Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.009
Filtrar
1.
ASAIO J ; 70(6): 546-552, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829573

RESUMO

Drug treatments for coronavirus disease 2019 (COVID-19) dramatically improve patient outcomes, and although extracorporeal membrane oxygenation (ECMO) has significant use in these patients, it is unknown whether ECMO affects drug dosing. We used an ex vivo adult ECMO model to measure ECMO circuit effects on concentrations of specific COVID-19 drug treatments. Three identical ECMO circuits used in adult patients were set up. Circuits were primed with fresh human blood (temperature and pH maintained within normal limits). Three polystyrene jars with 75 ml fresh human blood were used as controls. Remdesivir, GS-441524, nafamostat, and tocilizumab were injected in the circuit and control jars at therapeutic concentrations. Samples were taken from circuit and control jars at predefined time points over 6 h and drug concentrations were measured using validated assays. Relative to baseline, mean (± standard deviation [SD]) study drug recoveries in both controls and circuits at 6 h were significantly lower for remdesivir (32.2% [±2.7] and 12.4% [±2.1], p < 0.001), nafamostat (21.4% [±5.0] and 0.0% [±0.0], p = 0.018). Reduced concentrations of COVID-19 drug treatments in ECMO circuits is a clinical concern. Remdesivir and nafamostat may need dose adjustments. Clinical pharmacokinetic studies are suggested to guide optimized COVID-19 drug treatment dosing during ECMO.


Assuntos
Monofosfato de Adenosina , Alanina , Tratamento Farmacológico da COVID-19 , Oxigenação por Membrana Extracorpórea , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/farmacocinética , Alanina/análogos & derivados , Alanina/farmacocinética , Alanina/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacocinética , Antivirais/farmacocinética , Antivirais/uso terapêutico , Guanidinas/farmacocinética , Guanidinas/uso terapêutico , Benzamidinas , COVID-19/terapia , SARS-CoV-2 , Adenosina/análogos & derivados
2.
J Med Chem ; 67(12): 10211-10232, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38871484

RESUMO

Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 µM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 µM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.


Assuntos
Antivirais , Desenho de Fármacos , Oxidiazóis , SARS-CoV-2 , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Animais , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Relação Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , Camundongos , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/síntese química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
3.
Animal Model Exp Med ; 7(3): 259-274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860392

RESUMO

BACKGROUND: YangshenDingzhi granules (YSDZ) are clinically effective in preventing and treating COVID-19. The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology. METHODS: The chemical constituents of YSDZ in the blood were examined using ultra-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Potential protein targets were obtained from the SwissTargetPrediction database, and the target genes associated with viral pneumonia were identified using GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1. Protein-protein interaction networks were constructed using the STRING database. The Metascape database was employed to perform enrichment analyses of Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways for the targets, while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks. Further, in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia. RESULTS: Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum. Among these, MAPK1, MAPK3, AKT1, EGFR, and TNF play significant roles. In vitro tests revealed that the medicated serum suppressed the replication of H1N1, RSV, and SARS-CoV-2 replicon. Further, in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1. CONCLUSION: The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , SARS-CoV-2 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Masculino , COVID-19 , Pneumonia Viral/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/farmacocinética , Humanos
4.
J Antimicrob Chemother ; 79(6): 1423-1431, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38708557

