Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Front Immunol ; 15: 1462209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238636

RESUMO

CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.


Assuntos
Antígenos CD1 , Lipidômica , Antígenos CD1/metabolismo , Antígenos CD1/imunologia , Humanos , Apresentação de Antígeno/imunologia , Lipídeos/imunologia , Metabolismo dos Lipídeos , Isoformas de Proteínas/imunologia , Antígenos CD1d/metabolismo , Antígenos CD1d/imunologia
2.
Proc Natl Acad Sci U S A ; 121(34): e2321686121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141352

RESUMO

To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.


Assuntos
Antígenos CD1d , Lipidômica , Células T Matadoras Naturais , Receptores de Antígenos de Linfócitos T , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Animais , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos , Lipidômica/métodos , Humanos , Autoantígenos/imunologia , Autoantígenos/metabolismo , Ceramidas/metabolismo , Ceramidas/imunologia , Lipídeos/química , Lipídeos/imunologia , Estresse do Retículo Endoplasmático/imunologia
3.
J Med Chem ; 67(15): 12819-12834, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39031770

RESUMO

Synthetic α-galactosylceramide (αGalCer) and its analogues as powerful agonists for natural killer T (NKT) cell manipulation have received significant attention in immunotherapy and adjuvant development. However, identifying new potent NKT cell agonists, especially those with Th1 selectivity that promote anticancer effects, remains a challenging task. In this work, we introduced a sulfonamide group into the acyl chain of αGalCer to form additional hydrogen bonds to intensify the glycolipid/CD1d interaction. Two compounds GCS-11 and GCS-12 demonstrated remarkable potency while exhibiting different cytokine induction patterns. Compared to αGalCer, the Th1-biased GCS-11 exhibited a 6-fold increase in IFN-γ but not IL-4, while the Th1/2-balanced GCS-12 elicited 7- and 5-fold increase in IFN-γ and IL-4, respectively, in vivo. These findings place them among the most potent NKT cell agonists, with superior antitumor effects. Therefore, hydrogen-bond-involved derivatization could be a powerful strategy to develop potent and polarized NKT cell agonists for various immunotherapies.


Assuntos
Antígenos CD1d , Citocinas , Desenho de Fármacos , Galactosilceramidas , Ligação de Hidrogênio , Células T Matadoras Naturais , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Animais , Galactosilceramidas/química , Galactosilceramidas/farmacologia , Galactosilceramidas/síntese química , Camundongos , Citocinas/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD1d/química , Humanos , Interleucina-4/metabolismo , Relação Estrutura-Atividade , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral
4.
Immunology ; 172(4): 627-640, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38736328

RESUMO

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Assuntos
Antígenos CD1d , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Imunoterapia Adotiva , Linfoma de Células B , Células T Matadoras Naturais , Antígenos CD1d/metabolismo , Antígenos CD1d/imunologia , Humanos , Animais , Células T Matadoras Naturais/imunologia , Imunoterapia Adotiva/métodos , Herpesvirus Humano 4/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Camundongos , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Camundongos SCID , Camundongos Endogâmicos NOD
5.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586879

RESUMO

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Assuntos
Antígenos CD1d , Aterosclerose , Antígeno B7-1 , Hiperlipidemias , Lipoproteínas LDL , Macrófagos , Células T Matadoras Naturais , Animais , Humanos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Lipoproteínas LDL/imunologia , Lipoproteínas LDL/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Antígeno B7-1/metabolismo , Antígeno B7-1/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Feminino , Pessoa de Meia-Idade
6.
Nat Commun ; 15(1): 1213, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332012

RESUMO

Dysfunction of invariant natural killer T (iNKT) cells contributes to immune resistance of tumors. Most mechanistic studies focus on their static functional status before or after activation, not considering motility as an important characteristic for antigen scanning and thus anti-tumor capability. Here we show via intravital imaging, that impaired motility of iNKT cells and their exclusion from tumors both contribute to the diminished anti-tumor iNKT cell response. Mechanistically, CD1d, expressed on macrophages, interferes with tumor infiltration of iNKT cells and iNKT-DC interactions but does not influence their intratumoral motility. VCAM1, expressed by cancer cells, restricts iNKT cell motility and inhibits their antigen scanning and activation by DCs via reducing CDC42 expression. Blocking VCAM1-CD49d signaling improves motility and activation of intratumoral iNKT cells, and consequently augments their anti-tumor function. Interference with macrophage-iNKT cell interactions further enhances the anti-tumor capability of iNKT cells. Thus, our findings provide a direction to enhance the efficacy of iNKT cell-based immunotherapy via motility regulation.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Ativação Linfocitária , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Macrófagos/metabolismo , Antígenos CD1d/metabolismo
8.
Nat Commun ; 14(1): 7922, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040679

RESUMO

Invariant natural killer T (NKT) cell subsets are defined based on their cytokine-production profiles and transcription factors. Their distribution is different in C57BL/6 (B6) and BALB/c mice, with a bias for NKT1 and NKT2/NKT17 subsets, respectively. Here, we show that the non-classical class I-like major histocompatibility complex CD1 molecules CD1d2, expressed in BALB/c and not in B6 mice, could not account for this difference. We find however that NKT cell subset distribution is intrinsic to bone marrow derived NKT cells, regardless of syngeneic CD1d-ligand recognition, and that multiple intrinsic factors are likely involved. Finally, we find that CD1d expression levels in combination with T cell antigen receptor signal strength could also influence NKT cell distribution and function. Overall, this study indicates that CD1d-mediated TCR signals and other intrinsic signals integrate to influence strain-specific NKT cell differentiation programs and subset distributions.


Assuntos
Células T Matadoras Naturais , Animais , Camundongos , Antígenos CD1/metabolismo , Antígenos CD1d/metabolismo , Diferenciação Celular , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T
9.
Trends Immunol ; 44(10): 757-759, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37730500

RESUMO

Humans express four different lipid antigen-presenting molecules, CD1a, CD1b, CD1c, and CD1d, that are differentially expressed on antigen-presenting cells and which recycle through different endosomal compartments. Huang et al. now answer the question on whether the four CD1 isoforms selectively bind certain lipids.


Assuntos
Antígenos CD1 , Lipídeos , Humanos , Apresentação de Antígeno , Antígenos CD1/metabolismo , Isoformas de Proteínas/metabolismo , Antígenos CD1d/metabolismo
10.
Immunity ; 56(7): 1533-1547.e7, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37354904

RESUMO

The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.


Assuntos
Células T Matadoras Naturais , Serotonina , Serotonina/metabolismo , Lipídeos , Antígenos CD1d/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-36773690

RESUMO

Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.


Assuntos
Apresentação de Antígeno , Células T Matadoras Naturais , Adipócitos/metabolismo , Citocinas/metabolismo , Lipídeos , Células T Matadoras Naturais/metabolismo , Antígenos CD1d/metabolismo
12.
Methods Mol Biol ; 2613: 13-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587067

RESUMO

CD1d is a non-classical major histocompatibility complex (MHC) protein, responsible for lipid antigen presentation, which presents lipids to natural killer T (NKT) cells. Various CD1d lipid ligands have been reported, including microbial and endogenous glycolipids/phospholipids. Among them, an α-galactosylceramide (α-GalCer), a representative CD1d ligand, is one of the most potent ligands and its derivatives have been developed. In this chapter, the chemistry of α-GalCer and its derivatives are described with an emphasis on their chemical syntheses and molecular interaction analysis with CD1d are described.


Assuntos
Galactosilceramidas , Glicolipídeos , Galactosilceramidas/química , Ligantes , Antígenos CD1d/metabolismo , Glicolipídeos/química , Apresentação de Antígeno
13.
Nat Commun ; 13(1): 6723, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344546

RESUMO

Alterations in cellular metabolism underpin macrophage activation, yet little is known regarding how key immunological molecules regulate metabolic programs in macrophages. Here we uncover a function for the antigen presenting molecule CD1d in the control of lipid metabolism. We show that CD1d-deficient macrophages exhibit a metabolic reprogramming, with a downregulation of lipid metabolic pathways and an increase in exogenous lipid import. This metabolic rewiring primes macrophages for enhanced responses to innate signals, as CD1d-KO cells show higher signalling and cytokine secretion upon Toll-like receptor stimulation. Mechanistically, CD1d modulates lipid import by controlling the internalization of the lipid transporter CD36, while blocking lipid uptake through CD36 restores metabolic and immune responses in macrophages. Thus, our data reveal CD1d as a key regulator of an inflammatory-metabolic circuit in macrophages, independent of its function in the control of T cell responses.


