Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Nat Commun ; 15(1): 5573, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956036

RESUMO

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.


Assuntos
Elementos de DNA Transponíveis , Anotação de Sequência Molecular , Elementos de DNA Transponíveis/genética , Anotação de Sequência Molecular/métodos , Animais , Software , Humanos , Reprodutibilidade dos Testes , Biologia Computacional/métodos , Bases de Dados Genéticas , Algoritmos , Genoma/genética
2.
Methods Mol Biol ; 2836: 285-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995546

RESUMO

The Gene Ontology (GO) project describes the functions of the gene products of organisms from all kingdoms of life in a standardized way, enabling powerful analyses of experiments involving genome-wide analysis. The scientific literature is used to convert experimental results into GO annotations that systematically classify gene products' functions. However, to address the fact that only a minor fraction of all genes has been characterized experimentally, multiple predictive methods to assign GO annotations have been developed since the inception of GO. Sequence homologies between novel genes and genes with known functions help to approximate the roles of these non-characterized genes. Here we describe the main sequence homology methods to produce annotations: pairwise comparison (BLAST), protein profile models (InterPro), and phylogenetic-based annotation (PAINT). Some of these methods can be implemented with genome analysis pipelines (BLAST and InterPro2GO), while PAINT is curated by the GO consortium.


Assuntos
Biologia Computacional , Ontologia Genética , Anotação de Sequência Molecular , Anotação de Sequência Molecular/métodos , Biologia Computacional/métodos , Filogenia , Software , Homologia de Sequência , Bases de Dados Genéticas , Humanos
3.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924517

RESUMO

MOTIVATION: The annotation of cell types from single-cell transcriptomics is essential for understanding the biological identity and functionality of cellular populations. Although manual annotation remains the gold standard, the advent of automatic pipelines has become crucial for scalable, unbiased, and cost-effective annotations. Nonetheless, the effectiveness of these automatic methods, particularly those employing deep learning, significantly depends on the architecture of the classifier and the quality and diversity of the training datasets. RESULTS: To address these limitations, we present a Pruning-enabled Gene-Cell Net (PredGCN) incorporating a Coupled Gene-Cell Net (CGCN) to enable representation learning and information storage. PredGCN integrates a Gene Splicing Net (GSN) and a Cell Stratification Net (CSN), employing a pruning operation (PrO) to dynamically tackle the complexity of heterogeneous cell identification. Among them, GSN leverages multiple statistical and hypothesis-driven feature extraction methods to selectively assemble genes with specificity for scRNA-seq data while CSN unifies elements based on diverse region demarcation principles, exploiting the representations from GSN and precise identification from different regional homogeneity perspectives. Furthermore, we develop a multi-objective Pareto pruning operation (Pareto PrO) to expand the dynamic capabilities of CGCN, optimizing the sub-network structure for accurate cell type annotation. Multiple comparison experiments on real scRNA-seq datasets from various species have demonstrated that PredGCN surpasses existing state-of-the-art methods, including its scalability to cross-species datasets. Moreover, PredGCN can uncover unknown cell types and provide functional genomic analysis by quantifying the influence of genes on cell clusters, bringing new insights into cell type identification and characterizing scRNA-seq data from different perspectives. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/IrisQi7/PredGCN and test data is available at https://figshare.com/articles/dataset/PredGCN/25251163.


Assuntos
Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Transcriptoma/genética , Software , Anotação de Sequência Molecular/métodos , Animais , Humanos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Algoritmos
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842510

RESUMO

Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.


Assuntos
Fases de Leitura Aberta , Software , Ribossomos/metabolismo , Ribossomos/genética , Anotação de Sequência Molecular/métodos , Humanos , Biossíntese de Proteínas , Biologia Computacional/métodos , Perfil de Ribossomos
5.
Bioinformatics ; 40(Supplement_1): i390-i400, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940182