RESUMO

BACKGROUND: Bemnifosbuvir (AT-527) is a novel oral guanosine nucleotide antiviral drug for the treatment of persons with COVID-19. Direct assessment of drug disposition in the lungs, via bronchoalveolar lavage, is necessary to ensure antiviral drug levels at the primary site of SARS-CoV-2 infection are achieved. OBJECTIVES: This Phase 1 study in healthy subjects aimed to assess the bronchopulmonary pharmacokinetics, safety and tolerability of repeated doses of bemnifosbuvir. METHODS: A total of 24 subjects were assigned to receive bemnifosbuvir twice daily at doses of 275, 550 or 825 mg for up to 3.5 days. RESULTS: AT-511, the free base of bemnifosbuvir, was largely eliminated from the plasma within 6 h post dose in all dosing groups. Antiviral drug levels of bemnifosbuvir were consistently achieved in the lungs with bemnifosbuvir 550 mg twice daily. The mean level of the guanosine nucleoside metabolite AT-273, the surrogate of the active triphosphate metabolite of the drug, measured in the epithelial lining fluid of the lungs was 0.62 µM at 4-5 h post dose. This exceeded the target in vitro 90% effective concentration (EC90) of 0.5 µM for antiviral drug exposure against SARS-CoV-2 replication in human airway epithelial cells. Bemnifosbuvir was well tolerated across all doses tested, and most treatment-emergent adverse events reported were mild in severity and resolved. CONCLUSIONS: The favourable pharmacokinetics and safety profile of bemnifosbuvir demonstrates its potential as an oral antiviral treatment for COVID-19, with 550 mg bemnifosbuvir twice daily currently under further clinical evaluation in persons with COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Pró-Fármacos , SARS-CoV-2 , Humanos , Antivirais/farmacocinética , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Masculino , Adulto , Pró-Fármacos/farmacocinética , Pró-Fármacos/administração & dosagem , Feminino , SARS-CoV-2/efeitos dos fármacos , Pessoa de Meia-Idade , Administração Oral , COVID-19 , Adulto Jovem , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Voluntários Saudáveis , Guanosina/análogos & derivados , Guanosina/farmacocinética , Guanosina/administração & dosagem
5.
Clin Transl Sci ; 17(5): e13833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797873

RESUMO

Niclosamide, a potent anthelmintic agent, has emerged as a candidate against COVID-19 in recent studies. Its formulation has been investigated extensively to address challenges related to systemic exposure. In this study, niclosamide was formulated as a long-acting intramuscular injection to achieve systemic exposure in the lungs for combating the virus. To establish the dose-exposure relationship, a hamster model was selected, given its utility in previous COVID-19 infection studies. Pharmacokinetic (PK) analysis was performed using NONMEM and PsN. Hamsters were administered doses of 55, 96, 128, and 240 mg/kg with each group comprising five animals. Two types of PK models were developed, linear models incorporating partition coefficients and power-law distributed models, to characterize the relationship between drug concentrations in the plasma and lungs of the hamsters. Numerical and visual diagnostics, including basic goodness-of-fit and visual predictive checks, were employed to assess the models. The power-law-based PK model not only demonstrated superior numerical performance compared with the linear model but also exhibited better agreement in visual diagnostic evaluations. This phenomenon was attributed to the nonlinear relationship between drug concentrations in the plasma and lungs, reflecting kinetic heterogeneity. Dose optimization, based on predicting lung exposure, was conducted iteratively across different drug doses, with the minimum effective dose estimated to be ~1115 mg/kg. The development of a power-law-based PK model proved successful and effectively captured the nonlinearities observed in this study. This method is expected to be applicable for investigating the drug disposition of specific formulations in the lungs.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Pulmão , Modelos Biológicos , Niclosamida , Animais , Niclosamida/farmacocinética , Niclosamida/administração & dosagem , Antivirais/farmacocinética , Antivirais/administração & dosagem , Pulmão/metabolismo , Injeções Intramusculares , SARS-CoV-2 , Cricetinae , Relação Dose-Resposta a Droga , Masculino , COVID-19
6.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
7.
Sci Rep ; 14(1): 10709, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729980

RESUMO

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Assuntos
Leucócitos Mononucleares , Ritonavir , SARS-CoV-2 , Animais , Ratos , Ritonavir/farmacocinética , SARS-CoV-2/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Humanos , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , COVID-19/líquido cefalorraquidiano , Antivirais/farmacocinética , Antivirais/farmacologia , Ratos Sprague-Dawley , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia
8.
J Infect Dev Ctries ; 18(4): 520-531, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728643

