNemar test (OR = 55.5, p<0.0001) indicated weak agreement between the two gene regions. We found that in Iowa Wild Turkeys use of the LTR region identified LPDV in many samples in which we failed to detect LPDV using the gag region and that LTR may be more appropriate for LPDV surveillance and monitoring. However, neither region of the provirus resulted in perfect detection and additional work is necessary to determine if LTR is more reliable in other geographic regions where LPDV occurs.
Assuntos
Alpharetrovirus , Provírus , Animais , Provírus/genética , Iowa , Alpharetrovirus/genética , Animais Selvagens/genética , Sequência de Bases , Perus/genéticaRESUMO
The anthropogenic impact on wildlife is ever increasing. With shrinking habitats, wild populations are being pushed to co-exist in proximity to humans leading to an increased threat of infectious diseases. Therefore, understanding the immune system of a species is key to assess its resilience in a changing environment. The innate immune system (IIS) is the body's first line of defense against pathogens. High variability in IIS genes, like toll-like receptor (TLR) genes, appears to be associated with resistance to infectious diseases. However, few studies have investigated diversity in TLR genes in vulnerable species for conservation. Large predators are threatened globally including leopards and cheetahs, both listed as 'vulnerable' by IUCN. To examine IIS diversity in these sympatric species, we used next-generation-sequencing to compare selected TLR genes in African leopards and cheetahs. Despite differences, both species show some TLR haplotype similarity. Historic cheetahs from all subspecies exhibit greater genetic diversity than modern Southern African cheetahs. The diversity in investigated TLR genes is lower in modern Southern African cheetahs than in African leopards. Compared to historic cheetah data and other subspecies, a more recent population decline might explain the observed genetic impoverishment of TLR genes in modern Southern African cheetahs. However, this may not yet impact the health of this cheetah subspecies.
Assuntos
Acinonyx , Doenças Transmissíveis , Panthera , Humanos , Animais , Acinonyx/genética , Panthera/genética , Animais Selvagens/genética , EcossistemaRESUMO
Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.
Assuntos
Lagartos , Rickettsia , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Masculino , Feminino , Carrapatos/microbiologia , Rickettsia/genética , Ehrlichia/genética , Amblyomma/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Anaplasma/genética , Filogenia , Paquistão/epidemiologia , Animais Selvagens/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Zoonoses , DNA RibossômicoRESUMO
We report the first North American origin class I avian orthoavulavirus 1 (AOAV-1) isolated from a faecal dropping of wild Eurasian teal (Anas crecca) in South Korea. Whole genome sequencing and comparative phylogenetic analysis revealed that the AOAV-1/Eurasian teal/South Korea/KU1405-3/2017 virus belongs to the sub-genotype 1.2 of class I AOAV-1. Phylogenetic analysis suggested multiple introductions of the North American sub-genotype 1.2 viruses into Asia and its establishment in the wild bird population in East Asia since May 2011. These results provide information on the epidemiology of AOAV-1, particularly the role of migratory wild birds in exchanging viruses between the Eurasian and North American continents. Enhanced genomic surveillance is required to improve our understanding on the evolution and transmission dynamics of AOAV-1 in wild birds.
Assuntos
Patos , Influenza Aviária , Animais , Filogenia , Aves , Animais Selvagens/genética , Vírus da Doença de Newcastle/genética , República da Coreia/epidemiologia , Sequenciamento Completo do Genoma/veterinária , América do Norte/epidemiologiaRESUMO
Conservation translocation is a common strategy to offset mounting rates of population declines through the transfer of captive- or wild-origin organisms into areas where conspecific populations are imperilled or completely extirpated. Translocations that supplement existing populations are referred to as reinforcements and can be conducted using captive-origin animals [ex situ reinforcement (ESR)] or wild-origin animals without any captive ancestry [in situ reinforcement (ISR)]. These programs have been criticized for low success rates and husbandry practices that produce individuals with genetic and performance deficits, but the post-release performance of captive-origin or wild-origin translocated groups has not been systematically reviewed to quantify success relative to wild-resident control groups. To assess the disparity in post-release performance of translocated organisms relative to wild-resident conspecifics and examine the association of performance disparity with organismal and methodological factors across studies, we conducted a systematic review and meta-analysis of 821 performance comparisons from 171 studies representing nine animal classes (101 species). We found that translocated organisms have 64% decreased odds of out-performing their wild-resident counterparts, supporting claims of systemic issues hampering conservation translocations. To help identify translocation practices that could maximize program success in the future, we further quantified the impact of broad organismal and methodological factors on the disparity between translocated and wild-resident conspecific performance. Pre-release animal enrichment significantly reduced performance disparities, whereas our results suggest no overall effects of taxonomic group, sex, captive generation time, or the type of fitness surrogate measured. This work is the most comprehensive systematic review to date of animal conservation translocations in which wild conspecifics were used as comparators, thereby facilitating an evaluation of the overall impact of this conservation strategy and identifying specific actions to increase success. Our review highlights the need for conservation managers to include both sympatric and allopatric wild-reference groups to ensure the post-release performance of translocated animals can be evaluated. Further, our analyses identify pre-release animal enrichment as a particular strategy for improving the outcomes of animal conservation translocations, and demonstrate how meta-analysis can be used to identify implementation choices that maximize translocated animal contributions to recipient population growth and viability.
Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Animais Selvagens/genética , Conservação dos Recursos Naturais/métodosRESUMO
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Assuntos
Animais Selvagens , Genômica , Animais , Animais Selvagens/genéticaRESUMO
Endogenous retroviruses (ERVs) are inherited genomic remains of past germline retroviral infections. Research on human ERVs has focused on medical implications of their dysregulation on various diseases. However, recent studies incorporating wildlife are yielding remarkable perspectives on long-term retrovirus-host interactions. These initial forays into broader taxonomic analysis, including sequencing of multiple individuals per species, show the incredible plasticity and variation of ERVs within and among wildlife species. This demonstrates that stochastic processes govern much of the vertebrate genome. In this review, we elaborate on discoveries pertaining to wildlife ERV origins and evolution, genome colonization, and consequences for host biology.