Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.728
Filtrar
1.
Nat Commun ; 15(1): 5194, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890271

RESUMO

Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.


Assuntos
Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Masculino , Proteínas de Protozoários/imunologia , Animais , Adulto , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adulto Jovem , Linfócitos T CD8-Positivos/imunologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Anopheles/parasitologia
2.
Front Immunol ; 15: 1350560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863702

RESUMO

Background: Despite decades of effort, Plasmodium falciparum malaria remains a leading killer of children. The absence of a highly effective vaccine and the emergence of parasites resistant to both diagnosis as well as treatment hamper effective public health interventions. Methods and results: To discover new vaccine candidates, we used our whole proteome differential screening method and identified PfGBP130 as a parasite protein uniquely recognized by antibodies from children who had developed resistance to P. falciparum infection but not from those who remained susceptible. We formulated PfGBP130 as lipid encapsulated mRNA, DNA plasmid, and recombinant protein-based immunogens and evaluated the efficacy of murine polyclonal anti-PfGBP130 antisera to inhibit parasite growth in vitro. Immunization of mice with PfGBP130-A (aa 111-374), the region identified in our differential screen, formulated as a DNA plasmid or lipid encapsulated mRNA, but not as a recombinant protein, induced antibodies that inhibited RBC invasion in vitro. mRNA encoding the full ectodomain of PfGBP130 (aa 89-824) also generated parasite growth-inhibitory antibodies. Conclusion: We are currently advancing PfGBP130-A formulated as a lipid-encapsulated mRNA for efficacy evaluation in non-human primates.


Assuntos
Anticorpos Antiprotozoários , Eritrócitos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/imunologia , Camundongos , Eritrócitos/parasitologia , Eritrócitos/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Humanos , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Antígenos de Protozoários/imunologia , Imunização , Feminino
3.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865344

RESUMO

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium berghei , Plasmodium vivax , Proteínas de Protozoários , Animais , Camundongos , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Humanos , Malária Vivax/transmissão , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Malária Vivax/imunologia , Feminino , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Malária/transmissão , Malária/prevenção & controle , Malária/parasitologia , Malária/imunologia , Camundongos Endogâmicos BALB C
4.
PLoS Negl Trop Dis ; 18(6): e0012229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857253

RESUMO

Leishmania donovani surface glycoprotein 63 (GP63) is a major virulence factor involved in parasite escape and immune evasion. In this study, we generated virus-like particles (VLPs) expressing L. donovani GP63 using the baculovirus expression system. Mice were intramuscularly immunized with GP63-VLPs and challenged with L. donovani promastigotes. GP63-VLP immunization elicited higher levels of L. donovani antigen-specific serum antibodies and enhanced splenic B cell, germinal center B cell, CD4+, and CD8+ T cell responses compared to unimmunized controls. GP63-VLPs inhibited the influx of pro-inflammatory cytokines IFN-γ and IL-6 in the livers, as well as thwarting the development of splenomegaly in immunized mice. Upon L. donovani challenge infection, a drastic reduction in splenic parasite burden was observed in VLP-immunized mice. These results indicate that GP63-VLPs immunization conferred protection against L. donovani challenge infection by inducing humoral and cellular immunity in mice.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus , Animais , Leishmania donovani/imunologia , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Feminino , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Vacinas contra Leishmaniose/imunologia , Vacinas contra Leishmaniose/administração & dosagem , Eficácia de Vacinas , Imunidade Celular , Baço/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos B/imunologia , Imunidade Humoral , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/genética , Citocinas/imunologia , Metaloendopeptidases
5.
Sci Rep ; 14(1): 13600, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866852

RESUMO

We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.


Assuntos
Imunoglobulina G , Imunoglobulina M , Inflamação , Saliva , Toxoplasma , Toxoplasmose , Humanos , Masculino , Saliva/metabolismo , Feminino , Adulto , Toxoplasmose/tratamento farmacológico , Toxoplasmose/sangue , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Imunoglobulina G/sangue , Estudos Transversais , Inflamação/metabolismo , Imunoglobulina M/sangue , Imunoglobulina M/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antiprotozoários/imunologia , Simulação por Computador , Estudos Soroepidemiológicos , Adolescente , Simulação de Acoplamento Molecular
6.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849365