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic caused global health, economic, and population loss. Variants of the coronavirus contributed to the severity of the disease and persistent rise in infections. This study aimed to identify potential drug candidates from fifteen approved antiviral drugs against SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike protein (6M0J) using virtual screening and pharmacokinetics to gain insights into COVID-19 therapeutics. METHODOLOGY: We employed drug repurposing approach to analyze binding performance of fifteen clinically approved antiviral drugs against the main protease of SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike proteins bound to ACE-2 receptor (6M0J), to provide an insight into the therapeutics of COVID-19. AutoDock Vina was used for docking studies. The binding affinities were calculated, and 2-3D structures of protein-ligand interactions were drawn. RESULTS: Rutin, hesperidin, and nelfinavir are clinically approved antiviral drugs with high binding affinity to proteins 6LU7, 5B6O, and 6M0J. These ligands have excellent pharmacokinetics, ensuring efficient absorption, metabolism, excretion, and digestibility. Hesperidin showed the most potent interaction with spike protein 6M0J, forming four H-bonds. Nelfinavir had a high human intestinal absorption (HIA) score of 0.93, indicating maximum absorption in the body and promising interactions with 6LU7. CONCLUSIONS: Our results indicated that rutin, hesperidin, and nelfinavir had the highest binding results against the proposed drug targets. The computational approach effectively identified SARS-CoV-2 inhibitors. COVID-19 is still a recurrent threat globally and predictive analysis using natural compounds might serve as a starting point for new drug development against SARS-CoV-2 and related viruses.


Assuntos
Antivirais , COVID-19 , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Pandemias , Betacoronavirus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química
9.
Sci Rep ; 14(1): 10253, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704431

RESUMO

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Assuntos
Antivirais , Infecções por Citomegalovirus , Elastina , Muromegalovirus , Peptídeos , Fosfoproteínas , Proteínas da Matriz Viral , Animais , Elastina/química , Elastina/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Camundongos , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Muromegalovirus/efeitos dos fármacos , Humanos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Citomegalovirus/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/farmacocinética , Modelos Animais de Doenças , Polipeptídeos Semelhantes à Elastina
10.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708183

RESUMO

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Assuntos
Antivirais , Lignanas , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Proteínas Recombinantes/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
11.
Pharmacol Res Perspect ; 12(3): e1193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775304

RESUMO

Aciclovir is considered the first-line treatment against Herpes simplex virus (HSV) infections in new-borns and infants. As renal excretion is the major route of elimination, in renally-impaired patients, aciclovir doses are adjusted according to the degree of impairment. However, limited attention has been given to the implications of immature renal function or dysfunction due to the viral disease itself. The aim of this investigation was to characterize the pharmacokinetics of aciclovir taking into account maturation and disease processes in the neonatal population. Pharmacokinetic data obtained from 2 previously published clinical trials (n = 28) were analyzed using a nonlinear mixed effects modeling approach. Post-menstrual age (PMA) and creatinine clearance (CLCR) were assessed as descriptors of maturation and renal function. Simulation scenarios were also implemented to illustrate the use of pharmacokinetic data to extrapolate efficacy from adults. Aciclovir pharmacokinetics was described by a one-compartment model with first-order elimination. Body weight and diagnosis (systemic infection) were statistically significant covariates on the volume of distribution, whereas body weight, CLCR and PMA had a significant effect on clearance. Median clearance varied from 0.2 to 1.0 L/h in subjects with PMA <34 or ≥34 weeks, respectively. Population estimate for volume of distribution was 1.93 L with systemic infection increasing this value by almost 3-fold (2.67 times higher). A suitable model parameterization was identified, which discriminates the effects of developmental growth, maturation, and organ function. Exposure to aciclovir was found to increase with decreasing PMA and renal function (CLCR), suggesting different dosing requirement for pre-term neonates.


Assuntos
Aciclovir , Antivirais , Herpes Simples , Humanos , Aciclovir/farmacocinética , Aciclovir/administração & dosagem , Recém-Nascido , Antivirais/farmacocinética , Antivirais/administração & dosagem , Herpes Simples/tratamento farmacológico , Feminino , Masculino , Modelos Biológicos , Creatinina/sangue , Relação Dose-Resposta a Droga , Taxa de Depuração Metabólica , Simulação por Computador
12.
Biomed Pharmacother ; 175: 116678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713940