RESUMO

MOTIVATION: Biological background knowledge plays an important role in the manual quality assurance (QA) of biological database records. One such QA task is the detection of inconsistencies in literature-based Gene Ontology Annotation (GOA). This manual verification ensures the accuracy of the GO annotations based on a comprehensive review of the literature used as evidence, Gene Ontology (GO) terms, and annotated genes in GOA records. While automatic approaches for the detection of semantic inconsistencies in GOA have been developed, they operate within predetermined contexts, lacking the ability to leverage broader evidence, especially relevant domain-specific background knowledge. This paper investigates various types of background knowledge that could improve the detection of prevalent inconsistencies in GOA. In addition, the paper proposes several approaches to integrate background knowledge into the automatic GOA inconsistency detection process. RESULTS: We have extended a previously developed GOA inconsistency dataset with several kinds of GOA-related background knowledge, including GeneRIF statements, biological concepts mentioned within evidence texts, GO hierarchy and existing GO annotations of the specific gene. We have proposed several effective approaches to integrate background knowledge as part of the automatic GOA inconsistency detection process. The proposed approaches can improve automatic detection of self-consistency and several of the most prevalent types of inconsistencies.This is the first study to explore the advantages of utilizing background knowledge and to propose a practical approach to incorporate knowledge in automatic GOA inconsistency detection. We establish a new benchmark for performance on this task. Our methods may be applicable to various tasks that involve incorporating biological background knowledge. AVAILABILITY AND IMPLEMENTATION: https://github.com/jiyuc/de-inconsistency.


Assuntos
Ontologia Genética , Anotação de Sequência Molecular , Anotação de Sequência Molecular/métodos , Bases de Dados Genéticas , Biologia Computacional/métodos , Semântica , Humanos
6.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935069

RESUMO

MOTIVATION: In the past decade, single-cell RNA sequencing (scRNA-seq) has emerged as a pivotal method for transcriptomic profiling in biomedical research. Precise cell-type identification is crucial for subsequent analysis of single-cell data. And the integration and refinement of annotated data are essential for building comprehensive databases. However, prevailing annotation techniques often overlook the hierarchical organization of cell types, resulting in inconsistent annotations. Meanwhile, most existing integration approaches fail to integrate datasets with different annotation depths and none of them can enhance the labels of outdated data with lower annotation resolutions using more intricately annotated datasets or novel biological findings. RESULTS: Here, we introduce scPLAN, a hierarchical computational framework designed for scRNA-seq data analysis. scPLAN excels in annotating unlabeled scRNA-seq data using a reference dataset structured along a hierarchical cell-type tree. It identifies potential novel cell types in a systematic, layer-by-layer manner. Additionally, scPLAN effectively integrates annotated scRNA-seq datasets with varying levels of annotation depth, ensuring consistent refinement of cell-type labels across datasets with lower resolutions. Through extensive annotation and novel cell detection experiments, scPLAN has demonstrated its efficacy. Two case studies have been conducted to showcase how scPLAN integrates datasets with diverse cell-type label resolutions and refine their cell-type labels. AVAILABILITY: https://github.com/michaelGuo1204/scPLAN.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Análise de Célula Única , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Humanos , Software , Transcriptoma , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , Anotação de Sequência Molecular/métodos
7.
Genes (Basel) ; 15(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927622

RESUMO

BACKGROUND: Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS: Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS: The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA: Attached.


Assuntos
Redes Reguladoras de Genes , Plasmodium falciparum , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Malária Falciparum/genética , Humanos , Ontologia Genética , Anotação de Sequência Molecular/métodos , Proteínas de Protozoários/genética
8.
Genome Res ; 34(5): 769-777, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866550

RESUMO

Gene prediction has remained an active area of bioinformatics research for a long time. Still, gene prediction in large eukaryotic genomes presents a challenge that must be addressed by new algorithms. The amount and significance of the evidence available from transcriptomes and proteomes vary across genomes, between genes, and even along a single gene. User-friendly and accurate annotation pipelines that can cope with such data heterogeneity are needed. The previously developed annotation pipelines BRAKER1 and BRAKER2 use RNA-seq or protein data, respectively, but not both. A further significant performance improvement integrating all three data types was made by the recently released GeneMark-ETP. We here present the BRAKER3 pipeline that builds on GeneMark-ETP and AUGUSTUS, and further improves accuracy using the TSEBRA combiner. BRAKER3 annotates protein-coding genes in eukaryotic genomes using both short-read RNA-seq and a large protein database, along with statistical models learned iteratively and specifically for the target genome. We benchmarked the new pipeline on genomes of 11 species under an assumed level of relatedness of the target species proteome to available proteomes. BRAKER3 outperforms BRAKER1 and BRAKER2. The average transcript-level F1-score is increased by about 20 percentage points on average, whereas the difference is most pronounced for species with large and complex genomes. BRAKER3 also outperforms other existing tools, MAKER2, Funannotate, and FINDER. The code of BRAKER3 is available on GitHub and as a ready-to-run Docker container for execution with Docker or Singularity. Overall, BRAKER3 is an accurate, easy-to-use tool for eukaryotic genome annotation.