RESUMO

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Animais , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Antígenos de Protozoários/imunologia , Ratos , Anticorpos Antiprotozoários/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Epitopos/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo
7.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835260

RESUMO

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Plasmodium berghei , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Plasmodium berghei/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Malária/imunologia , Proteínas de Membrana/imunologia , Camundongos , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Antígenos de Protozoários/imunologia , Feminino , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Parasitemia/imunologia , Parasitemia/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo
8.
PLoS One ; 19(6): e0304268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38838004

RESUMO

American tegumentary leishmaniasis (ATL) diagnosis is an open question, and the search for a solution is urgent. The available tests that detect the etiological agent of the infection are specific for ATL diagnosis. However, they present disadvantages, such as low sensitivity and the need for invasive procedures to obtain the samples. Immunological methods (leishmanin skin test and search for anti-Leishmania antibodies) are good alternatives to the etiological diagnosis of ATL. Presently, we face problems with disease confirmation due to the discontinuity in the production of leishmanin skin test antigen, particularly in resource-poor settings. Aiming to diagnose ATL, we validated rLb6H-ELISA for IgG antibodies using 1,091 samples from leishmaniasis patients and healthy controls, divided into four panels, living in 19 Brazilian endemic and non-endemic states. The rLb6H-ELISA showed a sensitivity of 98.6% and a specificity of 100.0%, with the reference panel comprising 70 ATL patient samples and 70 healthy controls. The reproducibility evaluation showed a coefficient of variation of positive samples ≤ 8.20% for repeatability, ≤ 17,97% for reproducibility, and ≤ 8.12% for homogeneity. The plates sensitized with rLb6H were stable at 4°C and -20°C for 180 days and 37°C for seven days, indicating 12 months of validity. In samples of ATL patients from five research and healthcare centers in endemic and non-endemic areas, rLb6H-ELISA showed a sensitivity of 84.0%; no significant statistical difference was observed among the five centers (chi-square test, p = 0.13). In samples of healthy controls from four areas with different endemicity, a specificity of 92.4% was obtained; lower specificity was obtained in a visceral leishmaniasis high endemicity locality (chi-square test, p<0.001). Cross-reactivity was assessed in 166 other disease samples with a positivity of 13.9%. Based on the good diagnostic performance and the reproducibility and stability of the antigen, we suggest using ELISA-rLb6H to diagnose ATL.


Assuntos
Antígenos de Protozoários , Ensaio de Imunoadsorção Enzimática , Leishmaniose Cutânea , Humanos , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/epidemiologia , Ensaio de Imunoadsorção Enzimática/métodos , Antígenos de Protozoários/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adolescente , Reprodutibilidade dos Testes , Proteínas Recombinantes/imunologia , Adulto Jovem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Idoso , Criança , Estudos de Casos e Controles , Brasil/epidemiologia
9.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808064

RESUMO

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Malária Falciparum , Proteínas de Membrana , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Gana , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Feminino , Adulto , Masculino , Adolescente , Adulto Jovem , Criança , Variação Genética , Pré-Escolar , Pessoa de Meia-Idade , Análise de Sequência de DNA , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase , Variação Antigênica , DNA de Protozoário/genética
10.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38704253

RESUMO

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Plasmodium knowlesi , Plasmodium vivax , Proteínas de Protozoários , Receptores de Superfície Celular , Vacinas Antimaláricas/imunologia , Plasmodium knowlesi/imunologia , Plasmodium knowlesi/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Plasmodium vivax/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Humanos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Malária Vivax/prevenção & controle , Malária Vivax/imunologia , Anticorpos Monoclonais/imunologia , Desenvolvimento de Vacinas/métodos , Animais
11.
Sci Rep ; 14(1): 10772, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730052