RESUMO

BACKGROUND: Current treatments for chronic hepatitis B management include orally administered nucleos(t)ide analogues, such as tenofovir (TDF), which is an acyclic adenine nucleotide analogue used both in HBV and human immune deficiency virus (HIV). The course of HBV infection is mainly dependent on viral factors, such as HBV genotypes, immunological features and host genetic variables, but a few data are available in the context of HBV, in particular for polymorphisms of genes encoding proteins involved in drug metabolism and elimination. Consequently, the aim of this study was to evaluate the potential impact of genetic variants on TDF plasma and urine concentrations in patients with HBV, considering the role of HBV genotypes. METHODS: A retrospective cohort study at the Infectious Disease Unit of Amedeo di Savoia Hospital, Torino, Italy, was performed. Pharmacokinetic analyses were performed through liquidi chromatography, whereas pharmacogenetic analyses through real-time PCR. FINDINGS: Sixty - eight patients were analyzed: ABCC4 4976 C>T genetic variant showed an impact on urine TDF drug concentrations (p = 0.014). In addition, SLC22A6 453 AA was retained in the final regression multivariate model considering factors predicting plasma concentrations, while ABCC4 4976 TC/CC was the only predictor of urine concentrations in the univariate model. INTERPRETATION: In conclusion, this is the first study showing a potential impact of genetic variants on TDF plasma and urine concentrations in the HBV context, but further studies in different and larger cohorts of patients are required.


Assuntos
Vírus da Hepatite B , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Farmacogenética , Tenofovir , Humanos , Tenofovir/uso terapêutico , Tenofovir/farmacocinética , Masculino , Feminino , Estudos Retrospectivos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Pessoa de Meia-Idade , Farmacogenética/métodos , Vírus da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Adulto , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Antivirais/farmacocinética , Antivirais/uso terapêutico , Antivirais/urina , Genótipo , Estudos de Coortes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Polimorfismo de Nucleotídeo Único/genética
13.
Pak J Pharm Sci ; 37(1): 107-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741406

RESUMO

Entecavir, an effective anti-hepatitis B drug with low resistance rate, was designed as sustained-release micro spheres in our previous study. Here, we aimed to reveal the drug-release mechanism by observing the drug distribution and degradation behavior of poly (lactic-co-glycolic acid) and to investigate the pharmacodynamics of entecavir micro spheres. Raman spectroscopy was used to analyze the distribution of active pharmaceutical ingredients in the micro spheres. The results showed that there was little entecavir near the micro sphere surface. With increasing micro sphere depth, the drug distribution gradually increased and larger-size entecavir crystals were mainly distributed near the spherical center. The degradation behavior of poly (lactic-co-glycolic acid) was investigated using gel permeation chromatography. Changes in poly (lactic-co-glycolic acid) molecular weights during micro sphere degradation revealed that dissolution dominated the release process, which proved our previous research results. Pharmacodynamics studies on transgenic mice indicated that the anti-hepatitis B virus replication effect was maintained for 42 days after a single injection of entecavir micro spheres, similar to the effect of daily oral administration of entecavir tablets for 28 days. The entecavir micro spheres prepared in this study had a good anti-hepatitis B virus replication effect and it is expected to be used in anti hepatitis B virus treatment against hepatitis B virus.


Assuntos
Antivirais , Guanina , Vírus da Hepatite B , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Guanina/farmacologia , Guanina/análogos & derivados , Guanina/farmacocinética , Animais , Antivirais/farmacologia , Antivirais/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vírus da Hepatite B/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos Transgênicos , Camundongos , Replicação Viral/efeitos dos fármacos , Microesferas , Preparações de Ação Retardada , Hepatite B/tratamento farmacológico , Tamanho da Partícula , Ácido Poliglicólico/química , Análise Espectral Raman , Ácido Láctico
14.
J Pediatr Gastroenterol Nutr ; 78(6): 1342-1354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644678

