Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.682
Filtrar
1.
PLoS One ; 19(7): e0306429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980867

RESUMO

Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.


Assuntos
Brucella abortus , Células Endoteliais , Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Interferon gama , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Bacteriano/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/microbiologia , Brucelose/genética , Complexo de Golgi/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/efeitos dos fármacos
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000468

RESUMO

Previously, we found that a greater dissimilarity in swine leukocyte antigen (SLA) class I and class II alleles between mating partners resulted in increased farrowing rates in a highly inbred population of Microminipigs (MMPs). In this follow-up study, we have analyzed the effects of dissimilarity in SLA alleles between mating partners for seven different reproductive traits, including litter size and the number of stillborn and live or dead weaned piglets. We determined the relationships among reproductive traits within each mating event and the amino acid distances of SLA alleles as markers of diversity between mating partners. Our results indicate that mating partners with greater amino acid pairwise genetic distances in the SLA-1 class I gene or DQB1 class II gene alleles were associated with significantly larger litter sizes and higher numbers of live piglets at birth and weaning. Also, partners with greater pairwise distances in the SLA-2 class I gene alleles exhibited fewer pre-weaning deaths. These findings suggest that the dissimilarity in SLA class I and class II alleles between mating partners may affect not only farrowing rates but also other key reproductive traits such as litter size and improved piglet survival rates. Consequently, SLA alleles could serve as valuable genetic markers for selecting mating partners in breeding programs and for conducting epistatic studies on various reproductive traits in MMPs.


Assuntos
Alelos , Antígenos de Histocompatibilidade Classe I , Reprodução , Animais , Suínos/genética , Antígenos de Histocompatibilidade Classe I/genética , Reprodução/genética , Feminino , Tamanho da Ninhada de Vivíparos/genética , Porco Miniatura/genética , Masculino , Antígenos de Histocompatibilidade Classe II/genética , Aminoácidos/genética
5.
HLA ; 103(6): e15509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837741

RESUMO

Loss of heterozygosity (LOH) has been reported to occur in HLA regions in cervical intraepithelial neoplasia (CIN) and cervical cancer. However, the details of how this is related to the progression of CIN have been unclear. In this study, we examined the human papillomavirus (HPV) antigen-presenting capacity of people with CIN and the significance of LOH of HLA class I in the progression of CIN. It was shown that differences in antigen-presenting capacity among each case depended on HLA types, not HPV genotypes. Focusing on the HLA type, there was a positive correlation between antigen-presenting capacity against HPV and the frequency of allelic loss. Furthermore, the lost HLA-B alleles had a higher HPV antigen-presenting capacity than intact alleles. In addition, frequency of LOH of HLA class I was significantly higher in advanced CIN (CIN2-3) than in cervicitis or early-stage CIN (CIN1): around half of CIN2-3 had LOH of any HLA class I. Moreover, the antigen-presenting capacity against E5, which is the HPV proteins that facilitate viral escape from this immune surveillance by suppressing HLA class I expression, had the most significant impact on the LOH in HLA-B. This study suggests that HPV evades immune surveillance mechanisms when host cells lose the capacity for antigen presentation by HLA class I molecules, resulting in long-term infection and progression to advanced lesions.


Assuntos
Antígenos de Histocompatibilidade Classe I , Perda de Heterozigosidade , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Displasia do Colo do Útero/imunologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/virologia , Displasia do Colo do Útero/patologia , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/genética , Apresentação de Antígeno/imunologia , Adulto , Alelos , Papillomaviridae/imunologia , Vigilância Imunológica , Pessoa de Meia-Idade , Genótipo
6.
HLA ; 103(6): e15543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837862

RESUMO

The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.


Assuntos
Alelos , Etnicidade , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Humanos , Brasil , Etnicidade/genética , Antígenos HLA/genética , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Genótipo , Genética Populacional/métodos , Antígenos de Histocompatibilidade Classe I/genética , Biologia Computacional/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38847554

RESUMO

The aim of the present study was to determine the associations between the MICB genetic variability and the expression and the risk of development of post-transplant complications after allogeneic hematopoietic stem cell transplantation (HSCT). HSCT recipients and their donors were genotyped for two MICB polymorphisms (rs1065075, rs3828903). Moreover, the expression of a soluble form of MICB was determined in the recipients' serum samples after transplantation using the Luminex assay. Our results revealed a favorable role of the MICB rs1065075 G allele. Recipients with donors carrying this genetic variant were less prone to developing chronic graft-versus-host disease (cGvHD) when compared to recipients without any symptoms of this disease (41.41% vs. 65.38%, p = 0.046). Moreover, the MICB rs1065075 G allele was associated with a lower incidence of cytomegalovirus (CMV) reactivation, both as a donor (p = 0.015) and as a recipient allele (p = 0.039). The MICB rs1065075 G variant was also found to be associated with decreased serum soluble MICB (sMICB) levels, whereas serum sMICB levels were significantly higher in recipients diagnosed with CMV infection (p = 0.0386) and cGvHD (p = 0.0008) compared to recipients without those complications. A protective role of the G allele was also observed for the rs3828903 polymorphism, as it was more frequently detected among donors of recipients without cGvHD (89.90% vs. 69.23%; p = 0.013). MICB genetic variants, as well as serum levels of sMICB, may serve as prognostic factors for the risk of developing cGvHD and CMV infection after allogeneic HSCT.


Assuntos
Infecções por Citomegalovirus , Predisposição Genética para Doença , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Menor , Transplante Homólogo , Humanos , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/etiologia , Infecções por Citomegalovirus/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Transplante Homólogo/efeitos adversos , Adulto , Pessoa de Meia-Idade , Doença Crônica , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Classe I/genética , Polimorfismo de Nucleotídeo Único , Alelos , Genótipo , Adulto Jovem , Citomegalovirus/fisiologia , Adolescente , Risco , Fatores de Risco
10.
Elife ; 132024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900146

RESUMO

Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) ß2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.


During a viral infection, the immune system must discriminate between healthy and infected cells to selectively kill infected cells. Healthy cells have different types of molecules known collectively as HLA-I on their surface. These molecules present small fragments of proteins from the cell, called antigens, to patrolling immune cells, known as CTLs or natural killer cells. While CTLs ignore antigens from human proteins (which indicate the cell is healthy), they can bind to and recognize antigens from viral proteins, which triggers them to activate immune responses that kill the infected cell. However, some viruses can prevent infected cells from presenting HLA-I molecules on their surfaces as a strategy to evade the immune system. Natural killer cells have evolved to overcome this challenge. They bind to the HLA-I molecules themselves, which causes them to remain inactive. However, if the HLA-I molecules are missing, the NK cells can more easily switch on and kill the target cell. The human cytomegalovirus is a common virus that causes lifelong infection in humans. Although it rarely causes illness in healthy individuals, it can be life-threatening to newborn babies and for individuals with weakened immune systems. One human cytomegalovirus protein known as US10 was previously found to bind to HLA-I without reducing the levels of these molecules on the surface of the cell. However, its precise role remained unclear. Gerke et al. used several biochemical and cell biology approaches to investigate whether US10 manipulates the quality of the three types of HLA-I, which could impact both CTL and NK cell recognition. The experiments showed that US10 acted differently on the various kinds of HLA-I. To one type, it bound strongly within the cell and prevented it from reaching the surface. US10 also prevented another type of HLA-I from maturing properly and presenting antigens but did not affect the third type of HLA-I. These findings suggest that US10 interferes with the ability of different HLA-I types to present antigens in specific ways. Further research is needed to measure how US10 activity affects immune cells, which may ultimately aid the development of new therapies against human cytomegalovirus and other similar viruses.


Assuntos
Citomegalovirus , Antígenos de Histocompatibilidade Classe I , Humanos , Citomegalovirus/genética , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Genótipo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ligação Proteica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Regulação da Expressão Gênica , Apresentação de Antígeno/genética
11.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891862

RESUMO

RNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host's RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.


Assuntos
Processamento Alternativo , COVID-19 , Interferons , Isoformas de Proteínas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/genética , COVID-19/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferons/metabolismo , Interferons/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo
12.
Methods Mol Biol ; 2809: 115-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907894

RESUMO

Human leukocyte antigen (HLA) typing is of great importance in clinical applications such as organ transplantation, blood transfusion, disease diagnosis and treatment, and forensic analysis. In recent years, nanopore sequencing technology has emerged as a rapid and cost-effective option for HLA typing. However, due to the principles and data characteristics of nanopore sequencing, there was a scarcity of robust and generalizable bioinformatics tools for its downstream analysis, posing a significant challenge in deciphering the thousands of HLA alleles present in the human population. To address this challenge, we developed NanoHLA as a tool for high-resolution typing of HLA class I genes without error correction based on nanopore sequencing. The method integrated the concepts of HLA type coverage analysis and the data conversion techniques employed in Nano2NGS, which was characterized by applying nanopore sequencing data to NGS-liked data analysis pipelines. In validation with public nanopore sequencing datasets, NanoHLA showed an overall concordance rate of 84.34% for HLA-A, HLA-B, and HLA-C, and demonstrated superior performance in comparison to existing tools such as HLA-LA. NanoHLA provides tools and solutions for use in HLA typing related fields, and look forward to further expanding the application of nanopore sequencing technology in both research and clinical settings. The code is available at https://github.com/langjidong/NanoHLA .


Assuntos
Alelos , Teste de Histocompatibilidade , Sequenciamento por Nanoporos , Humanos , Teste de Histocompatibilidade/métodos , Sequenciamento por Nanoporos/métodos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Análise de Sequência de DNA/métodos , Genes MHC Classe I/genética
13.
Eur J Pharmacol ; 977: 176716, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38849039

RESUMO

The immune system has a strong connection to tumors. When a tumor cell is recognized as an abnormal cell by the immune system, the immune system may initiate an immune response to kill the tumor cell. In this study, RNA sequencing was performed on multiple myeloma (MM) cells treated with the proteasome inhibitor FHND6091. The transcriptional changes induced by FHND6091 in RPMI8226 cells aligned notably with immune response activation and results indicated upregulation of cGAS-STING pathway-related genes in the FHND6091-treated group. In vivo and in vitro experiments had demonstrated that FHND6091 stimulated the immunoreaction of MM cells via activation of the cyclic guanosine monophosphate-adenosine synthase/stimulator of interferon genes (cGAS-STING) pathway. This activation resulted in the generation of type-I interferons and the mobilization of natural killer (NK) cells. Notably, FHND6091 upregulated the levels of calreticulin and the protein ligands UL16-binding protein 2/5/6, MHC class I chain-related A (MICA), and MICB on the surface of MM cells. Subsequently, upon engaging with the surface activation receptors of NK cells, these ligands triggered NK cell activation, leading to the subsequent elimination of tumor cells. Thus, our findings elucidated the mechanism whereby FHND6091 exerted its immunotherapeutic activity as a STING agonist, enhancing the killing ability of NK cells against tumor cells.


Assuntos
Células Matadoras Naturais , Proteínas de Membrana , Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Inibidores de Proteassoma/farmacologia , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Camundongos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Calreticulina/metabolismo , Calreticulina/genética , Transdução de Sinais/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Interferon Tipo I/metabolismo
14.
Cell Rep ; 43(6): 114325, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870014

RESUMO

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.


Assuntos
Antígenos de Histocompatibilidade Classe I , Humanos , Ligantes , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sequência de Aminoácidos , Aprendizado de Máquina , Peptídeos/metabolismo , Peptídeos/química
15.
HLA ; 103(6): e15584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932717

RESUMO

MICA polymorphisms have been associated with increased incidence of acute GvHD and adverse outcome in allogeneic haematopoietic stem cell transplantation (HSCT). MICB is another expressed member of MHC class I-related chain genes and its impact on HSCT outcome is yet to be fully defined. We typed a large cohort of patients and donors for MICB polymorphisms and investigated the impact of MICB matching on outcome after unrelated HSCT. 69.2% of the patients were 10/10 human leukocyte antigen (HLA) matched and 30.8% were 9/10 HLA matched. MICB typing was performed using a short amplicon-based NGS typing assay on the Illumina MiSeq platform. Differences in proteins were considered as mismatches. MICA polymorphisms were identified as possible confounder and were therefore included as parameter in the multivariate analyses. Due to the strong linkage disequilibrium with the classical HLA-genes, sub-stratification for HLA matching status was necessary, and no effect of MICB mismatches was seen in the 10/10 HLA matched group when compared to the MICB matched cases. However, in the 9/10 HLA matched group, MICB mismatched cases showed significantly worse disease free survival (DFS), GvHD and relapse free survival (GRFS) compared to the MICB matched cases (DFS: HR 1.24, p = 0.011; GRFS: HR 1.26, p = 0.002). MICA mismatches had no impact on any outcome parameter. According to our findings, effects previously attributed to MICA differences may have been confounded by MICB polymorphisms. We show that MICB differences contribute a small but relevant effect in 9/10 HLA-matched transplantations, which in turn highlights the possible usefulness of MICB typing in donor selection among similarly suitable 9/10 matched donors, especially when HLA-B mismatches have to be accepted.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Teste de Histocompatibilidade , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/genética , Teste de Histocompatibilidade/métodos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Doadores não Relacionados , Adolescente , Transplante Homólogo/métodos , Polimorfismo Genético , Idoso , Adulto Jovem , Antígenos HLA/genética , Antígenos HLA/imunologia , Desequilíbrio de Ligação , Alelos , Criança
16.
Front Immunol ; 15: 1404668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903492

RESUMO

Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shß2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.


Assuntos
Vetores Genéticos , Transplante de Coração , Antígenos de Histocompatibilidade Classe I , Lentivirus , Animais , Lentivirus/genética , Transplante de Coração/métodos , Vetores Genéticos/genética , Suínos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Perfusão/métodos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Microglobulina beta-2/genética , Citocinas/metabolismo , Engenharia Genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/imunologia , Humanos , RNA Interferente Pequeno/genética , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Proteínas Nucleares , Transativadores
17.
Front Immunol ; 15: 1399989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799448

RESUMO

Introduction: Macrophage function is determined by microenvironment and origin. Brain and retinal microglia are both derived from yolk sac progenitors, yet their microenvironments differ. Utilizing single-cell RNA sequencing (scRNA-seq) data from mice, we tested the hypothesis that retinal and brain microglia exhibit distinct transcriptional profiles due to their unique microenvironments. Methods: Eyes and brains from 2-4 month wildtype mice were combined (20 eyes; 3 brains) to yield one biologically diverse sample per organ. Each tissue was digested into single cell suspensions, enriched for immune cells, and sorted for scRNA-seq. Analysis was performed in Seurat v3 including clustering, integration, and differential expression. Multi-parameter flow cytometry was used for validation of scRNA-seq results. Lymphocytic choriomeningitis virus (LCMV) Clone 13, which produces a systemic, chronic, and neurotropic infection, was used to validate scRNA-seq and flow cytometry results in vivo. Results: Cluster analysis of integrated gene expression data from eye and brain identified 6 Tmem119 + P2ry12 + microglial clusters. Differential expression analysis revealed that eye microglia were enriched for more pro-inflammatory processes including antigen processing via MHC class I (14.0-fold, H2-D1 and H2-K1) and positive regulation of T-cell immunity (8.4-fold) compared to brain microglia. Multi-parameter flow cytometry confirmed that retinal microglia expressed 3.2-fold greater H2-Db and 263.3-fold more H2-Kb than brain microglia. On Day 13 and 29 after LCMV infection, CD8+ T-cell density was greater in the retina than the brain. Discussion: Our data demonstrate that the microenvironment of retina and brain differs, resulting in microglia-specific gene expression changes. Specifically, retinal microglia express greater MHC class I by scRNA-seq and multi-parameter flow cytometry, resulting in a possibly enhanced capability to stimulate CD8+ T-cell inflammation during LCMV infection. These results may explain tissue-specific differences between retina and brain during systemic viral infections and CD8+ T-cell driven autoimmune disease.