RESUMO

We aimed to determine SARS-CoV-2 antibody seropositivity among pregnant women and the transplacental transfer efficiency of SARS-CoV-2-specific antibodies relative to malaria antibodies among SARS-CoV-2 seropositive mother-cord pairs. This cross-sectional study was conducted in Accra, Ghana, from March to May 2022. Antigen- specific IgG antibodies against SARS-CoV-2 (nucleoprotein and spike-receptor binding domain) and malarial antigens (circumsporozoite protein and merozoite surface protein 3) in maternal and cord plasma were measured by ELISA. Plasma from both vaccinated and unvaccinated pregnant women were tested for neutralizing antibodies using commercial kit. Of the unvaccinated pregnant women tested, 58.12% at antenatal clinics and 55.56% at the delivery wards were seropositive for both SARS-CoV-2 nucleoprotein and RBD antibodies. Anti-SARS-CoV-2 antibodies in cord samples correlated with maternal antibody levels (N antigen rs = 0.7155, p < 0.001; RBD rs = 0.8693, p < 0.001). Transplacental transfer of SARS-CoV-2 nucleoprotein antibodies was comparable to circumsporozoite protein antibodies (p = 0.9999) but both were higher than transfer rates of merozoite surface protein 3 antibodies (p < 0.001). SARS-CoV-2 IgG seropositivity among pregnant women in Accra is high with a boost of SARS-CoV-2 RBD-specific IgG in vaccinated women. Transplacental transfer of anti-SARS-CoV-2 and malarial antibodies was efficient, supporting vaccination of mothers as a strategy to protect infants against SARS-CoV-2.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Humanos , Feminino , Gravidez , Gana , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adulto , Estudos Transversais , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Troca Materno-Fetal/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Lactente , Recém-Nascido , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Materno-Adquirida , Adulto Jovem , Sangue Fetal/imunologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue
12.
Immunity ; 57(6): 1215-1224.e6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788711

RESUMO

Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Adulto , Fragmentos Fc das Imunoglobulinas/imunologia , Merozoítos/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Feminino , Masculino , Adulto Jovem
13.
Exp Parasitol ; 262: 108772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723846

RESUMO

The family Sarcocystidae includes several intracellular coccidial parasites such as Toxoplasma gondii, Neospora caninum, Sarcocystis spp. and Hammondia spp. with heteroxenous life cycles involving different parasitic stages (oocysts/sporocysts, tachyzoites and bradyzoites in tissue cysts). The aim of this work was to evaluate monoclonal antibodies (MAb) (anti NcSAG1, anti NcSAG4 and anti TgCC2) and/or polyclonal antibodies (PAb) (anti NcSAG4 and anti TgBAG1) to label specific immunodominant antigens in different parasitic stages of N. caninum (oocyst, bradyzoite and tachyzoite), T. gondii (oocyst, cyst and tachyzoite), H. heydorni (oocyst), S. cruzi (cyst and bradyzoite) and S. falcatula (sporocyst). It was observed that the MAb directed against NcSAG1 reacted exclusively with N. caninum tachyzoites. In contrast, the MAb directed against NcSAG4 did not react with any of the parasites tested at any stage. The MAb directed against NcSAG4 reacted with both N. caninum and T. gondii tachyzoites, T. gondii tissue cysts and S. cruzi tissue cysts and bradyzoites. As expected, the MAb directed against the T. gondii tissue cyst wall antigen TgCC2 reacted with T. gondii tissue cysts, N. caninum bradyzoites, but also with T. gondii and H. heydorni oocysts and S. falcatula sporocysts. Finally, the PAb directed against the T. gondii bradyzoite proteinTgBAG1 reacted with T. gondii tissue cysts, N. caninum bradyzoites, and also with S. cruzi tissue cysts and bradyzoites. These data reveal a wide range of cross-reactions between different species of protozoa and between different developmental stages, which should be taken into account in the design and evaluation of diagnostic tests, as well as in the assessment of vaccination and challenge studies.


Assuntos
Anticorpos Monoclonais , Antígenos de Protozoários , Neospora , Sarcocystis , Toxoplasma , Sarcocystis/imunologia , Neospora/imunologia , Animais , Antígenos de Protozoários/imunologia , Toxoplasma/imunologia , Anticorpos Monoclonais/imunologia , Camundongos , Sarcocystidae/imunologia , Sarcocystidae/crescimento & desenvolvimento , Epitopos Imunodominantes/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Camundongos Endogâmicos BALB C , Coelhos
14.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38803222

RESUMO

The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.