Assuntos
Anotação de Sequência Molecular , Software , Anotação de Sequência Molecular/métodos , Humanos , RNA-Seq/métodos , Algoritmos , Animais , Genoma , Biologia Computacional/métodos , Genômica/métodos , Transcriptoma
9.
Bioinformatics ; 40(Supplement_1): i511-i520, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940121

RESUMO

MOTIVATION: Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for discovering cancer genes but remains to be fully exploited. RESULTS: Here, we present the DIsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based computational method that integrates the knowledge from multiple types of annotated gene sets to predict cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets. Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes. AVAILABILITY AND IMPLEMENTATION: DISHyper is freely available for download at https://github.com/genemine/DISHyper.


Assuntos
Neoplasias , Redes Neurais de Computação , Humanos , Neoplasias/genética , Biologia Computacional/métodos , Genômica/métodos , Genes Neoplásicos , Anotação de Sequência Molecular/métodos , Bases de Dados Genéticas
10.
Genome Res ; 34(5): 757-768, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866548

RESUMO

Large-scale genomic initiatives, such as the Earth BioGenome Project, require efficient methods for eukaryotic genome annotation. Here we present an automatic gene finder, GeneMark-ETP, integrating genomic-, transcriptomic-, and protein-derived evidence that has been developed with a focus on large plant and animal genomes. GeneMark-ETP first identifies genomic loci where extrinsic data are sufficient for making gene predictions with "high confidence." The genes situated in the genomic space between the high-confidence genes are predicted in the next stage. The set of high-confidence genes serves as an initial training set for the statistical model. Further on, the model parameters are iteratively updated in the rounds of gene prediction and parameter re-estimation. Upon reaching convergence, GeneMark-ETP makes the final predictions and delivers the whole complement of predicted genes. GeneMark-ETP outperforms gene finders using a single type of extrinsic evidence. Comparisons with gene finders MAKER2 and TSEBRA, those that use both transcript- and protein-derived extrinsic evidence, show that GeneMark-ETP delivers state-of-the-art gene-prediction accuracy, with the margin of outperforming existing approaches increasing in its application to larger and more complex eukaryotic genomes.


Assuntos
Anotação de Sequência Molecular , Anotação de Sequência Molecular/métodos , Animais , Software , Genoma , Genômica/métodos , Eucariotos/genética , Algoritmos
11.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849569

RESUMO

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Humanos , Animais , Camundongos , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Anotação de Sequência Molecular/métodos
12.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860884

RESUMO

As public health laboratories expand their genomic sequencing and bioinformatics capacity for the surveillance of different pathogens, labs must carry out robust validation, training, and optimization of wet- and dry-lab procedures. Achieving these goals for algorithms, pipelines and instruments often requires that lower quality datasets be made available for analysis and comparison alongside those of higher quality. This range of data quality in reference sets can complicate the sharing of sub-optimal datasets that are vital for the community and for the reproducibility of assays. Sharing of useful, but sub-optimal datasets requires careful annotation and documentation of known issues to enable appropriate interpretation, avoid being mistaken for better quality information, and for these data (and their derivatives) to be easily identifiable in repositories. Unfortunately, there are currently no standardized attributes or mechanisms for tagging poor-quality datasets, or datasets generated for a specific purpose, to maximize their utility, searchability, accessibility and reuse. The Public Health Alliance for Genomic Epidemiology (PHA4GE) is an international community of scientists from public health, industry and academia focused on improving the reproducibility, interoperability, portability, and openness of public health bioinformatic software, skills, tools and data. To address the challenges of sharing lower quality datasets, PHA4GE has developed a set of standardized contextual data tags, namely fields and terms, that can be included in public repository submissions as a means of flagging pathogen sequence data with known quality issues, increasing their discoverability. The contextual data tags were developed through consultations with the community including input from the International Nucleotide Sequence Data Collaboration (INSDC), and have been standardized using ontologies - community-based resources for defining the tag properties and the relationships between them. The standardized tags are agnostic to the organism and the sequencing technique used and thus can be applied to data generated from any pathogen using an array of sequencing techniques. The tags can also be applied to synthetic (lab created) data. The list of standardized tags is maintained by PHA4GE and can be found at https://github.com/pha4ge/contextual_data_QC_tags. Definitions, ontology IDs, examples of use, as well as a JSON representation, are provided. The PHA4GE QC tags were tested, and are now implemented, by the FDA's GenomeTrakr laboratory network as part of its routine submission process for SARS-CoV-2 wastewater surveillance. We hope that these simple, standardized tags will help improve communication regarding quality control in public repositories, in addition to making datasets of variable quality more easily identifiable. Suggestions for additional tags can be submitted to PHA4GE via the New Term Request Form in the GitHub repository. By providing a mechanism for feedback and suggestions, we also expect that the tags will evolve with the needs of the community.


