Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
Nat Commun ; 15(1): 5939, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009599

RESUMO

The precise regulation of protein function is essential in biological systems and a key goal in chemical biology and protein engineering. Here, we describe a straightforward method to engineer functional control into the isopeptide bond-forming SpyTag/SpyCatcher protein ligation system. First, we perform a cysteine scan of the structured region of SpyCatcher. Except for two known reactive and catalytic residues, none of these mutations abolish reactivity. In a second screening step, we modify the cysteines with disulfide bond-forming small molecules. Here we identify 8 positions at which modifications strongly inhibit reactivity. This inhibition can be reversed by reducing agents. We call such a reversibly inhibitable SpyCatcher "SpyLock". Using "BiLockCatcher", a genetic fusion of wild-type SpyCatcher and SpyLock, and SpyTagged antibody fragments, we generate bispecific antibodies in a single, scalable format, facilitating the screening of a large number of antibody combinations. We demonstrate this approach by screening anti-PD-1/anti-PD-L1 bispecific antibodies using a cellular reporter assay.


Assuntos
Anticorpos Biespecíficos , Cisteína , Engenharia de Proteínas , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Humanos , Engenharia de Proteínas/métodos , Cisteína/química , Cisteína/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Células HEK293 , Dissulfetos/química , Animais
2.
Emerg Microbes Infect ; 13(1): 2373307, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38953857

RESUMO

SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Testes de Neutralização
3.
J Chromatogr A ; 1730: 465117, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38972252

RESUMO

Bispecific antibodies expressed and assembled from a single upstream culture require the correct balance and pairing of four different heavy and light chains (HC and LC). The increased potential for chain-mispaired species challenges the downstream purification of this new format. While clearance of HC-mispaired species, including homodimers and half-antibodies, has been assessed, removal of LC mispairs requires a more stringent approach. Here, we report two case studies in which separation is achieved, as well as the structural basis of these separations: (A) In the first case, a main species with a positively charged patch in the correctly formed variable fragment (Fv) is disrupted when paired with the wrong LC. This LC-mispaired variant binds more weakly to a cation exchange resin and can be washed off in a chromatography step. (B) A second molecule whose LC mispair introduces a negative-charge patch and hydrophobic patch in close proximity, presenting increased binding to a multimodal anion exchange resin. This LC-mispaired variant can be retained on the column under conditions in which the bispecific is recovered. In both case studies, the molecular structural analysis by protein surface properties models correlated well with the chromatography experiments. The comprehensive interpretation of experimental and computational results has provided a better understanding of strategies and potential applications for predicting the downstream purification of complex molecules.


Assuntos
Anticorpos Biespecíficos , Cadeias Leves de Imunoglobulina , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/isolamento & purificação , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Animais , Células CHO , Cricetulus , Modelos Moleculares
4.
MAbs ; 16(1): 2362432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38849989

RESUMO

In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Antígeno CD47 , Fragmentos Fab das Imunoglobulinas , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Humanos , Antígeno CD47/imunologia , Antígeno CD47/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/química , Antígeno B7-H1/antagonistas & inibidores , Cristalografia por Raios X , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Modelos Moleculares
5.
PLoS Comput Biol ; 20(6): e1012157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848446

RESUMO

The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.


Assuntos
Anticorpos Biespecíficos , Receptores de Interleucina-6 , Receptores de Interleucina-8 , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/imunologia , Receptores de Interleucina-6/metabolismo , Humanos , Receptores de Interleucina-8/metabolismo , Receptores de Interleucina-8/antagonistas & inibidores , Animais , Biologia Computacional , Simulação por Computador , Interleucina-6/metabolismo , Interleucina-6/imunologia , Camundongos , Interleucina-8/metabolismo , Interleucina-8/imunologia , Interleucina-8/antagonistas & inibidores , Neoplasias/imunologia , Neoplasias/tratamento farmacológico
6.
Biochem Pharmacol ; 225: 116303, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797272

RESUMO

Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.