Assuntos
Anticorpos Antiprotozoários , Malária Falciparum , Proteína 1 de Superfície de Merozoito , Fagocitose , Plasmodium falciparum , Humanos , Proteína 1 de Superfície de Merozoito/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/imunologia , Fagocitose/imunologia , Imunoglobulina G/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino , Merozoítos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo
15.
Front Immunol ; 15: 1370255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803499

RESUMO

Theileria equi (T. equi) is an apicomplexan parasite that causes severe hemolytic anemia in equids. Presently, there is inadequate knowledge of the immune responses induced by T. equi in equid hosts impeding understanding of the host parasite relationship and development of potent vaccines for control of T. equi infections. The objective of this study was to evaluate the host-parasite dynamics between T. equi merozoites and infected horses by assessing cytokine expression during primary and secondary parasite exposure, and to determine whether the pattern of expression correlated with clinical indicators of disease. Our findings showed that the expression of pro-inflammatory cytokines was very low and inconsistent during both primary and secondary infection. There was also no correlation between the symptoms observed during primary infection and expression of the cytokines. This suggests that the symptoms might have occurred primarily due to hemolysis and likely not the undesirable effects of pro-inflammatory responses. However, IL-10 and TGF-ß1 were highly expressed in both phases of infection, and their expression was linked to antibody production but not moderation of pro-inflammatory cytokine responses.


Assuntos
Doenças dos Cavalos , Interleucina-10 , Theileria , Theileriose , Fator de Crescimento Transformador beta1 , Animais , Cavalos , Theileriose/imunologia , Theileriose/parasitologia , Interleucina-10/metabolismo , Interleucina-10/imunologia , Theileria/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/parasitologia , Merozoítos/imunologia , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Parasita/imunologia
16.
Front Immunol ; 15: 1380660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720894

RESUMO

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Assuntos
Antígenos de Protozoários , Babesia bovis , Babesiose , Proteínas de Protozoários , Animais , Bovinos , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesiose/imunologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Sequência Conservada , Epitopos de Linfócito B/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750768

RESUMO

The presence of memory T cell specific for Trypanosoma cruzi in subjects with discordant serology for Chagas disease supports a cleared infection in these subjects. Using high-dimensional flow cytometry, ELISPOT assays and quantitative PCR, antibody-secreting cells and memory B cells specific for T. cruzi, total B-cell phenotypes, innate immune responses and parasite DNA were evaluated in serodiscordant, seropositive and seronegative subjects for T. cruzi infection. T. cruzi-specific memory B cells but no antibody-secreting cells specific for T. cruzi, increased proportion of nonclassical monocytes and increased levels of polyfunctional NK cells were found in serodiscordant compared with seropositive subjects. None of the serodiscordant subjects evaluated showed detectable parasite DNA, most of them did not show cardiac abnormalities and a group of them had had confirmed positive serology for Chagas disease. The unique immune profiles in serodiscordant subjects support that T. cruzi infection was cleared or profoundly controlled in these subjects.


Assuntos
Doença de Chagas , Células Matadoras Naturais , Células B de Memória , Trypanosoma cruzi , Humanos , Doença de Chagas/imunologia , Doença de Chagas/sangue , Trypanosoma cruzi/imunologia , Células Matadoras Naturais/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Células B de Memória/imunologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue
18.
Mol Biochem Parasitol ; 259: 111630, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795969

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Imunoglobulina G , Proteínas de Protozoários , Vacinas Protozoárias , Toxoplasma , Vacinas de DNA , Animais , Toxoplasma/imunologia , Toxoplasma/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/genética , Camundongos , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Animal/imunologia , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Baço/imunologia , Baço/parasitologia , Proliferação de Células , Plasmídeos/genética , Plasmídeos/imunologia , Citocinas/metabolismo
19.
Front Immunol ; 15: 1372584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745665

RESUMO

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Assuntos
Dependovirus , Vetores Genéticos , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium vivax/imunologia , Plasmodium vivax/genética , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Malária Vivax/imunologia , Camundongos , Dependovirus/genética , Dependovirus/imunologia , Feminino , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Vaccinia virus/genética , Vaccinia virus/imunologia , Humanos , Camundongos Endogâmicos BALB C , Imunização Secundária , Eficácia de Vacinas
20.
mBio ; 15(5): e0085924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639536

RESUMO

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Leishmania donovani , Leishmaniose Visceral , Proteínas de Protozoários , Testes Sorológicos , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Animais , Humanos , Camundongos , Cães , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Testes Sorológicos/métodos , Biomarcadores/sangue , Feminino , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Camundongos Endogâmicos BALB C , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Sensibilidade e Especificidade , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA