Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.415
Filtrar
1.
BMC Complement Med Ther ; 24(1): 294, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090617

RESUMO

BACKGROUND: cultivated and wild plants are used to treat different ailments. The Astragalus genus is found in temperate and dry climates; thus, it is found in Egypt and the arab world. Astragalus caprinus has a good amount of bioactive chemicals, which may help explain its therapeutic effects in reducing the risk of consequences from disease. METHOD: The phytochemical investigation of the herb and roots of Astragalus caprinus L. included the analytical characterization for the petroleum ether components by GC/MS, unsaponifiable matter (unsap. fraction), and fatty acids (FAME) investigation by GLC analysis. Main flavonoids were chromatographically isolated from ethyl acetate and n-butanol extracts. In vitro antimicrobial activity has been tested against the Gram-positive bacteria Staphylococcus aureus and Streptococcus mutans for different plant extracts, the Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumonia, the fungus Candida albicans and Aspergillus niger, and the Escherichia coli bacterium. Metabolite cytotoxicity was examined using the MTT assay against HepG-2 (human liver carcinoma) and MCF-7 (breast carcinoma). RESULTS: Identifying the important components of the herb and root petroleum ether extracts was achieved. Using column chromatography, luteolin, cosmosiin (apigenin-7-O-glucoside), and cynaroside (luteolin-7-O-glucoside) were separated and identified using UV, NMR, and Mass Spectroscopy. Root extracts displayed potential antimicrobial activity against most of the tested pathogens. Both extracts (herb and roots) were active against the MCF-7 cell line and HepG-2 cell line with IC50 62.5 ± 0.64 and 72.4 ± 2.3 µg/ml, and 75.9 ± 2.5 and 96.8 ± 4.2 µg/ml, respectively. CONCLUSION: Astragalus caprinus seems to be a promising source of bioactive compounds that could potentially aid in preventing disease complications and address common health issues in developing countries. Moreover, the various parts of this plant could be utilized as natural raw materials for producing health-boosting products that could address common health issues in developing countries.


Assuntos
Astrágalo , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Astrágalo/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Testes de Sensibilidade Microbiana , Células MCF-7 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Raízes de Plantas/química , Egito , Células Hep G2 , Flavonoides/farmacologia
2.
Braz J Biol ; 84: e280796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140501

RESUMO

Marine organisms produce a variety of compounds with pharmacological activities. In order to better comprehend the medicinal value of five particular seaweed orders Ulvales (Ulva intestinalis), Bryopsidales (Codium decorticatum), Ectocarpales (Iyengaria stellata), Dictyotales (Spatoglossum aspermum) and Gigartinales (Hypnea musciformis), a bioactive analysis including the screening of phytochemical components, antioxidant and antimicrobial activities was the aim of the investigation. The species include U. intestinalis was collected from Sandspit, while C. decorticatum, I. stellata, S. aspermum, and H. musciformis were gathered from Buleji. These species evaluated for their ability to inhibit human infectious gram positive pathogens Staphylococcus aureus, Staphylococcus epidermidis as well as gram negative bacteria Escherichia coli. Additionally vegetable pathogen Fusarium oxysporum, and fruit pathogens (Aspergillus niger and Aspergillus flavus) were evaluated to determine the zone of inhibition. Two organic solvents, ethanol and methanol, were used to prepare seaweed extract. The disc diffusion method was utilized to quantify the zone of inhibition and the DPPH method was employed to measure the antioxidant activity. The study unveiled various phyto-constituents in the tested seaweeds, with flavonoids, tannins, and proteins found in all selected species, while saponins, terpenoids, and carbohydrates were absent in I. stellata and S. aspermum. Notably, ethanolic extracts of I. stellata and S. aspermum demonstrated superior higher antioxidant activity, with increasing percentages of inhibition from 1 to 6 mg/ml. Furthermore, the findings indicated that the ethanolic extract of U. intestinalis displayed the highest resistance against F. oxysporum and A. flavous among other seaweeds. Meanwhile, the ethanolic extract of C. decorticatum exhibited the highest resistance against A. Niger. Additionally, the ethanolic extract of I. stellata and H. musciformis displayed the highest resistance against the gram-negative bacteria E. coli and the gram-positive bacteria S. epidermidis, whereas the methanolic extract of U. intestinalis demonstrated the highest resistance against the gram-positive bacteria S. aureus. The findings of this investigation show that a range of bioactive compounds with antioxidant properties are involved in the antimicrobial activities of disease-causing pathogens.