Assuntos
Biologia Computacional , Saúde Pública , Controle de Qualidade , Humanos , Biologia Computacional/métodos , Disseminação de Informação/métodos , Reprodutibilidade dos Testes , Anotação de Sequência Molecular/métodos , Genômica/métodos , Software
13.
Methods Mol Biol ; 2802: 33-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819555

RESUMO

The identification of orthologous genes is relevant for comparative genomics, phylogenetic analysis, and functional annotation. There are many computational tools for the prediction of orthologous groups as well as web-based resources that offer orthology datasets for download and online analysis. This chapter presents a simple and practical guide to the process of orthologous group prediction, using a dataset of 10 prokaryotic proteomes as example. The orthology methods covered are OrthoMCL, COGtriangles, OrthoFinder2, and OMA. The authors compare the number of orthologous groups predicted by these various methods, and present a brief workflow for the functional annotation and reconstruction of phylogenies from inferred single-copy orthologous genes. The chapter also demonstrates how to explore two orthology databases: eggNOG6 and OrthoDB.


Assuntos
Genômica , Filogenia , Genômica/métodos , Biologia Computacional/métodos , Software , Células Procarióticas/metabolismo , Bases de Dados Genéticas , Anotação de Sequência Molecular/métodos , Família Multigênica , Genoma Bacteriano
14.
Methods Mol Biol ; 2802: 473-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819569

RESUMO

Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.


Assuntos
Evolução Molecular , Genoma de Inseto , Genômica , Insetos , Animais , Insetos/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Filogenia , Análise de Sequência de DNA/métodos
15.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38775729

RESUMO

MOTIVATION: Today, we know the function of only a small fraction of the protein sequences predicted from genomic data. This problem is even more salient for bacteria, which represent some of the most phylogenetically and metabolically diverse taxa on Earth. This low rate of bacterial gene annotation is compounded by the fact that most function prediction algorithms have focused on eukaryotes, and conventional annotation approaches rely on the presence of similar sequences in existing databases. However, often there are no such sequences for novel bacterial proteins. Thus, we need improved gene function prediction methods tailored for bacteria. Recently, transformer-based language models-adopted from the natural language processing field-have been used to obtain new representations of proteins, to replace amino acid sequences. These representations, referred to as protein embeddings, have shown promise for improving annotation of eukaryotes, but there have been only limited applications on bacterial genomes. RESULTS: To predict gene functions in bacteria, we developed SAFPred, a novel synteny-aware gene function prediction tool based on protein embeddings from state-of-the-art protein language models. SAFpred also leverages the unique operon structure of bacteria through conserved synteny. SAFPred outperformed both conventional sequence-based annotation methods and state-of-the-art methods on multiple bacterial species, including for distant homolog detection, where the sequence similarity to the proteins in the training set was as low as 40%. Using SAFPred to identify gene functions across diverse enterococci, of which some species are major clinical threats, we identified 11 previously unrecognized putative novel toxins, with potential significance to human and animal health. AVAILABILITY AND IMPLEMENTATION: https://github.com/AbeelLab/safpred.


Assuntos
Algoritmos , Proteínas de Bactérias , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Software , Bactérias/genética , Sintenia , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos
16.
J Proteome Res ; 23(6): 1915-1925, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733346

RESUMO

Enzymes are indispensable in many biological processes, and with biomedical literature growing exponentially, effective literature review becomes increasingly challenging. Natural language processing methods offer solutions to streamline this process. This study aims to develop an annotated enzyme corpus for training and evaluating enzyme named entity recognition (NER) models. A novel pipeline, combining dictionary matching and rule-based keyword searching, automatically annotated enzyme entities in >4800 full-text publications. Four deep learning NER models were created with different vocabularies (BioBERT/SciBERT) and architectures (BiLSTM/transformer) and evaluated on 526 manually annotated full-text publications. The annotation pipeline achieved an F1-score of 0.86 (precision = 1.00, recall = 0.76), surpassed by fine-tuned transformers for F1-score (BioBERT: 0.89, SciBERT: 0.88) and recall (0.86) with BiLSTM models having higher precision (0.94) than transformers (0.92). The annotation pipeline runs in seconds on standard laptops with almost perfect precision, but was outperformed by fine-tuned transformers in terms of F1-score and recall, demonstrating generalizability beyond the training data. In comparison, SciBERT-based models exhibited higher precision, and BioBERT-based models exhibited higher recall, highlighting the importance of vocabulary and architecture. These models, representing the first enzyme NER algorithms, enable more effective enzyme text mining and information extraction. Codes for automated annotation and model generation are available from https://github.com/omicsNLP/enzymeNER and https://zenodo.org/doi/10.5281/zenodo.10581586.