Assuntos
Anticorpos Monoclonais , Avaliação Pré-Clínica de Medicamentos , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Imunoconjugados/química
7.
Bioconjug Chem ; 35(6): 780-789, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809610

RESUMO

Targeted protein degradation is an innovative therapeutic strategy to selectively eliminate disease-causing proteins. Exemplified by proteolysis-targeting chimeras (PROTACs), they have shown promise in overcoming drug resistance and targeting previously undruggable proteins. However, PROTACs face challenges, such as low oral bioavailability and limited selectivity. The recently published PROxAb Shuttle technology offers a solution enabling the targeted delivery of PROTACs using antibodies fused with PROTAC-binding domains derived from camelid single-domain antibodies (VHHs). Here, a modular approach to quickly generate PROxAb Shuttles by enzymatically coupling PROTAC-binding VHHs to off-the-shelf antibodies was developed. The resulting conjugates retained their target binding and internalization properties, and incubation with BRD4-targeting PROTACs resulted in formation of defined PROxAb-PROTAC complexes. These complexes selectively induced degradation of the BRD4 protein, resulting in cytotoxicity specifically to cells expressing the antibody's target. The chemoenzymatic approach described herein provides a versatile and efficient solution for generating antibody-VHH conjugates for targeted protein degradation applications, but it could also be used to combine antibodies and VHH binders to generate bispecific antibodies for further applications.


Assuntos
Anticorpos Biespecíficos , Proteólise , Humanos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/imunologia , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Proteínas que Contêm Bromodomínio
8.
Virus Res ; 345: 199383, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697296

RESUMO

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Monoclonais/imunologia , Ligação Proteica , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/imunologia , Camundongos , Testes de Neutralização
9.
Protein Expr Purif ; 220: 106503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759705

RESUMO

Protein A affinity chromatography has been widely used for initial product capture in recombinant antibody/Fc-fusion purification. However, in general Protein A lacks the capability of separating aggregates (unless the aggregates are too large to enter the pores of resin beads or have their Protein A binding sites buried, in which case the aggregates do not bind). In the current work, we demonstrated that CaptureSelect FcXP affinity medium exhibited strong aggregate separation capability and effectively removed aggregates under pH or conductivity gradient elution in two bispecific antibody (bsAb) cases. For these two cases, aggregate contents were reduced from >16% and >22% (in the feed) to <1% and <5% (in the eluate) for the first and second bsAbs, respectively. While more case studies are required to further demonstrate FcXP's superiority in aggregate removal, findings from the current study suggest that FcXP can potentially be a better alternative than Protein A for product capture in cases where aggregate content is high.


Assuntos
Anticorpos Biespecíficos , Cromatografia de Afinidade , Proteína Estafilocócica A , Cromatografia de Afinidade/métodos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/isolamento & purificação , Proteína Estafilocócica A/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Agregados Proteicos , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/isolamento & purificação
10.
Front Immunol ; 15: 1384467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605965

RESUMO

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Assuntos
Anticorpos Biespecíficos , Animais , Bovinos , Humanos , Anticorpos Biespecíficos/química , Peptídeos , Proteínas do Nucleocapsídeo
11.
MAbs ; 16(1): 2341443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666503

RESUMO

The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.


Assuntos
Anticorpos Biespecíficos , Aprendizado de Máquina , Anticorpos de Domínio Único , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Animais , Engenharia de Proteínas/métodos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química
12.
Adv Healthc Mater ; 13(19): e2400235, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569198

RESUMO

Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Nanogéis , Animais , Humanos , Imunoterapia/métodos , Feminino , Camundongos , Nanogéis/química , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Camundongos Endogâmicos BALB C , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Células MCF-7 , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/química
13.
ACS Chem Biol ; 19(4): 916-925, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38491942

RESUMO

Bispecific antibodies (BsAbs) represent an emerging class of biologics that can recognize two different antigens or epitopes. T-cell engagers (TcEs) bind two targets in trans on the cell surface of the effector and target cell to induce proximal immune effects, opening exciting windows for immunotherapies. To date, the engineering of BsAbs has been mainly focused on tuning the molecular weight and valency. However, the effects of spatial factors on the biological functions of BsAbs have been less explored due to the lack of biochemical methods to precisely manipulate protein geometry. Here, we studied the geometric effects of the TcEs. First, by genetically inserting rigidly designed ankyrin repeat proteins into TcEs, we revealed that the efficacy progressively decreased as the spacer distance of the two binding domains increased. Then, we constructed 26 pairs of TcEs with the same size but varying orientations using click chemistry-mediated conjugation at different mutation sites. We found that linear ligation sites play a minor role in modulating cell-killing efficacy. Next, we rendered the TcEs' advanced topology by cyclization chemistry using the SpyTag/SpyCatcher pair or sortase ligation approaches. Cyclized TcEs were generally more potent than their linear counterparts. Particularly, sortase A cyclized TcEs, bearing a minimal tagging motif, exhibited better cell-killing efficacy in vitro and improved stability both in vitro and in vivo compared to the linear TcE. This work combines modern bioconjugation chemistry and protein engineering tools for antibody engineering, shedding light on the elusive spatial factors of BsAbs functionality.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/química , Química Click , Engenharia de Proteínas/métodos , Proteínas , Linfócitos T/imunologia , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38513430