Assuntos
Anti-Infecciosos , Antioxidantes , Alga Marinha , Alga Marinha/química , Alga Marinha/classificação , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão
3.
Sci Rep ; 14(1): 18596, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127757

RESUMO

Tannic acid (TA) has been reported as an efficient plant-based compound with inhibitory activity against viruses and bacteria. The combination of TA with Zinc Oxide (ZnO) nanostructures with ZnO is one of the most widely used nanoparticles for antimicrobial properties, have not yet fully elucidate especially their mechanisms of overall physicochemical and antimicrobial actions. Hence, to observe the influence of TA adsorption on ZnO, the investigations on the TA concentration and the effect of pH towards the physicochemical, optical and antimicrobial properties are demonstrated. The pure ZnO are synthesised via the chemical reduction method and the ZnO-TA nanostructures are further prepared using the dropwise methods to form variations of pH samples, which causes the formation of different mean particle size distribution, d m . The findings reveal that the performance of physicochemical and optical properties of pure ZnO and ZnO-TA are different due to the wrapped layers of TA which change the charged surface of all the particles. The protonation reactions yield strong pH dependence (pH 3 and 5), with uptake performance becoming more dominant at higher TA concentration loading (pH 3). The detailed optical energy bandgap and Urbach energy that concluded the nanoparticle growth and disorder condition of produced particles are presented. For antimicrobial efficiency, ZnO-TA shows improved effectiveness in growth inhibitions of S. aureus 99.69% compared to pure ZnO nanostructure (99.39%). This work reveals that the TA concentration increases the overall performance, and the discussion gives added support to their potential performance related to the field of ZnO compound.


Assuntos
Staphylococcus aureus , Taninos , Óxido de Zinco , Taninos/química , Taninos/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Concentração de Íons de Hidrogênio , Staphylococcus aureus/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanoestruturas/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Polifenóis
4.
Cell Physiol Biochem ; 58(4): 382-392, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137299

RESUMO

BACKGROUND/AIMS: The naturally occurring phenolic chemical curcumin (CUR), which was derived from the Curcuma longa plant, has a variety of biological actions, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Curcumin is known for its restricted bioavailability due to its hydrophobicity, poor intestinal absorption, and quick metabolism. To boost the biological effects of these bioactive molecules, it is necessary to raise both their bioavailability and their solubility in water. Aim: The aim of this study is to synthesize and characterize hybrid organic-inorganic complexes of copper and cobalt, and to evaluate their antimicrobial potential against a range of pathogenic microorganisms. METHODS: The synthesis of metal curcumin complexes (Cu-CUR and Co-CUR) was achieved by mixing curcumin with copper acetate monohydrate. The solid residue was isolated, filtered, and dried in an oven. X-ray diffraction analysis was used to identify the structure and phase of the prepared samples. FTIR spectra were recorded using a Shimadzu 2200 module. The antimicrobial activity of the prepared complexes was evaluated against four bacterial strains and two Candida species. The chemical materials were dissolved in DMSO to a final concentration of 20%, and the plates were incubated at 37°C for 24 hours. The results showed that the prepared complexes had antimicrobial activity against the tested microorganisms. RESULTS: The study compared the Powder X-ray diffraction (XRD) patterns of prepared copper and cobalt complexes to pure curcumin, revealing new, isostructural complexes. The FTIR analysis showed that the Cu-CUR and Co-CUR complexes varied in their inhibitory effect against microorganisms, with Co-CUR being more effective. The results are consistent with previous studies showing the cobalt-curcumin complex was effective against various bacterial genera, with inhibition activity varying depending on the species and strains of microorganisms. CONCLUSION: Copper and cobalt curcumin complexes, synthesized at room temperature, exhibit high crystallinity and antimicrobial activity. Co-CUR, with its superior antibacterial potential, outperforms pure curcumin in inhibiting microbes. Further investigation is needed to understand their interaction mechanisms with bacteria and fungi.


Assuntos
Anti-Infecciosos , Cobalto , Complexos de Coordenação , Cobre , Curcumina , Testes de Sensibilidade Microbiana , Cobalto/química , Cobalto/farmacologia , Cobre/química , Cobre/farmacologia , Curcumina/farmacologia , Curcumina/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Candida/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química
5.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
6.
Sci Rep ; 14(1): 18870, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143137

RESUMO

The characteristics of dopamine self-polymerization were used to cover the nano-titanium dioxide (TiO2) surface and produce nano-titanium dioxide-polydopamine (TiO2-PDA). The reducing nature of dopamine was then used to reduce silver nitrate to silver elemental particles on the modified nano-titanium dioxide: The resulting TiO2-PDA-Ag nanoparticles were used as antimicrobial agents. Finally, the antibacterial agent was mixed with silicone to obtain an antibacterial silicone composite material. The composition and structure of antibacterial agents were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron energy spectroscopy, and X-ray diffraction. Microscopy and the antibacterial properties of the silicone antibacterial composites were studied as well. The TiO2-PDA-Ag antimicrobial agent had good dispersion versus nano-TiO2. The three were strongly combined with obvious characteristic peaks. The antibacterial agents were evenly dispersed in silicone, and the silicone composite has excellent antibacterial properties. Bacillus subtilis (B. subtilis) adhesion was reduced from 246 × 104 cfu/cm2 to 2 × 104 cfu/cm2, and colibacillus (E. coli) reduced from 228 × 104 cfu/cm2 leading to bacteria-free adhesion.


Assuntos
Bacillus subtilis , Escherichia coli , Silicones , Prata , Titânio , Titânio/química , Titânio/farmacologia , Silicones/química , Prata/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Polímeros/química , Polímeros/farmacologia , Difração de Raios X , Testes de Sensibilidade Microbiana , Aderência Bacteriana/efeitos dos fármacos , Indóis
7.
F1000Res ; 13: 281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149510

RESUMO

Introduction: Osseointegration stands as a pivotal concept within the realm of dental implants, signifying the intricate process through which a dental implant integrates with the adjoining bone tissue. Graphene oxide (GO) has been shown to promote osseointegration, the process by which the implant fuses with the surrounding bone. The objective of this study was to assess the osseointegrative and antimicrobial properties of GO nano coated dental implants. Methods: A systematic search was conducted using electronic databases (e.g., PubMed, Scopus, Web of Science) to identify relevant studies published. Inclusion criteria encompassed studies that evaluated the effects of GO nano coating on osseointegrative and antimicrobial characteristics of dental implants. Studies not written in English and published before 2012 were excluded. Results: The initial search yielded a total of 127 potential studies, of which six met the inclusion criteria and five were included in the review. These studies provided data on GO nano coated dental implants and their osseointegrative and antimicrobial properties. All the included studies showed moderate risk of bias. None of the studies provided information related to sample size calculation or sampling technique. Discussion: The findings from the included studies demonstrated that GO nano coating had a positive impact on osseointegrative properties of dental implants. Enhanced bone-implant contact and increased bone density were observed in animals and humans receiving GO nano coated implants. Furthermore, the antimicrobial properties of GO nano coating were found to inhibit bacterial colonization and biofilm formation on the implant surface, reducing the risk of implant-associated infections. Conclusion: The findings indicate that GO nano coating holds promise in enhancing the success rate and longevity of dental implants. However, more studies with larger sample sizes, are needed to further strengthen the evidence and determine the long-term effects of GO nano coated dental implants.


Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Grafite , Osseointegração , Grafite/química , Grafite/farmacologia , Implantes Dentários/microbiologia , Osseointegração/efeitos dos fármacos , Humanos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Anti-Infecciosos/farmacologia , Animais , Nanoestruturas
8.
Microb Biotechnol ; 17(8): e14549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150434

RESUMO

Nanoscience, a pivotal field spanning multiple industries, including healthcare, focuses on nanomaterials characterized by their dimensions. These materials are synthesized through conventional chemical and physical methods, often involving costly and energy-intensive processes. Alternatively, biogenic synthesis using bacteria, fungi, or plant extracts offers a potentially sustainable and non-toxic approach for producing metal-based nanoparticles (NP). This eco-friendly synthesis approach not only reduces environmental impact but also enhances features of NP production due to the unique biochemistry of the biological systems. Recent advancements have shown that along with chemically synthesized NPs, biogenic NPs possess significant antimicrobial properties. The inherent biochemistry of bacteria enables the efficient conversion of metal salts into NPs through reduction processes, which are further stabilized by biomolecular capping layers that improve biocompatibility and functional properties. This mini review explores the use of bacteria to produce NPs with antimicrobial activities. Microbial technologies to produce NP antimicrobials have considerable potential to help address the antimicrobial resistance crisis, thus addressing critical health issues aligned with the United Nations Sustainability Goal #3 of good health and well-being.


Assuntos
Anti-Infecciosos , Bactérias , Nanopartículas Metálicas , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo
9.
Sci Rep ; 14(1): 18333, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112607

RESUMO

Antimicrobial-resistant bacteria have been an increasing problem in human medicine and animal husbandry since the introduction of antimicrobials on the market in the 1940s. Over the last decades, efforts to reduce antimicrobial usage in animal husbandry have been shown to limit the development of resistant bacteria. Despite this, antimicrobial-resistant bacteria are still commonly detected and isolated worldwide. In this study, we investigated the presence of antimicrobial-resistant bacteria in bovine milk samples using a multiple approach based on culturing and amplicon sequencing. We first enriched milk samples obtained aseptically from bovine udders in the presence of two antimicrobials commonly used to treat mastitis and then described the resistant microbiota by amplicon sequencing and isolate characterization. Our results show that several commensal species and mastitis pathogens harbor antimicrobial resistance and dominate the enriched microbiota in milk in presence of antimicrobial agents. The use of the two different antimicrobials selected for different bacterial taxa and affected the overall microbial composition. These results provide new information on how different antimicrobials can shape the microbiota which is able to survive and reestablish in the udder and point to the fact that antimicrobial resistance is widely spread also in commensal species.


Assuntos
Glândulas Mamárias Animais , Mastite Bovina , Microbiota , Leite , Animais , Bovinos , Feminino , Microbiota/efeitos dos fármacos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Leite/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Anti-Infecciosos/farmacologia , RNA Ribossômico 16S/genética
10.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124897

RESUMO

The goal of this research was to analyse the synergistic effect between selected plant extracts with zinc oxide particles, and zinc stearate. The influence of ZnO on the antimicrobial effectiveness of the selected extracts was confirmed in previous research carried out by the authors. However, the impact of zinc stearate on extract activity has yet to be analysed. The aim was to cover PLA films with active coatings based on hydroxy-propyl-methyl-cellulose (HPMC), or/and ethyl cellulose (EC) containing plant extracts and ZnO which has a synergistic effect. An additional aim was to use a CO2 extract of raspberry seed (RSE) with zinc stearate as active additives within the coatings. An examination of the antimicrobial properties (against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas syringae and Φ6 bacteriophage) of the covered films, as well as an investigation of layer presence with regards to PLA morphology (SEM, ATR-FTIR analysis) was carried out. The research work that was performed indicated that black chokeberry extract (ChE) and zinc oxide particles were effective against S. aureus, P. syringae and B. subtilis strains. In addition, the ChE with zinc stearate (ZnSt) was active against all analysed strains. The HPMC with ChE and ZnO as additives had antimicrobial properties against S. aureus, P. syringae and E. coli strains. The ChE was found to inhibit the growth of all of the analysed bacterial strains. When considering the coatings based on EC with the CO2 extract of raspberry seed (RSE) and ZnO, it was noted that they were only active against Gram-negative bacteria. The results of the experiments confirmed that AC1 (EC with RSE with ZnO) and AC2 (EC with RSE with ZnSt) coatings were not active against a phi6 bacteriophage. The HPMC coating containing the AC3 layer (ChE and ZnO) eliminated Φ6 particles, confirming its antiviral properties. In addition, the presence of the active (AC1, AC2 and AC3) coatings was confirmed by SEM and FTIR analysis.


Assuntos
Extratos Vegetais , Rubus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rubus/química , Testes de Sensibilidade Microbiana , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
11.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124907

RESUMO

Gabon has a rich flora, many species of which are used in traditional medicine. However, little research has been carried out on this wealth. An ethnopharmacological survey in the Fang language was carried out among traditional practitioners to collect antimicrobial medicinal plants. Phytochemical profiling of ethanolic and methanolic extracts from Erismadelphus exsul Mildbr leaves was carried out using HPLC-ESI-Q/TOF and a molecular network approach. Antibacterial activity was assessed with disk diffusion and microdilution methods, antioxidant activity via DPPH and FRAP methods, and in vitro cell viability via Cell Counting Kit-8. A total of 21 medicinal plants were collected, grouped into 10 families, of which the Fabaceae is the most represented. Erismadelphus exsul was chosen for chemical and biological studies due to its citation frequency (RCF = 0.59) and the absence of previous phytochemical studies. These studies revealed 4 major families of natural compounds and annotated 19 compounds for the first time. The crude leaf extract showed significant antioxidant and antibacterial activity. Cytotoxicity studies showed that the leaves were not cytotoxic, unlike the bark. This study underlines the importance of preserving the ancestral knowledge of the Fang populations, while showing promising results for Erismadelphus exsul.


Assuntos
Antibacterianos , Antioxidantes , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Plantas Medicinais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Plantas Medicinais/química , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Fabaceae/química , Medicina Tradicional , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cromatografia Líquida de Alta Pressão , Sobrevivência Celular/efeitos dos fármacos
12.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125013

RESUMO

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Assuntos
Anti-Infecciosos , Argila , Cimenos , Testes de Sensibilidade Microbiana , Timol , Zinco , Cimenos/química , Cimenos/farmacologia , Timol/química , Timol/farmacologia , Zinco/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias/efeitos dos fármacos , Bentonita/química
13.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125027

RESUMO

A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and antibiofilm activities against foodborne bacteria by analogs to A-type proanthocyanidins (PACs) with a nitro (NO2) group at carbon 6 of the A-ring. We report herein the synthesis of eight additional analogs with chloro and bromo atoms at the A-ring and the systematic study of their antimicrobial and antioxidant activities in order to evaluate their possible application as biocides or food preservatives, as well as to elucidate new structure-activity relationships. The results from this study show that halogenated analogs to natural A-type proanthocyanidins rise above the nitro derivatives previously reported in their antimicrobial activities. Gram-positive bacteria are the most sensitive to all the analogs and combinations assayed, showing MICs from 10 to 50 µg/mL in most cases, as well as reductions in biofilm formation and the disruption of preformed biofilms of at least 75%. Some structure-activity relationships previously described have also been corroborated. Analogs with just one OH group at the B-ring show better antimicrobial activities than those with two OH groups, and those analogs with two or three OH groups in the whole structure are more active than those with four OH groups. In addition, the analogs with two OH groups at the B-ring and chloro at the A-ring are the most effective when antibiofilm activities are studied, especially at low concentrations.


Assuntos
Anti-Infecciosos , Antioxidantes , Biofilmes , Indústria Alimentícia , Halogenação , Testes de Sensibilidade Microbiana , Proantocianidinas , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Proantocianidinas/farmacologia , Proantocianidinas/química , Proantocianidinas/síntese química , Biofilmes/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Bactérias Gram-Positivas/efeitos dos fármacos
14.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125070

RESUMO

The COVID-19 pandemic highlighted the need to create and study new substances with improved lipophilicity and antimicrobial properties, such as ionic liquids (ILs), with easily tunable physicochemical properties. Most ILs possess strong antibacterial effects, but ILs containing the imidazolium cation are even more effective than the positive control. Thus, in this study, three ionic liquids with 1-butyl-3-methylimidazolium cation and various carboxylate anions (phenylacetate, benzoate, and 4-methoxyphenylacetate) were synthesized and fully characterized. The interactions between the cations and anions were discussed based on the experimental density, viscosity, and electrical conductivity. From the measured electrical conductivity and viscosity, the Walden plot is constructed and ionicity of the studied ILs is discussed. The similarities and dissimilarities among the studied ILs and their physicochemical properties are analyzed by applying the hierarchical cluster analysis and in silico calculated properties. The antimicrobial activity of the studied ionic liquids is tested on two bacterial (E. coli and P. aeruginosa) and three fungi (P. verrucosum, A. flavus, and A. parasiticus) strains, finding that they showed improved antimicrobial activity compared to the individual components.


Assuntos
Anti-Infecciosos , Ácidos Carboxílicos , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Viscosidade , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Condutividade Elétrica , Testes de Sensibilidade Microbiana , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , COVID-19/virologia
15.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125609

RESUMO

Environmentally friendly biosynthesis of silver nanoparticles (AgNPs) from Aeonium arboreum (L.) Webb & Berthel is reported for the first time. The synthesized AgNPs were characterized using UV-Vis, FTIR, TEM, Zeta potential, and XRD analysis, revealing high stability (-29.1 mV), spherical shape, and an average size of 100 nm. The antimicrobial activity levels of both A. arboreum extract and biosynthesized AgNPs were evaluated against five uropathogens (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans). Both the extract and the AgNPs exhibited significant efficacy, particularly against E. coli, with inhibition zones of 27 mm and 30 mm, respectively. LC-MS analysis tentatively identified 11 secondary metabolites in the extract, including quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, myricetin 3-glucoside, and daphneresinol. In silico docking studies revealed promising binding affinities of these metabolites in relation to key enzymes involved in bacterial folate synthesis (dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS)) and DNA replication (DNA gyrase). These findings demonstrate the potential of A. arboreum-based AgNPs and their associated metabolites as a novel therapeutic approach for combating urinary tract infections. Their antimicrobial, antihemolytic, and antibiofilm properties warrant further investigation.


Assuntos
Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Prata , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Simulação por Computador
16.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125795

RESUMO

Innovative approaches in nanotechnology provide a potentially promising alternative to untreatable cases of mastitis caused by genus Prototheca spp. algae infections. Drying of the teats of the affected animals or culling are typically the outcomes of mastitis in dairy cattle caused by these pathogens. A major issue in both veterinary medicine and animal breeding is the Prototheca species' widespread resistance to the current methods of managing infections and the available drugs, including antibiotics. Commercial antifungal preparations are also ineffective. Nanotechnology, an emerging discipline, has the potential to create an effective alternative treatment for protothecal mastitis. The aim of the paper is to combine the literature data on the use of nanotechnology in the control of mastitis, taking into account data on combating mastitis caused by Prototheca spp. infections. The databases employed were PubMed, Google Scholar, and Scopus, focusing on literature from the last 20 years to ensure relevance and currency. Studies conducted in vitro have demonstrated that nanomaterials have significant biocidal activity against mastitis infections of different etiologies. Analyzed research papers show that (NPs), such as AgNPs, CuNPs, AuNPs, etc., may not negatively impact various cell lines and may be effective agents in reducing the pathogens' viability. However, it is also critical to assess the risks involved in using nanomaterials.


Assuntos
Anti-Infecciosos , Mastite Bovina , Prototheca , Prototheca/efeitos dos fármacos , Animais , Feminino , Bovinos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Mastite Bovina/tratamento farmacológico , Mastite Bovina/microbiologia , Mastite/tratamento farmacológico , Mastite/microbiologia , Humanos
17.
Future Microbiol ; 19(13): 1177-1184, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39105632

RESUMO

Infectious diseases lead to significant morbidity and mortality. Often, resolution of the acute stage of the disease leads to microbial persistence, resulting in chronic debilitating disease. Management of persistent infections frequently requires lifelong therapy with antimicrobial agents. These infections could be chronic viral infections like HIV, hepatitis B or chronic bacterial persistent infections like prosthetic joint infections caused by multi-drug resistant organisms. Bacteriophages have been designed specifically to target recalcitrant bacterial infections, such as prosthetic joint infections with varying success. In this review, we describe the historic evolution of scenarios and risks associated with innovative therapy using infectious agents to treat other persistent infections.


[Box: see text].


Assuntos
Infecção Persistente , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Anti-Infecciosos/uso terapêutico , Bacteriófagos/fisiologia , Viroses/tratamento farmacológico , Viroses/terapia , Viroses/virologia
19.
Food Res Int ; 192: 114813, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147507

RESUMO

This study applies natural resources, prioritizing recyclable and renewable inputs produced by pinhão cultivation, whose purpose is to use the failures, shells, and almonds as a source of bioactive compounds addition in yogurt, ensuring intelligent use of these natural resources. Thus, one açaí yogurt sample and eight yogurt formulations containing portions of pinhão byproducts between 5 % and 10 % were elaborated. These formulations were compared regarding their physicochemical, nutritional, functional properties, antimicrobial activity, and multi-elemental profile properties. Enriching açaí yogurt with pinhão byproducts does not significantly differ in protein, lipid, moisture, and mineral salt content between all samples with pinhão byproducts. Açaí yogurts enriched with pinhão byproducts had 5.71 to 26.07 % times total protein than the control sample, and total fiber also had a significant increase in samples ranging between 18.62 to 85.29 % times more than the control sample. Regarding color settings, all yogurt samples tended to be red-purple. A sample of açaí yogurt with pine nut flour and whole pine nut flour caused a biofilm mass amount of 46.58, 45.55, and 11.85 % for Listeria monocytogenes, Salmonella enteritidis and Pseudomonas aeruginosa. The behavior of pathogenic bacteria is related to the total polyphenol content in yogurts enriched with pinhão byproducts, which increased from 8.27 to 18.24 mg/100 g. Yogurt with açaí enriched with whole pinhão flour showed high antioxidant capacity. The sample's antioxidant activity results increased by 47.62 % and 130.38 % in the ABTS and DPPH analyses, respectively. The compounds in pinhão failure nanosuspensions, pinhão flour, whole pinhão flour, and yogurts were identified and divided into hydrophilic and lipophilic classes. Five classes (amino acids, organic acids, sugars, phenols, and cyclitols) were identified as hydrophilic. Lipophilic compounds were identified and separated into six classes (carboxylic acids, diterpenes, alcohols, Α-hydroxy acids, sterols, and triterpenes). The addition of pinhão byproducts increased the contents of Ca, Fe, K, Na, and P. Açaí yogurt with pinhão nanosuspension, pinhão flour, and whole pinhão flour had the highest Ca content (2164.38 ± 2.16 µg/L). Açaí yogurt with pinhão flour and whole pinhão flour had the highest Fe content (84.02 ± 0.08 µg/L).


Assuntos
Valor Nutritivo , Iogurte , Iogurte/análise , Iogurte/microbiologia , Antioxidantes/análise , Pinus/química , Manipulação de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Microbiologia de Alimentos , Fibras na Dieta/análise
20.
BMC Biotechnol ; 24(1): 54, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135187

RESUMO

BACKGROUND: Several studies have been reported previously on the bioactivities of different extracts of marine molluscs. Therefore, we decided to evaluate the cytotoxic and antimicrobial activities of S. pharaonis ink as a highly populated species in the Red Sea. We extracted the flavonoids from the ink and analyzed their composition. Then we evaluated systematically the cytotoxic and antimicrobial properties of this extract. A pharmacokinetic study was also conducted using SwissADME to assess the potential of the identified flavonoids and phenolic compounds from the ink extract to be orally active drug candidates. RESULTS: Cytotoxic activity was evaluated against 5 cell lines (MCF7, Hep G2, A549, and Caco2) at different concentrations (0.4 µg/mL, 1.6 µg/mL, 6.3 µg/mL, 25 µg/mL, 100 µg/mL). The viability of examined cells was reduced by the extract in a concentration-dependent manner. The highest cytotoxic effect of the extract was recorded against A549 and Hep G2 cancer cell lines cells with IC50 = 2.873 and 7.1 µg/mL respectively. The mechanistic analysis by flow cytometry of this extract on cell cycle progression and apoptosis induction indicated that the extract arrests the cell cycle at the S phase in Hep G2 and MCF7, while in A549 cell arrest was recorded at G1 phase. However, it causes G1 and S phase arrest in Caco2 cancer cell line. Our data showed that the extract has significant antimicrobial activity against all tested human microbial pathogens. However, the best inhibitory effect was observed against Candida albicans ATCC 10,221 with a minimum inhibitory concentration (MIC) of 1.95 µg/mL. Pharmacokinetic analysis using SwissADME showed that most flavonoids and phenolics compounds have high drug similarity as they satisfy Lipinski's criteria and have WLOGP values below 5.88 and TPSA below 131.6 Å2. CONCLUSION: S. pharaonis ink ethanolic extract showed a promising cytotoxic potency against various cell lines and a remarkable antimicrobial action against different pathogenic microbial strains. S. pharaonis ink is a novel source of important flavonoids that could be used in the future in different applications as a naturally safe and feasible alternative of synthetic drugs.


Assuntos
Anti-Infecciosos , Flavonoides , Fenóis , Humanos , Flavonoides/química , Flavonoides/farmacologia , Fenóis/química , Fenóis/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sepia/química , Linhagem Celular Tumoral , Células CACO-2 , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Células Hep G2 , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...