Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.242
Filtrar
1.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901224

RESUMO

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Assuntos
Neurônios GABAérgicos , Interneurônios , Ketamina , Parvalbuminas , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Masculino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/farmacologia
2.
Behav Pharmacol ; 35(5): 293-302, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847463

RESUMO

Cancer patients often experience anticipatory nausea and vomiting (ANV) due to Pavlovian conditioning. Both N-methyl-D-aspartate and beta-adrenergic receptors are known to mediate memory formation, but their role in the development of ANV remains unclear. This study used a conditioned context aversion (CCA) paradigm, an animal model for ANV, to assess whether administration of the beta-adrenergic receptor antagonist propranolol or the N-methyl-D-aspartate receptor antagonist MK-801 immediately after CCA training has an effect on the later expression of CCA in CD1 male mice. In experiment 1, three groups were injected with lithium chloride (LiCl) to induce aversion in a novel context, resulting in CCA. A control group was injected with sodium chloride (NaCl). Following conditioning, two of the LiCl-treated groups received different doses of MK-801 (0.05 or 0.2 mg/kg), while the remaining LiCl-treated and NaCl-treated groups received a second NaCl injection. In experiment 2, two groups were injected with LiCl, and one group was injected with NaCl. After conditioning, one of the LiCl-treated groups received a propranolol injection (10 mg/kg). The remaining LiCl-treated and NaCl-treated groups received NaCl injections. Water consumption was measured in all groups 72 h later within the conditioning context. Postconditioning administration of propranolol, but not MK-801, attenuated CCA, as revealed by similar levels of water consumption in animals that received LiCl and propranolol relative to NaCl-treated animals. These findings suggest that beta-adrenergic receptor activation is crucial for the development of CCA. Therefore, propranolol may represent a novel therapeutic approach for cancer patients at high risk of ANV.


Assuntos
Antagonistas Adrenérgicos beta , Condicionamento Clássico , Modelos Animais de Doenças , Maleato de Dizocilpina , Propranolol , Propranolol/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Masculino , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Náusea/tratamento farmacológico , Náusea/induzido quimicamente , Aprendizagem da Esquiva/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Vômito Precoce , Antagonistas de Aminoácidos Excitatórios/farmacologia , Relação Dose-Resposta a Droga
4.
Int J Neuropsychopharmacol ; 27(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833581

RESUMO

BACKGROUND: The NMDA antagonist S-ketamine is gaining increasing use as a rapid-acting antidepressant, although its exact mechanisms of action are still unknown. In this study, we investigated ketamine in respect to its properties toward central noradrenergic mechanisms and how they influence alertness behavior. METHODS: We investigated the influence of S-ketamine on the locus coeruleus (LC) brain network in a placebo-controlled, cross-over, 7T functional, pharmacological MRI study in 35 healthy male participants (25.1 ± 4.2 years) in conjunction with the attention network task to measure LC-related alertness behavioral changes. RESULTS: We could show that acute disruption of the LC alertness network to the thalamus by ketamine is related to a behavioral alertness reduction. CONCLUSION: The results shed new light on the neural correlates of ketamine beyond the glutamatergic system and underpin a new concept of how it may unfold its antidepressant effects.


Assuntos
Atenção , Estudos Cross-Over , Ketamina , Locus Cerúleo , Imageamento por Ressonância Magnética , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologia , Masculino , Adulto , Adulto Jovem , Atenção/efeitos dos fármacos , Atenção/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Método Duplo-Cego , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem
5.
Transl Psychiatry ; 14(1): 258, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890270

RESUMO

Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.


Assuntos
Emoções , Giro do Cíngulo , Ketamina , Lamotrigina , Imageamento por Ressonância Magnética , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Lamotrigina/farmacologia , Lamotrigina/administração & dosagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Masculino , Feminino , Método Duplo-Cego , Adulto , Emoções/efeitos dos fármacos , Adulto Jovem , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem
6.
Biomed Pharmacother ; 176: 116821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823278

RESUMO

Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.


Assuntos
Inibidores da Colinesterase , Cognição , Maleato de Dizocilpina , Aprendizagem em Labirinto , Ratos Wistar , Receptores de N-Metil-D-Aspartato , Tacrina , Animais , Tacrina/farmacologia , Inibidores da Colinesterase/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Ratos , Maleato de Dizocilpina/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Cognição/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Escopolamina , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória/efeitos dos fármacos
7.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780087

RESUMO

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Assuntos
Giro Denteado , Ratos Wistar , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Sacarose , Animais , Masculino , Receptores de AMPA/metabolismo , Receptores de AMPA/antagonistas & inibidores , Sacarose/administração & dosagem , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Memória/fisiologia , Memória/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Autoadministração , RNA Mensageiro/metabolismo , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia
8.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762038

RESUMO

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Assuntos
Agressão , Maleato de Dizocilpina , Consolidação da Memória , Memória de Longo Prazo , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Masculino , Agressão/fisiologia , Agressão/efeitos dos fármacos , Consolidação da Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Memória de Longo Prazo/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia
9.
Proc Natl Acad Sci U S A ; 121(22): e2402732121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768339

RESUMO

Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Humanos , Cinética , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Modelos Neurológicos
10.
Neuropharmacology ; 255: 110008, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797243

RESUMO

Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.


Assuntos
Sinais (Psicologia) , Relação Dose-Resposta a Droga , Ketamina , Núcleo Accumbens , Ratos Long-Evans , Reforço Psicológico , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Feminino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ratos , Caracteres Sexuais , Autoadministração , Condicionamento Operante/efeitos dos fármacos
11.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702935

RESUMO

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Assuntos
Antipsicóticos , Aripiprazol , Modelos Animais de Doenças , Maleato de Dizocilpina , Hipocampo , Hipercinese , Esquizofrenia , Animais , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Esquizofrenia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina/farmacologia , Camundongos , Hipercinese/tratamento farmacológico , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Neurônios/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
12.
Expert Opin Drug Saf ; 23(5): 617-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568141

RESUMO

BACKGROUND: Despite its widespread use, the adverse effects (AEs) of memantine have not been well documented, and there is a need to find new ways to analyze the AEs of memantine. RESEARCH DESIGN AND METHODS: AEs in which the primary suspected drug was memantine were retrieved from the FAERS database. The proportional report ratio (PRR), reporting odds ratio (ROR), Bayesian confidence propagation neural network (BCPNN), and empirical Bayesian geometric mean (EBGM) were used to detect potential positive signals between memantine and AEs. SAS, MySQL, EXCEL, and R language software were used for data processing and statistical analysis. RESULTS: This study gathered a total of 5808 reports of AEs associated with memantine. Of these reports, a greater proportion of female patients (51.17%) than male patients (36.33%) had AEs. The AEs reported by FAERS were mainly in psychiatric category (n = 2157, IC025 = 2.69), various neurologic disorders (n = 1608, IC025 = 2.04), systemic disorders and various site reactions (n = 842, IC025 = 1.29). Unexpected ocular adverse events have been reported, ophthalmic vein thrombosis (n = 4, IC025 = 3.47) and scleral discolouration (n = 7, IC025 = 3.1), which may worsen glaucoma. CONCLUSIONS: This study observed conceivable new AEs signals and may supply important assist for scientific monitoring and threat identification of memantine.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Teorema de Bayes , Memantina , United States Food and Drug Administration , Memantina/efeitos adversos , Memantina/administração & dosagem , Humanos , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Estados Unidos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Adulto , Bases de Dados Factuais , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Adulto Jovem , Redes Neurais de Computação , Adolescente , Idoso de 80 Anos ou mais
14.
Neuropharmacology ; 254: 109970, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685343

RESUMO

Pharmacological approaches to induce N-methyl-d-aspartate receptor (NMDAR) hypofunction have been intensively used to understand the aetiology and pathophysiology of schizophrenia. Yet, the precise cellular and molecular mechanisms that relate to brain network dysfunction remain largely unknown. Here, we used a set of complementary approaches to assess the functional network abnormalities present in male mice that underwent a 7-day subchronic phencyclidine (PCP 10 mg/kg, subcutaneously, once daily) treatment. Our data revealed that pharmacological intervention with PCP affected cognitive performance and auditory evoked gamma oscillations in the prefrontal cortex (PFC) mimicking endophenotypes of some schizophrenia patients. We further assessed PFC cellular function and identified altered neuronal intrinsic membrane properties, reduced parvalbumin (PV) immunostaining and diminished inhibition onto L5 PFC pyramidal cells. A decrease in the strength of optogenetically-evoked glutamatergic current at the ventral hippocampus to PFC synapse was also demonstrated, along with a weaker shunt of excitatory transmission by local PFC interneurons. On a macrocircuit level, functional ultrasound measurements indicated compromised functional connectivity within several brain regions particularly involving PFC and frontostriatal circuits. Herein, we reproduced a panel of schizophrenia endophenotypes induced by subchronic PCP application in mice. We further recapitulated electrophysiological signatures associated with schizophrenia and provided an anatomical reference to critical elements in the brain circuitry. Together, our findings contribute to a better understanding of the physiological underpinnings of deficits induced by subchronic NMDAR antagonist regimes and provide a test system for characterization of pharmacological compounds.


Assuntos
Modelos Animais de Doenças , Fenciclidina , Córtex Pré-Frontal , Receptores de N-Metil-D-Aspartato , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Masculino , Fenciclidina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Esquizofrenia/induzido quimicamente , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
15.
Br J Pharmacol ; 181(16): 2701-2724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38631821

RESUMO

BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.


Assuntos
Giro Denteado , Maleato de Dizocilpina , Plasticidade Neuronal , Via Perfurante , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Maleato de Dizocilpina/farmacologia , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos
16.
Schizophr Res ; 267: 432-440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642484

RESUMO

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Assuntos
Modelos Animais de Doenças , Maleato de Dizocilpina , Estradiol , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Inibição Pré-Pulso , Cloridrato de Raloxifeno , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Feminino , Estradiol/farmacologia , Cloridrato de Raloxifeno/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Poli I-C/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Atividade Motora/efeitos dos fármacos
17.
Psychopharmacology (Berl) ; 241(7): 1399-1415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459971

RESUMO

RATIONALE: Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES: We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS: Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS: Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS: These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.


Assuntos
Ansiolíticos , Antidepressivos , Ketamina , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Masculino , Ratos , Ansiolíticos/farmacologia , Ansiolíticos/administração & dosagem , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Piridinas/farmacologia , Piridinas/administração & dosagem , Medo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Sinergismo Farmacológico , Relação Dose-Resposta a Droga , Memória/efeitos dos fármacos , Benzamidas/farmacologia , Benzamidas/administração & dosagem , Tiazóis/farmacologia , Tiazóis/administração & dosagem , Depressão/tratamento farmacológico , Ansiedade/tratamento farmacológico , Pirazóis
18.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489023

RESUMO

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Assuntos
Amidoidrolases , Benzamidas , Carbamatos , Fenciclidina , Piperidinas , Esquizofrenia , Animais , Masculino , Ratos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ritmo Gama/fisiologia , Ritmo Gama/efeitos dos fármacos , Fenciclidina/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/tratamento farmacológico
19.
Neuropsychopharmacol Rep ; 44(2): 333-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38376999

RESUMO

AIM: The therapeutic potential of N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, particularly ketamine, in mood disorders, is linked to their modulation of dopamine dynamics in the medial prefrontal cortex (mPFC). However, conflicting effects of distinct NMDAR antagonists, like ketamine and phencyclidine, on mPFC dopamine levels stem from variances in their receptor affinity profiles. This study investigates the impact of intermittent subchronic administration of an NMDAR antagonist on dopamine synthesis capacity and responsiveness within the mPFC, focusing on Dizocilpine (MK-801), a highly selective NMDAR antagonist. METHODS: In vivo microdialysis and high-performance liquid chromatography assessed extracellular dopamine levels in the mPFC following subchronic MK-801 treatment. Locomotor activity was measured using a computed video tracking system. RESULTS: Intermittent subchronic MK-801 administration, followed by a 24-h withdrawal, preserved both dopamine synthesis capacity and responsiveness to MK-801 challenge in the mPFC. However, altered locomotor activity was observed, deviating from previous findings indicating impaired dopamine synthesis and responsiveness in the mPFC with twice-daily subchronic NMDAR antagonist treatment. CONCLUSION: These findings offer crucial biochemical insights into the diverse impacts of NMDAR antagonists on dopamine dynamics and the distinct therapeutic mechanisms associated with ketamine in depression treatment. However, further investigation is imperative to pinpoint potential inconsistencies stemming from variances in drug type, dosage, or administration frequency.


Assuntos
Maleato de Dizocilpina , Dopamina , Antagonistas de Aminoácidos Excitatórios , Córtex Pré-Frontal , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Animais , Dopamina/metabolismo , Dopamina/biossíntese , Masculino , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Locomoção/efeitos dos fármacos , Ratos Sprague-Dawley , Microdiálise/métodos
20.
J Neurochem ; 168(5): 899-909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299375

RESUMO

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Assuntos
Metabolismo Energético , Ácido Glutâmico , Neurônios , Animais , Células Cultivadas , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Ratos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glucose/deficiência , Actinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , NADPH Oxidases/metabolismo , Acetofenonas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...