RESUMO

Developing a knob-into-hole asymmetric bispecific IgG1 monoclonal antibody (mAb) poses manufacturing challenges due to the expression of chain pairing variants, also called mispaired species, in the desired product. The incorrect pairing of light and heavy chains could result in heterogeneous mispaired species of homodimers, heterodimers, light chain swapping, and low molecular weight species (LMWS). Standard chromatography, capillary electrophoretic, or spectroscopic methods poorly resolve these from the main variants. Here, we report a highly sensitive reverse-phase polyphenyl ultra-high-performance liquid chromatography (RP-UHPLC) method to accurately measure mispaired species of Duet mAb format, an asymmetric IgG1 bispecific mAb, for both process development and quality control analytical tests. Coupled with electrospray ionization mass spectrometry (ESI-MS), it enabled direct online characterization of mispaired species. This single direct assay detected diverse mispaired IgG-like species and LMWS. The method resolved eight disulfide bonds dissociated LMWS and three mispaired LMWS. It also resolved three different types of IgG-like mispaired species, including two homodimers and one heterodimer. The characterization and quantification simultaneously enabled the cell line selection that produces a lesser heterogeneity and lower levels of mispaired species with the desired correctly paired product. The biological activity assessment of samples with increased levels of these species quantified by the method exhibited a linear decline in potency with increasing levels of mispaired species in the desired product. We also demonstrated the utility of the technique for testing in-process intermediate materials to determine and assess downstream purification process capability in removing diverse mispaired IgG-like species and LMWS to a certain level during the downstream purification process. Our investigation demonstrates that adopting this method was vital in developing asymmetric bispecific mAb from the initial stage of cell line development to manufacturing process development. Therefore, this tool could be used in the control strategy to monitor and control mispaired species during manufacturing, thus improving the quality control of the final product.


Assuntos
Anticorpos Biespecíficos , Espectrometria de Massas por Ionização por Electrospray , Imunoglobulina G/química , Cromatografia de Fase Reversa , Domínios Proteicos , Anticorpos Biespecíficos/química , Anticorpos Monoclonais/química
15.
Biochemistry ; 63(8): 958-968, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38426700

RESUMO

Bispecific antibodies (BsAbs) are undergoing continued development for applications in oncology and autoimmune diseases. While increasing activity by having more than one targeting arm, most BsAb engineering employs single Fc engagement as monoclonal antibodies. Here, we designed a novel immunoglobulin gamma-1 (IgG1)-derived dual-Fc BsAb containing two Fc regions and two distinct asymmetric antigen binding arms comprising a Fab arm and another VHH domain. In conjunction with the knob-into-hole technology, dual-Fc BsAbs could be produced with a high yield and good stability. We explore how Fc engineering effects on dual-Fc constructs could boost the desired therapeutic efficacy. This new format enabled simultaneous bispecific binding to corresponding antigens. Furthermore, compared to the one-Fc control molecules, dual-Fc BsAbs were shown to increase the avidity-based binding to FcγRs to result in higher ADCC and ADCP activities by potent avidity via binding to two antigens and Fc receptors. Overall, this novel BsAb format with enhanced effector functionalities provides a new option for antibody-based immunotherapy.


Assuntos
Anticorpos Biespecíficos , Anticorpos Biespecíficos/química , Fragmentos Fc das Imunoglobulinas/genética , Anticorpos Monoclonais
16.
Small ; 20(25): e2308265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225704

RESUMO

Bispecific antibodies possess exceptional potential as therapeutic agents due to their capacity to bind to two different antigens simultaneously. However, challenges pertain to unsatisfactory stability, manufacturing complexity, and limited tumor penetration hinder their broad applicability. In this study, a versatile technology is presented for the rapid generation of bispecific nanobody-aptamer conjugates with efficient tumor penetration. The approach utilizes microbial transglutaminase (MTGase) and click chemistry to achieve site-specific conjugation of nanobodies and aptamers, which are termed nanotamers. The nanotamers recognize and bind to two types of molecular targets expressed on cancer cells. As a prototype, a bispecific nanotamer is developed that binds both clusters of differentiation 47 (CD47) and mesenchymal epithelial transition receptor (Met) expressed on the tumor cell membrane. This CD47-Met nanotamer demonstrates high affinity and specificity toward tumor cells expressing both targets, exhibits improved receptor functional inhibition through a strong steric hindrance effect. Moreover, its capacity for deep tumor penetration greatly enhances the impact of conventional chemotherapy on antitumor efficacy. The as-developed nanotamer synthesis approach shows promise to customize bispecific molecular probes targeting different cancer types and different therapeutic goals.


Assuntos
Anticorpos Biespecíficos , Aptâmeros de Nucleotídeos , Neoplasias , Anticorpos de Domínio Único , Humanos , Aptâmeros de Nucleotídeos/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Animais
17.
Neoplasia ; 48: 100962, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183712

RESUMO

Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Humanos , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/química , Albuminas/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
18.
Biophys J ; 123(2): 235-247, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102828

RESUMO

The use of bispecific antibodies as T cell engagers can bypass the normal T cell receptor-major histocompatibility class interaction, redirect the cytotoxic activity of T cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when it is used to treat solid tumors. To avoid these adverse events, it is necessary to understand the fundamental mechanisms involved in the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and tumor-associated antigens (TAAs). The derived number of intercellular bonds formed between CD3 and TAAs was further transferred to the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights into how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody-binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a proof-of-concept study to help in the future design of new biological therapeutics.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos
19.
Protein Expr Purif ; 216: 106418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141898

RESUMO

For a certain number of mAbs, bispecific antibodies (bsAbs) and Fc-fusion proteins that we worked on, the Protein A capture step experienced low yield (i.e., ∼80%). A previous case study suggested that non-binding aggregate formed in cell culture was the root cause of low Protein A step yield. In the current work, we selected five projects with the low Protein A yield issue to further illustrate this phenomenon. In all cases, existence of non-binding aggregates was confirmed by size-exclusion chromatography-high performance liquid chromatography (SEC-HPLC) analysis of Protein A load and flow-through. In addition, we demonstrated that aggregates failed to bind to Protein A resin mainly due to their large sizes, which prevented them from entering the resin beads. As the data suggested, SEC-HPLC analysis of Protein A load and flow-through, although not a standard procedure, can provide information that is critical for understanding the unexpected performance of Protein A chromatography in cases like those being presented here. Thus, SEC-HPLC analysis of Protein A load and flow-through is highly recommended for antibodies/Fc-fusions suffering from low Protein A yield.


Assuntos
Anticorpos Biespecíficos , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão , Cromatografia em Gel , Anticorpos Monoclonais/química , Anticorpos Biespecíficos/química , Proteína Estafilocócica A/química
20.
Bioconjug Chem ; 34(12): 2215-2220, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962868

RESUMO

Bispecific antibodies as T cell engagers designed to display binding capabilities to both tumor-associated antigens and antigens on T cells are considered promising agents in the fight against cancer. Even though chemical strategies to develop such constructs have emerged, a method that readily converts a therapeutically applied antibody into a bispecific construct by a fully non-genetic process is not yet available. Herein, we report the application of a biogenic, tyrosine-based click reaction utilizing chemoenzymatic modifications of native IgG1 antibodies to generate a synthetic bispecific antibody construct that exhibits tumor-killing capability at picomolar concentrations. Control experiments revealed that a covalent linkage of the different components is required for the observed biological activities. In view of the highly potent nature of the constructs and the modular approach that relies on convenient synthetic methods utilizing therapeutically approved biomolecules, our method expedites the production of potent bispecific antibody constructs with tunable cell killing efficacy with significant impact on therapeutic properties.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Química Click , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/química , Antígenos de Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...