Assuntos
Imunidade Inata , Metabolismo dos Lipídeos , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Lipídeos
14.
Front Immunol ; 13: 998378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189224

RESUMO

Invariant natural killer T (iNKT) cells are innate T cells that are recognized for their potent immune modulatory functions. Over the last three decades, research in murine models and human observational studies have revealed that iNKT cells can act to limit inflammatory pathology in a variety of settings. Since iNKT cells are multi-functional and can promote inflammation in some contexts, understanding the mechanistic basis for their anti-inflammatory effects is critical for effectively harnessing them for clinical use. Two contrasting mechanisms have emerged to explain the anti-inflammatory activity of iNKT cells: that they drive suppressive pathways mediated by other regulatory cells, and that they may cytolytically eliminate antigen presenting cells that promote excessive inflammatory responses. How these activities are controlled and separated from their pro-inflammatory functions remains a central question. Murine iNKT cells can be divided into four functional lineages that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2, NKT10) cytokine profiles. However, in humans these subsets are not clearly evident, and instead most iNKT cells that are CD4+ appear oriented towards polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more predisposed towards cytolytic activity. Additionally, structurally distinct antigens have been shown to induce TH1- or TH2-biased responses by iNKT cells in murine models, but human iNKT cells may respond to differing levels of TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine production. We discuss the implications of these differences for translational efforts focused on the anti-inflammatory activity of iNKT cells.


Assuntos
Células T Matadoras Naturais , Animais , Antígenos CD1d/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T
15.
Front Immunol ; 13: 897873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874748

RESUMO

CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation.


Assuntos
Aminoaciltransferases , Esfingomielinas , Animais , Antígenos CD1d/metabolismo , Proteínas de Bactérias , Cisteína Endopeptidases , Mamíferos
16.
Nat Commun ; 13(1): 3279, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672409

RESUMO

Invariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc- subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc- cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.


Assuntos
Linfócitos B Reguladores , Células T Matadoras Naturais , Animais , Antígenos CD1d/metabolismo , Autoimunidade , Linfócitos B Reguladores/metabolismo , Galactosilceramidas , Interleucina-10/metabolismo , Fígado/metabolismo , Camundongos
17.
Stem Cell Res ; 62: 102808, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569347

RESUMO

To achieve efficient, reproducible differentiation of human pluripotent stem cells (hPSCs) towards specific hematopoietic cell-types, a comprehensive understanding of the necessary cell signaling and developmental trajectories involved is required. Previous studies have identified the mesodermal progenitors of extra-embryonic-like and intra-embryonic-like hemogenic endothelium (HE), via stage-specific WNT and ACTIVIN/NODAL, with GYPA/GYPB (CD235a/b) expression serving as a positive selection marker for mesoderm harboring exclusively extra-embryonic-like hemogenic potential. However, a positive mesodermal cell-surface marker with exclusively intra-embryonic-like hemogenic potential has not been identified. Recently, we reported that early mesodermal expression of CDX4 critically regulates definitive HE specification, suggesting that CDX4 may act in a cell-autonomous manner during hematopoietic development. To identify CDX4+ mesoderm, we performed single cell (sc)RNAseq on hPSC-derived mesodermal cultures, revealing CDX4hi expressing mesodermal populations were uniquely enriched in the non-classical MHC-Class-1 receptor CD1D. Flow cytometry demonstrated approximately 60% of KDR+CD34-CD235a- mesoderm was CD1d+, and CDX4 was robustly enriched within CD1d+ mesoderm. Critically, only CD1d+ mesoderm harbored CD34+ HOXA+ HE with multilineage erythroid-myeloid-lymphoid potential. Thus, CDX4+CD1d+ expression within early mesoderm demarcates an early progenitor of HE. These insights may be used for further study of human hematopoietic development and improve hematopoietic differentiation conditions for regenerative medicine applications.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes , Antígenos CD1d/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular/fisiologia , Glicoforinas/metabolismo , Hemangioblastos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo
18.
Chem Commun (Camb) ; 58(7): 925-940, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989357

RESUMO

Microbes produce a rich array of lipidic species that through their location in the cell wall and ability to mingle with host lipids represent a privileged class of immune-active molecules. Lipid-sensing immunity recognizes microbial lipids from pathogens and commensals causing immune responses. Yet microbial lipids are often heterogeneous, in limited supply and in some cases their structures are incompletely defined. Total synthesis can assist in structural determination, overcome supply issues, and provide access to high-purity, homogeneous samples and analogues. This account highlights synthetic approaches to lipidic species from pathogenic and commensal bacteria and fungi that have supported immunological studies involving lipid sensing through the pattern recognition receptor Mincle and cell-mediated immunity through the CD1-T cell axis.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Imunidade Celular , Lipídeos/imunologia , Antígenos CD1d/química , Antígenos CD1d/metabolismo , Glicolipídeos/química , Glicolipídeos/imunologia , Humanos , Lipídeos/química , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Cancer Sci ; 113(3): 864-874, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971473

RESUMO

NY-ESO-1 is a cancer/testis antigen expressed in various cancer types. However, the induction of NY-ESO-1-specific CTLs through vaccines is somewhat difficult. Thus, we developed a new type of artificial adjuvant vector cell (aAVC-NY-ESO-1) expressing a CD1d-NKT cell ligand complex and a tumor-associated antigen, NY-ESO-1. First, we determined the activation of invariant natural killer T (iNKT) and natural killer (NK) cell responses by aAVC-NY-ESO-1. We then showed that the NY-ESO-1-specific CTL response was successfully elicited through aAVC-NY-ESO-1 therapy. After injection of aAVC-NY-ESO-1, we found that dendritic cells (DCs) in situ expressed high levels of costimulatory molecules and produced interleukn-12 (IL-12), indicating that DCs undergo maturation in vivo. Furthermore, the NY-ESO-1 antigen from aAVC-NY-ESO-1 was delivered to the DCs in vivo, and it was presented on MHC class I molecules. The cross-presentation of the NY-ESO-1 antigen was absent in conventional DC-deficient mice, suggesting a host DC-mediated CTL response. Thus, this strategy helps generate sufficient CD8+ NY-ESO-1-specific CTLs along with iNKT and NK cell activation, resulting in a strong antitumor effect. Furthermore, we established a human DC-transferred NOD/Shi-scid/IL-2γcnull immunodeficient mouse model and showed that the NY-ESO-1 antigen from aAVC-NY-ESO-1 was cross-presented to antigen-specific CTLs through human DCs. Taken together, these data suggest that aAVC-NY-ESO-1 has potential for harnessing innate and adaptive immunity against NY-ESO-1-expressing malignancies.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Imunoterapia/métodos , Proteínas de Membrana/administração & dosagem , Adjuvantes Imunológicos/metabolismo , Animais , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Apresentação Cruzada , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Células T Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Linfócitos T Citotóxicos/imunologia
20.
J Leukoc Biol ; 111(6): 1199-1210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730251

RESUMO

Invariant NK T (iNKT) cells are innate-like lymphocytes that can recognize the lipid Ag presented by MHC I like molecule CD1d. Distinct tissue distribution of iNKT cells subsets implies a contribution of these subsets to their related tissue regional immunity. iNKT cells are enriched in liver, an organ with unique immunological properties. Whether liver-specific iNKT cells exist and dedicate to the liver immunity remains elusive. Here, a liver-specific CD24+ iNKT subset is shown. Hepatic CD24+ iNKT cells show higher levels of proliferation, glucose metabolism, and mTOR activity comparing to CD24- iNKT cells. Although CD24+ iNKT cells and CD24- iNKT cells in the liver produce similar amounts of cytokines, the hepatic CD24+ iNKT cells exhibit lower granzyme B production. These liver-specific CD24+ iNKT cells are derived from thymus and differentiate into CD24+ iNKT in the liver microenvironment. Moreover, liver microenvironment induces the formation of CD24+ conventional T cells as well, and these cells exhibit higher proliferation ability but lower granzyme B production in comparison with CD24- T cells. The results propose that liver microenvironment might induce the generation of liver-specific iNKT subset that might play an important role in maintaining liver homeostasis.


Assuntos
Células T Matadoras Naturais , Antígenos CD1d/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Fígado , Ativação Linfocitária , Subpopulações de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...