Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(4): 1457-1467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37477848

RESUMO

The aim of study was to evaluate the effect of selenium supplementation on disease activity, inflammation, and oxidative stress in patients with rheumatoid arthritis (RA). This study was a randomized double-blind placebo-controlled trial on 59 patients with RA. Participants were randomly divided to receive 200 µg/day of selenium or a placebo for 12 weeks. The disease activity score (DAS.CRP and DAS.ESR), erythrocyte sedimentation rate (ESR), serum levels of C-reactive protein (CRP), fasting blood glucose, lipids, antibodies to cyclic citrullinated protein (anti-CCP), nitric oxide, glutathione, and total antioxidant capacity were assessed. The mean of DAS.CRP and DAS.ESR decreased significantly within both study groups after the intervention. However, the between-group comparisons revealed no significant differences. The CRP levels decreased significantly in the selenium group, and this decrease was near the significance level compared to the placebo (P = 0.05). However, after adjusting for baseline values, the observed difference between groups did not remain significant. In addition, the values of ESR and anti-CCP decreased significantly within the selenium group. Although, between-group comparison did not statistically significant, the change in ESR and anti-CCP in the selenium group was small clinically relevant compared to the placebo [the effect size (95% CI) for ESR: 0.38 (- 0.14, 0.89), and for anti-CCP: 0.32 (- 0.2, 0.83)]. Our study showed that selenium caused a small clinically relevant improvement in some RA biomarkers such as ESR and anti-CCP. Future studies that evaluate the effects of novel forms of supplements such as selenium nanoparticles on the clinical symptoms and biomarkers of RA are suggested. Trial Registration: At www.irct.ir as IRCT20190924044869N1 on 2020-06-14.


Assuntos
Artrite Reumatoide , Selênio , Humanos , Selênio/farmacologia , Anticorpos Antiproteína Citrulinada/metabolismo , Anticorpos Antiproteína Citrulinada/farmacologia , Inflamação/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Proteína C-Reativa/metabolismo , Estresse Oxidativo , Suplementos Nutricionais , Biomarcadores , Anticorpos
2.
MAbs ; 15(1): 2281763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031350

RESUMO

Neutrophil extracellular traps (NETs) contribute to the pathophysiology of multiple inflammatory and autoimmune diseases. Targeting the NETosis pathway has demonstrated significant therapeutic potency in various disease models. Here, we describe a first-in-class monoclonal antibody (CIT-013) with high affinity for citrullinated histones H2A and H4, which inhibits NETosis and reduces tissue NET burden in vivo with significant anti-inflammatory consequences. We provide a detailed understanding of the epitope selectivity of CIT-013. Detection of CIT-013 epitopes in rheumatoid arthritis (RA) synovium provides evidence that RA is an autoimmune disease with excessive citrullinated NETs that can be targeted by CIT-013. We show that CIT-013 acts upon the final stage of NETosis, binding to its chromatin epitopes when plasma membrane integrity is compromised to prevent NET release. Bivalency of CIT-013 is necessary for NETosis inhibition. In addition, we show that CIT-013 binding to NETs and netting neutrophils enhance their phagocytosis by macrophages in an Fc-dependent manner. This is confirmed using a murine neutrophilic airway inflammation model where a mouse variant of CIT-013 reduced tissue NET burden with significant anti-inflammatory consequences. CIT-013's therapeutic activity provides new insights for the development of NET antagonists and indicates the importance of a new emerging therapy for NET-driven diseases with unmet therapeutic needs.


Assuntos
Anticorpos Monoclonais , Artrite Reumatoide , Doenças Autoimunes , Armadilhas Extracelulares , Animais , Camundongos , Anti-Inflamatórios , Anticorpos Monoclonais/farmacologia , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Epitopos/metabolismo , Histonas/metabolismo , Neutrófilos , Anticorpos Antiproteína Citrulinada/farmacologia
3.
Ann Rheum Dis ; 81(1): 56-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625402

RESUMO

OBJECTIVES: To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS: Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS: An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS: Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.


Assuntos
Processamento Alternativo , Artrite Reumatoide/sangue , Artrite Reumatoide/genética , RNA/sangue , Spliceossomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Processamento Alternativo/efeitos dos fármacos , Animais , Anticorpos Antiproteína Citrulinada/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citrulinação , Citocinas/farmacologia , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Linfócitos , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos , Neutrófilos , RNA/metabolismo , Fatores de Processamento de RNA/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
Cell Mol Immunol ; 18(6): 1528-1544, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203195

RESUMO

Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.


Assuntos
Anticorpos Antiproteína Citrulinada/uso terapêutico , Armadilhas Extracelulares/metabolismo , Inflamação/tratamento farmacológico , Neutrófilos/patologia , Animais , Anticorpos Antiproteína Citrulinada/farmacologia , Artrite Experimental/patologia , Bleomicina , Osso e Ossos/patologia , Cartilagem/patologia , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/patologia , Masculino , Camundongos , Modelos Biológicos , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Fagocitose , Fibrose Pulmonar/patologia
5.
Inflammation ; 43(6): 2245-2255, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737657

RESUMO

Tetramerized single-chain variable fragment (ScFv) of anti-cyclic citrullinated peptide (TeAb-CCP) is a constructed tetramerized ScFv of anti-cyclic citrullinated peptide (CCP) antibodies with p53 tetrameric domain, aim to investigate its effect on fibroblast-like synoviocytes (FLSs) proliferation, migration, invasion, and production of inflammatory mediators in the in vitro co-culture system of peripheral mononuclear cells (PBMCs) and FLSs. TeAb-CCP was constructed by modifying a monovalent ScFv antibody to CCP with p53 tetrameric domain to improve its affinity. FLSs were isolated and cultured from rheumatoid arthritis (RA) patients and control subjects. A co-culture system of peripheral mononuclear cells (PBMCs) and FLSs was used. FLSs proliferation, migration, and invasion were measured by MTT, scratch test, and Transwell chamber. Supernatants were measured for cytokines, chemokines, metalloproteinases, and anti-CCP antibodies by Luminex liquid phase protein chip and ELISA. TeAb-CCP significantly inhibited FLSs proliferation in a dose-dependent mode, with maximal action at concentration of 100 µg/ml on the 7th day in the co-culture system with PBMCs and FLSs, but not the same with only FLSs. TeAb-CCP significantly suppressed FLSs migration and invasive ability compared with the controls. Significantly lower levels of interleukin (IL)-6, IL-8, RANKL, protein arginine deiminase (PAD)-2, PAD4, metalloproteinase (MMP)-1 and MMP-3 and anti-CCP antibodies were found in co-culture supernatant of TeAb-CCP group. In contrast, transforming growth factor-ß (TGF-ß) and tissue inhibitor of metalloproteinases-2 (TIMP-2) was significantly increased in the TeAb-CCP group. No significant difference of IL-1a, IL-10, IL-17, TNFα, VEGF, and FGF was found between two groups. As a blocking antibody, TeAb-CCP can significantly inhibit PBMCs of RA to produce pro-inflammatory mediators, and furthermore, inhibit the proliferation, activation, migration, and invasion of FLSs in vitro. In turn, it is suggested that citrullinated modified self-epitopes may be a new target for RA therapy.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Peptídeos/química , Anticorpos de Cadeia Única/metabolismo , Sinoviócitos/metabolismo , Adulto , Animais , Anticorpos Antiproteína Citrulinada/farmacologia , Proliferação de Células , Técnicas de Cocultura , Epitopos , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Inflamação , Leucócitos Mononucleares/citologia , Pessoa de Meia-Idade , Membrana Sinovial/metabolismo
6.
Autoimmun Rev ; 17(9): 845-853, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30007856

RESUMO

The production of anti-citrullinated peptide antibodies (ACPAs) requires the participation of both innate immunity and adaptive immunity. On the one hand, activated innate immunity is able to produce citrullinated auto-antigens that fuel autoimmunity and provide an inflammatory environment that facilitates the breach of self-tolerance, proliferation of self-reactive T/B cells and the production of ACPAs. On the other hand, after their production by plasma B cells, ACPAs are also able to interact with innate immunity to exacerbate the manifestation and chronicity of rheumatoid arthritis (RA). This article discusses the roles of citrullinated peptides and ACPA played in innate immunity and autoimmunity. In addition, we emphasise the relationships between environmental factors and innate immunity, as well as the pathogenic function of ACPAs per se. In doing so, we hope to provide fundamental knowledge of RA pathogenesis and reveal potential therapeutic targets in RA treatment.


Assuntos
Imunidade Adaptativa/imunologia , Anticorpos Antiproteína Citrulinada/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Imunidade Inata/imunologia , Anticorpos Antiproteína Citrulinada/farmacologia , Artrite Reumatoide/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...