Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(8): 150, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832948

RESUMO

Hotspot driver mutations presented by human leukocyte antigens might be recognized by anti-tumor T cells. Based on their advantages of tumor-specificity and immunogenicity, neoantigens derived from hotspot mutations, such as PIK3CAH1047L, may serve as emerging targets for cancer immunotherapies. NetMHCpan V4.1 was utilized for predicting neoepitopes of PIK3CA hotspot mutation. Using in vitro stimulation, antigen-specific T cells targeting the HLA-A*11:01-restricted PIK3CA mutation were isolated from healthy donor-derived peripheral blood mononuclear cells. T cell receptors (TCRs) were cloned using single-cell PCR and sequencing. Their functionality was assessed through T cell activation markers, cytokine production and cytotoxic response to cancer cell lines pulsed with peptides or transduced genes of mutant PIK3CA. Immunogenic mutant antigens from PIK3CA and their corresponding CD8+ T cells were identified. These PIK3CA mutation-specific CD8+ T cells were subsequently enriched, and their TCRs were isolated. The TCR clones exhibited mutation-specific and HLA-restricted reactivity, demonstrating varying degrees of functional avidity. Identified TCR genes were transferred into CD8+ Jurkat cells and primary T cells deficient of endogenous TCRs. TCR-expressing cells demonstrated specific recognition and reactivity against the PIK3CAH1047L peptide presented by HLA-A*11:01-expressing K562 cells. Furthermore, mutation-specific TCR-T cells demonstrated an elevation in cytokine production and profound cytotoxic effects against HLA-A*11:01+ malignant cell lines harboring PIK3CAH1047L. Our data demonstrate the immunogenicity of an HLA-A*11:01-restricted PIK3CA hotspot mutation and its targeting therapeutic potential, together with promising candidates of TCR-T cell therapy.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Mutação , Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Antígeno HLA-A11/genética , Antígeno HLA-A11/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral
2.
HLA ; 103(6): e15546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887907

RESUMO

A nucleotide deletion in the residue 371 of HLA-A*11:01:01:01 results in a novel allele HLA-A*11:466N.


Assuntos
Éxons , Antígeno HLA-A11 , Teste de Histocompatibilidade , Humanos , Alelos , Sequência de Bases , Códon , Antígeno HLA-A11/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Taiwan
3.
HLA ; 103(6): e15578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923289
4.
HLA ; 103(6): e15541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923358

RESUMO

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Células Dendríticas , Epitopos de Linfócito T , Epitopos Imunodominantes , Humanos , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos Imunodominantes/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A11/genética , Fibroblastos/imunologia , Fibroblastos/virologia , Células Apresentadoras de Antígenos/imunologia
6.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793551

RESUMO

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Assuntos
Infecções por Vírus Epstein-Barr , Antígeno HLA-A2 , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Peptídeos , Humanos , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/genética , Peptídeos/imunologia , Peptídeos/química , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A11/genética , Proteômica/métodos , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , China , Espectrometria de Massas em Tandem , Epitopos de Linfócito T/imunologia , Linhagem Celular Tumoral
7.
Cell Prolif ; 56(5): e13471, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37199039

RESUMO

Robust allogeneic immune reactions after transplantation impede the translational pace of human embryonic stem cells (hESCs)-based therapies. Selective genetic editing of human leucocyte antigen (HLA) molecules has been proposed to generate hESCs with immunocompatibility, which, however, has not been specifically designed for the Chinese population yet. Herein, we explored the possibility of customizing immunocompatible hESCs based on Chinese HLA typing characteristics. We generated an immunocompatible hESC line by disrupting HLA-B, HLA-C, and CIITA genes while retaining HLA-A*11:01 (HLA-A*11:01-retained, HLA-A11R ), which covers ~21% of the Chinese population. The immunocompatibility of HLA-A11R hESCs was verified by in vitro co-culture and confirmed in humanized mice with established human immunity. Moreover, we precisely knocked an inducible caspase-9 suicide cassette into HLA-A11R hESCs (iC9-HLA-A11R ) to promote safety. Compared with wide-type hESCs, HLA-A11R hESC-derived endothelial cells elicited much weaker immune responses to human HLA-A11+ T cells, while maintaining HLA-I molecule-mediated inhibitory signals to natural killer (NK) cells. Additionally, iC9-HLA-A11R hESCs could be induced to undergo apoptosis efficiently by AP1903. Both cell lines displayed genomic integrity and low risks of off-target effects. In conclusion, we customized a pilot immunocompatible hESC cell line based on Chinese HLA typing characteristics with safety insurance. This approach provides a basis for establishment of a universal HLA-AR bank of hESCs covering broad populations worldwide and may speed up the clinical application of hESC-based therapies.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Animais , Camundongos , Células-Tronco Embrionárias , Alelos , Antígeno HLA-A11/genética , Antígeno HLA-A11/metabolismo , População do Leste Asiático , Células Endoteliais , Edição de Genes , Antígenos HLA/genética , Histocompatibilidade , Diferenciação Celular
8.
J Immunol ; 208(1): 49-53, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872977