Assuntos
Encéfalo , Microglia , Retina , Animais , Microglia/imunologia , Microglia/metabolismo , Camundongos , Retina/imunologia , Retina/patologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/imunologia , Inflamação/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Análise de Célula Única , Linfócitos T CD8-Positivos/imunologia , Transcriptoma
18.
J Exp Clin Cancer Res ; 43(1): 138, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715057

RESUMO

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has proven to be extremely effective at managing certain cancers, its efficacy in treating pancreatic ductal adenocarcinoma (PDAC) has been limited. Therefore, enhancing the effect of ICB could improve the prognosis of PDAC. In this study, we focused on the histamine receptor H1 (HRH1) and investigated its impact on ICB therapy for PDAC. METHODS: We assessed HRH1 expression in pancreatic cancer cell (PCC) specimens from PDAC patients through public data analysis and immunohistochemical (IHC) staining. The impact of HRH1 in PCCs was evaluated using HRH1 antagonists and small hairpin RNA (shRNA). Techniques including Western blot, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarray analyses were performed to identify the relationships between HRH1 and major histocompatibility complex class I (MHC-I) expression in cancer cells. We combined HRH1 antagonism or knockdown with anti-programmed death receptor 1 (αPD-1) therapy in orthotopic models, employing IHC, immunofluorescence, and hematoxylin and eosin staining for assessment. RESULTS: HRH1 expression in cancer cells was negatively correlated with HLA-ABC expression, CD8+ T cells, and cytotoxic CD8+ T cells. Our findings indicate that HRH1 blockade upregulates MHC-I expression in PCCs via cholesterol biosynthesis signaling. In the orthotopic model, the combined inhibition of HRH1 and αPD-1 blockade enhanced cytotoxic CD8+ T cell penetration and efficacy, overcoming resistance to ICB therapy. CONCLUSIONS: HRH1 plays an immunosuppressive role in cancer cells. Consequently, HRH1 intervention may be a promising method to amplify the responsiveness of PDAC to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Linhagem Celular Tumoral , Feminino , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Masculino
19.
Sci Rep ; 14(1): 11593, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773213

RESUMO

Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-ß1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-ß1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-ß1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-ß1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.


Assuntos
Antígeno B7-H1 , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana , Mieloma Múltiplo , Nucleotidiltransferases , Transdução de Sinais , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Animais , Regulação para Baixo , Camundongos , Feminino , Técnicas de Cocultura , Masculino , Regulação Neoplásica da Expressão Gênica
20.
Commun Biol ; 7(1): 586, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755285

RESUMO

Bats serve as reservoirs for numerous zoonotic viruses, yet they typically remain asymptomatic owing to their unique immune system. Of particular significance is the MHC-I in bats, which plays crucial role in anti-viral response and exhibits polymorphic amino acid (AA) insertions. This study demonstrated that both 5AA and 3AA insertions enhance the thermal stability of the bat MHC-I complex and enrich the diversity of bound peptides in terms of quantity and length distribution, by stabilizing the 310 helix, a region prone to conformational changes during peptide loading. However, the mismatched insertion could diminish the stability of bat pMHC-I. We proposed that a suitable insertion may help bat MHC-I adapt to high body temperatures during flight while enhancing antiviral responses. Moreover, this site-specific insertions may represent a strategy of evolutionary adaptation of MHC-I molecules to fluctuations in body temperature, as similar insertions have been found in other lower vertebrates.


Assuntos
Quirópteros , Antígenos de Histocompatibilidade Classe I , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Estabilidade Proteica , Peptídeos/química , Peptídeos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Apresentação de Antígeno , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...