RESUMO

BACKGROUND: The safety and efficacy of sofosbuvir-velpatasvir in children aged 3-17 years with chronic hepatitis C virus (HCV) infection of any genotype were evaluated. METHODS: In this Phase 2, multicenter, open-label study, patients received once daily for 12 weeks either sofosbuvir-velpatasvir 400/100 mg tablet (12-17 years), 200/50 mg low dose tablet or oral granules (3-11 years and ≥17 kg), or 150/37.5 mg oral granules (3-5 years and <17 kg). The efficacy endpoint was sustained virologic response 12 weeks after therapy (SVR12). Dose appropriateness was confirmed by intensive pharmacokinetics in each age group. FINDINGS: Among 216 patients treated, 76% had HCV genotype 1% and 12% had genotype 3. Rates of SVR12 were 83% (34/41) among 3-5-year-olds, 93% (68/73) among 6-11-year-olds, and 95% (97/102) among 12-17-year-olds. Only two patients experienced virologic failure. The most common adverse events were headache, fatigue, and nausea in 12-17-year-olds; vomiting, cough, and headache in 6-11-year-olds; and vomiting in 3-5-year-olds. Three patients discontinued treatment because of adverse events. Four patients had serious adverse events; all except auditory hallucination (n = 1) were considered unrelated to study drug. Exposures of sofosbuvir, its metabolite GS-331007, and velpatasvir were comparable to those in adults in prior Phase 2/3 studies. Population pharmacokinetic simulations supported weight-based dosing for children in this age range. INTERPRETATION: The pangenotypic regimen of sofosbuvir-velpatasvir is highly effective and safe in treating children 3-17 years with chronic HCV infection.


Assuntos
Antivirais , Carbamatos , Combinação de Medicamentos , Hepatite C Crônica , Compostos Heterocíclicos de 4 ou mais Anéis , Sofosbuvir , Humanos , Sofosbuvir/uso terapêutico , Sofosbuvir/farmacocinética , Sofosbuvir/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Criança , Carbamatos/uso terapêutico , Carbamatos/farmacocinética , Carbamatos/efeitos adversos , Carbamatos/administração & dosagem , Masculino , Pré-Escolar , Feminino , Antivirais/uso terapêutico , Antivirais/farmacocinética , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Adolescente , Hepatite C Crônica/tratamento farmacológico , Resultado do Tratamento , Hepacivirus/genética , Hepacivirus/efeitos dos fármacos , Resposta Viral Sustentada , Genótipo , Benzimidazóis , Benzopiranos
15.
Paediatr Drugs ; 26(4): 411-427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649595

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in children aged ≤ 5 years and adults aged ≥ 60 years worldwide. Despite this, RSV-specific therapeutic options are limited. Rilematovir is an investigational, orally administered inhibitor of RSV fusion protein-mediated viral entry. OBJECTIVE: To establish the antiviral activity, clinical outcomes, safety, and tolerability of rilematovir (low or high dose) in children aged ≥ 28 days and ≤ 3 years with RSV disease. METHODS: CROCuS was a multicenter, international, double-blind, placebo-controlled, randomized, adaptive phase II study, wherein children aged ≥ 28 days and ≤ 3 years with confirmed RSV infection who were either hospitalized (Cohort 1) or treated as outpatients (Cohort 2) were randomized (1:1:1) to receive rilematovir (low or high dose) or placebo. Study treatment was administered daily as an oral suspension from days 1 to 7, with dosing based on weight and age groups. The primary objective was to establish antiviral activity of rilematovir by evaluating the area under the plasma concentration-time curve of RSV viral load in nasal secretions from baseline through day 5. Severity and duration of RSV signs and symptoms and the safety and tolerability of rilematovir were also assessed through day 28 (± 3). RESULTS: In total, 246 patients were randomized, treated, and included in the safety analysis population (Cohort 1: 147; Cohort 2: 99). Of these, 231 were included in the intent-to-treat-infected analysis population (Cohort 1: 138; Cohort 2: 93). In both cohorts, demographics were generally similar across treatment groups. In both cohorts combined, the difference (95% confidence interval) in the mean area under the plasma concentration-time curve of RSV RNA viral load through day 5 was - 1.25 (- 2.672, 0.164) and - 1.23 (- 2.679, 0.227) log10 copies∙days/mL for the rilematovir low-dose group and the rilematovir high-dose group, respectively, when compared with placebo. The estimated Kaplan-Meier median (95% confidence interval) time to resolution of key RSV symptoms in the rilematovir low-dose, rilematovir high-dose, and placebo groups of Cohort 1 was 6.01 (4.24, 7.25), 5.82 (4.03, 8.18), and 7.05 (5.34, 8.97) days, respectively; in Cohort 2, estimates were 6.45 (4.81, 9.70), 6.26 (5.41, 7.84), and 5.85 (3.90, 8.27) days, respectively. A similar incidence of adverse events was reported in patients treated with rilematovir and placebo in Cohort 1 (rilematovir: 61.9%; placebo: 58.0%) and Cohort 2 (rilematovir: 50.8%; placebo: 47.1%), with most reported as grade 1 or 2 and none leading to study discontinuation. The study was terminated prematurely, as the sponsor made a non-safety-related strategic decision to discontinue rilematovir development prior to full recruitment of Cohort 2. CONCLUSIONS: Data from the combined cohort suggest that rilematovir has a small but favorable antiviral effect of indeterminate clinical relevance compared with placebo, as well as a favorable safety profile. Safe and effective therapeutic options for RSV in infants and young children remain an unmet need. CLINICAL TRIAL REGISTRATION: EudraCT Number: 2016-003642-93; ClinicalTrials.gov Identifier: NCT03656510. First posted date: 4 September, 2018.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Humanos , Antivirais/efeitos adversos , Antivirais/administração & dosagem , Antivirais/farmacocinética , Antivirais/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Pré-Escolar , Método Duplo-Cego , Masculino , Feminino , Lactente , Recém-Nascido , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Relação Dose-Resposta a Droga
16.
Antiviral Res ; 227: 105890, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657838