Assuntos
Algoritmos , Aprendizado Profundo , Enzimas , Processamento de Linguagem Natural , Anotação de Sequência Molecular/métodos , Humanos , Mineração de Dados/métodos
17.
Methods Mol Biol ; 2802: 165-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819560

RESUMO

Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. A large proportion of such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies, differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate either a single target genome or all input genomes simultaneously. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Furthermore, we provide practical advice on genome annotation in general.


Assuntos
Genômica , Anotação de Sequência Molecular , Filogenia , Anotação de Sequência Molecular/métodos , Genômica/métodos , Biologia Computacional/métodos , Genoma/genética , Alinhamento de Sequência/métodos , Software
18.
Proc Natl Acad Sci U S A ; 121(23): e2403750121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805269

RESUMO

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera. Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.


Assuntos
Genoma de Planta , Haplótipos , Transcriptoma , Vitis , Vitis/genética , Haplótipos/genética , Transcriptoma/genética , Anotação de Sequência Molecular/métodos , Perfilação da Expressão Gênica/métodos , Software
19.
PLoS One ; 19(5): e0304164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805426

RESUMO

Engineered plasmids have been workhorses of recombinant DNA technology for nearly half a century. Plasmids are used to clone DNA sequences encoding new genetic parts and to reprogram cells by combining these parts in new ways. Historically, many genetic parts on plasmids were copied and reused without routinely checking their DNA sequences. With the widespread use of high-throughput DNA sequencing technologies, we now know that plasmids often contain variants of common genetic parts that differ slightly from their canonical sequences. Because the exact provenance of a genetic part on a particular plasmid is usually unknown, it is difficult to determine whether these differences arose due to mutations during plasmid construction and propagation or due to intentional editing by researchers. In either case, it is important to understand how the sequence changes alter the properties of the genetic part. We analyzed the sequences of over 50,000 engineered plasmids using depositor metadata and a metric inspired by the natural language processing field. We detected 217 uncatalogued genetic part variants that were especially widespread or were likely the result of convergent evolution or engineering. Several of these uncatalogued variants are known mutants of plasmid origins of replication or antibiotic resistance genes that are missing from current annotation databases. However, most are uncharacterized, and 3/5 of the plasmids we analyzed contained at least one of the uncatalogued variants. Our results include a list of genetic parts to prioritize for refining engineered plasmid annotation pipelines, highlight widespread variants of parts that warrant further investigation to see whether they have altered characteristics, and suggest cases where unintentional evolution of plasmid parts may be affecting the reliability and reproducibility of science.


Assuntos
Engenharia Genética , Plasmídeos , Plasmídeos/genética , Engenharia Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Mutação , Sequência de Bases , Análise de Sequência de DNA/métodos
20.
Methods ; 228: 12-21, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759908

RESUMO

Annotating cell types of single-cell RNA sequencing (scRNA-seq) data is crucial for studying cellular heterogeneity in the tumor microenvironment. Recently, large-scale pre-trained language models (PLMs) have achieved significant progress in cell-type annotation of scRNA-seq data. This approach effectively addresses previous methods' shortcomings in performance and generalization. However, fine-tuning PLMs for different downstream tasks demands considerable computational resources, rendering it impractical. Hence, a new research branch introduces parameter-efficient fine-tuning (PEFT). This involves optimizing a few parameters while leaving the majority unchanged, leading to substantial reductions in computational expenses. Here, we utilize scBERT, a large-scale pre-trained model, to explore the capabilities of three PEFT methods in scRNA-seq cell type annotation. Extensive benchmark studies across several datasets demonstrate the superior applicability of PEFT methods. Furthermore, downstream analysis using models obtained through PEFT showcases their utility in novel cell type discovery and model interpretability for potential marker genes. Our findings underscore the considerable potential of PEFT in PLM-based cell type annotation, presenting novel perspectives for the analysis of scRNA-seq data.


Assuntos
RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Algoritmos , Anotação de Sequência Molecular/métodos , Software , Microambiente Tumoral/genética , Análise da Expressão Gênica de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...