RESUMO

The biological relevance of genes initially categorized as "pseudogenes" is slowly emerging, notably in innate immunity. In the HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G, -E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human effector IL-2-activated PBMCs and human IL-2-independent NK92-MI cell line activity. Finally, through in silico genotyping of the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations.


Assuntos
Membrana Celular/metabolismo , Genótipo , Proteína da Hemocromatose/genética , Células Matadoras Naturais/imunologia , Pseudogenes/genética , Alelos , Povo Asiático , Citotoxicidade Imunológica , Evolução Molecular , Frequência do Gene , Antígeno HLA-A11/genética , Haplótipos , Proteína da Hemocromatose/metabolismo , Homeostase , Humanos , Tolerância Imunológica , Células K562 , Ativação Linfocitária , População Branca
9.
J Am Soc Nephrol ; 32(8): 2070-2082, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34301794

RESUMO

BACKGROUND: Circulating anti-HLA donor-specific antibodies (HLA-DSA) are often absent in kidney transplant recipients with microvascular inflammation (MVI). Missing self, the inability of donor endothelial cells to provide HLA I-mediated signals to inhibitory killer cell Ig-like receptors (KIRs) on recipient natural killer cells, can cause endothelial damage in vitro, and has been associated with HLA-DSA-negative MVI. However, missing self's clinical importance as a nonhumoral trigger of allograft rejection remains unclear. METHODS: In a population-based study of 924 consecutive kidney transplantations between March 2004 and February 2013, we performed high-resolution donor and recipient HLA typing and recipient KIR genotyping. Missing self was defined as the absence of A3/A11, Bw4, C1, or C2 donor genotype, with the presence of the corresponding educated recipient inhibitory KIR gene. RESULTS: We identified missing self in 399 of 924 transplantations. Co-occurrence of missing self types had an additive effect in increasing MVI risk, with a threshold at two concurrent types (hazard ratio [HR], 1.78; 95% confidence interval [95% CI], 1.26 to 2.53), independent of HLA-DSA (HR, 5.65; 95% CI, 4.01 to 7.96). Missing self and lesions of cellular rejection were not associated. No HLA-DSAs were detectable in 146 of 222 recipients with MVI; 28 of the 146 had at least two missing self types. Missing self associated with transplant glomerulopathy after MVI (HR, 2.51; 95% CI, 1.12 to 5.62), although allograft survival was better than with HLA-DSA-associated MVI. CONCLUSION: Missing self specifically and cumulatively increases MVI risk after kidney transplantation, independent of HLA-DSA. Systematic evaluation of missing self improves understanding of HLA-DSA-negative MVI and might be relevant for improved diagnostic classification and patient risk stratification.


Assuntos
Rejeição de Enxerto/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/genética , Vasculite/genética , Adulto , Idoso , Anticorpos/sangue , Feminino , Genótipo , Sobrevivência de Enxerto , Antígeno HLA-A11/genética , Antígeno HLA-A11/imunologia , Antígeno HLA-A3/genética , Antígeno HLA-A3/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Teste de Histocompatibilidade , Humanos , Transplante de Rim , Masculino , Microvasos , Pessoa de Meia-Idade , Receptores KIR2DL2/genética , Receptores KIR2DL3/genética , Doadores de Tecidos , Transplantados , Vasculite/complicações
10.
Front Immunol ; 12: 658570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968060

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19) was announced as an outbreak by the World Health Organization (WHO) in January 2020 and as a pandemic in March 2020. The majority of infected individuals have experienced no or only mild symptoms, ranging from fully asymptomatic cases to mild pneumonic disease. However, a minority of infected individuals develop severe respiratory symptoms. The objective of this study was to identify susceptible HLA alleles and clinical markers that can be used in risk prediction model for the early identification of severe COVID-19 among hospitalized COVID-19 patients. A total of 137 patients with mild COVID-19 (mCOVID-19) and 53 patients with severe COVID-19 (sCOVID-19) were recruited from the Center Hospital of the National Center for Global Health and Medicine (NCGM), Tokyo, Japan for the period of February-August 2020. High-resolution sequencing-based typing for eight HLA genes was performed using next-generation sequencing. In the HLA association studies, HLA-A*11:01:01:01 [Pc = 0.013, OR = 2.26 (1.27-3.91)] and HLA-C*12:02:02:01-HLA-B*52:01:01:02 [Pc = 0.020, OR = 2.25 (1.24-3.92)] were found to be significantly associated with the severity of COVID-19. After multivariate analysis controlling for other confounding factors and comorbidities, HLA-A*11:01:01:01 [P = 3.34E-03, OR = 3.41 (1.50-7.73)], age at diagnosis [P = 1.29E-02, OR = 1.04 (1.01-1.07)] and sex at birth [P = 8.88E-03, OR = 2.92 (1.31-6.54)] remained significant. The area under the curve of the risk prediction model utilizing HLA-A*11:01:01:01, age at diagnosis, and sex at birth was 0.772, with sensitivity of 0.715 and specificity of 0.717. To the best of our knowledge, this is the first article that describes associations of HLA alleles with COVID-19 at the 4-field (highest) resolution level. Early identification of potential sCOVID-19 could help clinicians prioritize medical utility and significantly decrease mortality from COVID-19.


Assuntos
COVID-19/patologia , Frequência do Gene/genética , Antígeno HLA-A11/genética , Antígeno HLA-B52/genética , Antígenos HLA-C/genética , Fatores Etários , COVID-19/imunologia , Estudos de Casos e Controles , Comorbidade , Feminino , Estudos de Associação Genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Insuficiência Respiratória/genética , Insuficiência Respiratória/virologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Fatores Sexuais
15.
Nat Commun ; 10(1): 893, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792391

RESUMO

Our understanding of the conformational and electrostatic determinants that underlie targeting of human leukocyte antigens (HLA) by anti-HLA alloantibodies is principally based upon in silico modelling. Here we provide a biochemical/biophysical and functional characterization of a human monoclonal alloantibody specific for a common HLA type, HLA-A*11:01. We present a 2.4 Å resolution map of the binding interface of this antibody on HLA-A*11:01 and compare the structural determinants with those utilized by T-cell receptor (TCR), killer-cell immunoglobulin-like receptor (KIR) and CD8 on the same molecule. These data provide a mechanistic insight into the paratope-epitope relationship between an alloantibody and its target HLA molecule in a biological context where other immune receptors are concomitantly engaged. This has important implications for our interpretation of serologic binding patterns of anti-HLA antibodies in sensitized individuals and thus, for the biology of human alloresponses.


Assuntos
Antígeno HLA-A11/química , Antígeno HLA-A11/metabolismo , Isoanticorpos/química , Isoanticorpos/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação de Anticorpos/genética , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Antígeno HLA-A11/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Isoanticorpos/genética , Modelos Moleculares , Biblioteca de Peptídeos , Conformação Proteica
16.
Cancer Sci ; 110(4): 1156-1168, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30767336

RESUMO

Osteosarcoma is the most common malignancy of bone that affects young people. Neoadjuvant chemotherapy and surgery have significantly improved the prognosis. However, the prognosis of non-responders to chemotherapy is still poor. To develop peptide-based immunotherapy for osteosarcoma, we previously identified CTL epitopes derived from papillomavirus binding factor (PBF) in the context of human leukocyte antigen (HLA)-A2, HLA-A24 and HLA-B55. In the present study, we identified two novel CTL epitopes, QVT (QVTVWLLEQK) and LSA (LSALPPPLHK), in the context of HLA-A11 using a sequence of screenings based on the predicted affinity of peptides, in vitro folding ability of peptide/HLA-A11 complex, reactivity of peptide/HLA-A11 tetramer and interferon (IFN)-γ production of T cells that was induced by mixed lymphocyte peptide culture under a limiting dilution condition. CTL clones directed to QVT and LSA peptides showed specific cytotoxicity against HLA-A11+ PBF+ osteosarcoma (HOS-A11) cells. In contrast, another epitope, ASV (ASVLSRRLGK), could highly induce cognate tetramer-positive CTL. This might be because the ASV peptide mimics the peptide ASV (R6Q) (ASVLSQRLGK) derived from bacterial polypeptides, ROK family proteins. However, ASV-induced CTL did not show cytokine production against the cognate peptide. In conclusion, the CTL epitopes QVT and LSA peptides might be useful for the development of immunotherapy targeting PBF for patients with osteosarcoma.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A11/genética , Proteínas de Membrana/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Sequência de Aminoácidos , Reações Cruzadas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Epitopos de Linfócito T/química , Antígeno HLA-A11/química , Antígeno HLA-A11/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Osteossarcoma/metabolismo , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica
17.
Microbes Infect ; 21(1): 56-62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29775667

RESUMO

The Ebola virus (EBOV) is a very contagious virus that is highly fatal in humans and animals. The largest epidemic was in West Africa in 2014, in which over 11,000 people died. However, to date, there are no licensed vaccines against it. Studies show that CD4+ and CD8+ T-cell responses, especially cytotoxic T-lymphocyte (CTL) responses, play key roles in protecting individuals from EBOV infection. Since HLA-restricted epitope vaccines are likely to be effective and safe immunization strategies for infectious diseases, the present study screened for CTL epitopes in the EBOV-nucleoprotein that are restricted by HLA-A11 (a common allele in Chinese people). Predictive computer analysis of the amino-acid sequence of EBOV-nucleoprotein identified ten putative HLA-A11-restricted epitopes. ELISPOT assay of immunized HLA-A11/DR1 transgenic mice showed that five (GR-9, VR-9, EK-9, PK-9, and RK-9) induced effective CTL responses. Additional epitope analyses will aid the design of epitope vaccines against EBOV.


Assuntos
Ebolavirus/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A11/imunologia , Doença pelo Vírus Ebola/imunologia , Proteínas do Nucleocapsídeo/imunologia , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Antígeno HLA-A11/genética , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Nucleocapsídeo/química , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
18.
J Viral Hepat ; 26(1): 73-82, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30260541

RESUMO

Adaptation of hepatitis C virus (HCV) to CD8+ T cell selection pressure is well described; however, it is unclear if HCV differentially adapts in different populations. Here, we studied HLA class I-associated viral sequence polymorphisms in HCV 1b isolates in a Chinese population and compared viral substitution patterns between Chinese and German populations. We identified three HLA class I-restricted epitopes in HCV NS3 with statistical support for selection pressure and found evidence for differential escape pathways between isolates from China and Germany depending on the HLA class I molecule. The substitution patterns particularly differed in the epitope VTLTHPITK1635-1643 , which was presented by HLA-A*03 as well as HLA-A*11, two alleles with highly different frequencies in the two populations. In Germany, a substitution in position seven of the epitope was the most frequent substitution in the presence of HLA-A*03, functionally associated with immune escape and nearly absent in Chinese isolates. In contrast, the most frequent substitution in China was located at position two of the epitope and became the predominant consensus residue. Moreover, substitutions in position one of the epitope were significantly enriched in HLA-A*11-positive individuals in China and associated with different patterns of CD8+ T cell reactivity. Our study confirms the differential escape pathways selected by HCV that depended on different HLA class I alleles in Chinese and German populations, indicating that HCV differentially adapts to distinct HLA class I alleles in these populations. This result has important implications for vaccine design against highly variable and globally distributed pathogens, which may require matching antigen sequences to geographic regions for T cell-based vaccine strategies.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Antígenos HLA-A/imunologia , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Alelos , China , Epitopos de Linfócito T/imunologia , Alemanha , Antígenos HLA-A/genética , Antígeno HLA-A11/genética , Antígeno HLA-A11/imunologia , Antígeno HLA-A3/genética , Antígeno HLA-A3/imunologia , Hepacivirus/imunologia , Hepatite C/etnologia , Hepatite C/imunologia , Humanos , Evasão da Resposta Imune , Mutação , Seleção Genética , Proteínas não Estruturais Virais/imunologia
19.
HLA ; 93(1): 40-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561157

RESUMO

One nucleotide substitution at residue 860 of HLA-A*11:01:01:01 results in a novel allele, HLA-A*11:292.


Assuntos
Povo Asiático , Éxons/genética , Antígeno HLA-A11/genética , Alelos , Bases de Dados Genéticas , Teste de Histocompatibilidade , Humanos , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA , Taiwan , Terminologia como Assunto
20.
HLA ; 91(6): 531-532, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573329
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...