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.


Assuntos
Antivirais , Dibenzotiepinas , Morfolinas , Piridinas , Piridonas , Triazinas , Replicação Viral , Animais , Morfolinas/farmacologia , Morfolinas/farmacocinética , Morfolinas/química , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/química , Dibenzotiepinas/farmacologia , Dibenzotiepinas/farmacocinética , Camundongos , Piridinas/farmacologia , Piridinas/farmacocinética , Piridinas/química , Replicação Viral/efeitos dos fármacos , Triazinas/farmacologia , Triazinas/farmacocinética , Triazinas/química , Triazinas/uso terapêutico , Piridonas/farmacologia , Piridonas/farmacocinética , Piridonas/química , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Tiepinas/farmacocinética , Tiepinas/química , Carga Viral/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Feminino , Oxazinas/farmacologia , Oxazinas/farmacocinética , Oxazinas/uso terapêutico , Camundongos Endogâmicos BALB C , Humanos , Tiazóis/farmacologia , Tiazóis/farmacocinética , Tiazóis/química
17.
Expert Opin Investig Drugs ; 33(5): 533-542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662639

RESUMO

BACKGROUND: SHEN26, an oral broad-spectrum antiviral drug, possesses potent preclinical activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has a favorable safety profile. METHODS: We report safety, tolerability, and pharmacokinetic data from a randomized, double-blind, placebo-controlled phase I study of SHEN26. Eighty-six healthy subjects were enrolled in the three studies: a single ascending-dose study (SAD), a multiple ascending-dose study (MAD), and a food-effect study (FE). RESULTS: In the SAD trial, the maximum observed plasma concentration (Cmax) and area under the curve (AUC) of the SHEN26 rapid metabolite SHEN26-69-0 increased approximately dose-proportionally in the 50-400 mg fasting dose range. In the 800 mg dose group, standard meals increased the Cmax and AUC of SHEN26-69-0. In the MAD trial, the accumulation ratios of Cmax and AUC indicated slight accumulation upon repeated SHEN26 dosing. In the FE trial, a high-fat meal prolonged the time to maximum plasma concentration (Tmax) and increased the Cmax and AUC of SHEN26-69-0 compared with fasting administration. Most treatment-related adverse events were mild and resolved without treatment. CONCLUSION: SHEN26 demonstrated satisfactory safety and tolerability in healthy subjects, which supports the continued study of SHEN26 against SARS-CoV-2. TRIAL REGISTRATION: The trial is registered in ClinicalTrials.gov (CT. gov identifier: NCT05504746).


Assuntos
Antivirais , Relação Dose-Resposta a Droga , Interações Alimento-Droga , SARS-CoV-2 , Humanos , Método Duplo-Cego , Masculino , Adulto , Antivirais/farmacocinética , Antivirais/efeitos adversos , Antivirais/administração & dosagem , Antivirais/farmacologia , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Área Sob a Curva , Tratamento Farmacológico da COVID-19 , Voluntários Saudáveis , COVID-19
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124245, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581722

RESUMO

Simeprevir and daclatasvir represent a cornerstone in the management of Hepatitis C Virus infection, a global health concern that affects millions of people worldwide. In this study, we propose a synergistic approach combining synchronous spectrofluorimetry and chemometric modeling i.e. Partial Least Squares (PLS-1) for the analysis of simeprevir and daclatasvir in different matrices. Moreover, the study employs firefly algorithms to further optimize the chemometric models via selecting the most informative features thus improving the accuracy and robustness of the calibration models. The firefly algorithm was able to reduce the number of selected wavelengths to 47-44% for simeprevir and daclatasvir, respectively offering a fast and sensitive technique for the determination of simeprevir and daclatasvir. Validation results underscore the models' effectiveness, as evidenced by recovery rates close to 100% with relative root mean square error of prediction (RRMSEP) of 2.253 and 2.1381 for simeprevir and daclatasvir, respectively. Moreover, the proposed models have been applied to determine the pharmacokinetics of simeprevir and daclatasvir, providing valuable insights into their distribution and elimination patterns. Overall, the study demonstrates the effectiveness of synchronous spectrofluorimetry coupled with multivariate calibration optimized by firefly algorithms in accurately determining and quantifying simeprevir and daclatasvir in HCV antiviral treatment, offering potential applications in pharmaceutical formulation analysis and pharmacokinetic studies for these drugs.


Assuntos
Carbamatos , Imidazóis , Pirrolidinas , Simeprevir , Espectrometria de Fluorescência , Valina , Valina/análogos & derivados , Imidazóis/farmacocinética , Imidazóis/química , Valina/farmacocinética , Simeprevir/farmacocinética , Simeprevir/análise , Pirrolidinas/química , Carbamatos/farmacocinética , Análise dos Mínimos Quadrados , Espectrometria de Fluorescência/métodos , Algoritmos , Antivirais/farmacocinética , Reprodutibilidade dos Testes
19.
BMC Pharmacol Toxicol ; 25(1): 31, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685129

RESUMO

In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.


Assuntos
Amidas , Antivirais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Hidrogéis , Pirazinas , Preparações de Ação Retardada/química , Hidrogéis/química , Amidas/química , Amidas/administração & dosagem , Concentração de Íons de Hidrogênio , Antivirais/química , Antivirais/administração & dosagem , Antivirais/farmacocinética , Pirazinas/química , Pirazinas/administração & dosagem , Pirazinas/farmacocinética , Polietilenoglicóis/química , Reagentes de Ligações Cruzadas/química
20.
J Pharm Biomed Anal ; 245: 116162, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678857

RESUMO

Ritonavir, an excellent inhibitor of CYP3A4, has recently been combined with nirmatrelvir to form Paxlovid for the treatment of severe acute respiratory syndrome coronavirus 2 infections. The root of Scutellaria baicalensis Georgi (S. baicalensis), a traditional Chinese medicinal (TCM) herb commonly used to treat heat/inflammation in the lung and digestive tracts, which are major organs targeted by viral infections, contains flavones that can influence the CYP3A metabolism pathway. To investigate the ability of ritonavir to cross the bloodbrain barrier (BBB) and its potential herb-drug interactions with an equivalent TCM clinical dose of S. baicalensis, multisite microdialysis coupled with an LCMS/MS system was developed using rat model. Pretreatment with S. baicalensis extract for 5 days, which contains less flavones than those used in previous studies, had a significant influence on ritonavir, resulting in a 2-fold increase in the total concentration of flavones in the blood and brain. Treatment also boosted the maximum blood concentration of flavones by 1.5-fold and the maximum brain concentration of flavones by 2-fold, all the while exerting no noticeable influence on the transfer ratio across the bloodbrain barrier. These experimental results demonstrated that the use of a typical traditional Chinese medicinal dose of S. baicalensis is sufficient to influence the metabolic pathway and synergistically increase the concentration of ritonavir in rats.


Assuntos
Antivirais , Barreira Hematoencefálica , Interações Ervas-Drogas , Microdiálise , Extratos Vegetais , Ratos Sprague-Dawley , Ritonavir , Scutellaria baicalensis , Animais , Ritonavir/farmacocinética , Ritonavir/farmacologia , Scutellaria baicalensis/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Ratos , Microdiálise/métodos , Masculino , Antivirais/farmacocinética , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos , Encéfalo/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...