Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 627, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961369

RESUMO

BACKGROUND: Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS: A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS: These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.


Assuntos
Antocianinas , Pigmentação , Antocianinas/metabolismo , Antocianinas/genética , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Magnoliopsida/genética , Fenótipo , Filogenia
2.
PeerJ ; 12: e17736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006012

RESUMO

Background: Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods: In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results: The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Hordeum , Proteínas de Plantas , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biologia Computacional
3.
BMC Genomics ; 25(1): 624, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902601

RESUMO

Radish exhibits significant variation in color, particularly in sprouts, leaves, petals, fleshy roots, and other tissues, displaying a range of hues such as green, white, red, purple, and black. Although extensive research has been conducted on the color variation of radish, the underlying mechanism behind the variation in radish flower color remains unclear. To date, there is a lack of comprehensive research investigating the variation mechanism of radish sprouts, leaves, fleshy roots, and flower organs. This study aims to address this gap by utilizing transcriptome sequencing to acquire transcriptome data for white and purple radish flowers. Additionally, the published transcriptome data of sprouts, leaves, and fleshy roots were incorporated to conduct a systematic analysis of the regulatory mechanisms underlying anthocyanin biosynthesis in these four radish tissues. The comparative transcriptome analysis revealed differential expression of the anthocyanin biosynthetic pathway genes DFR, UGT78D2, TT12 and CPC in the four radish tissues. Additionally, the WGCNA results identified RsDFR.9c and RsUGT78D2.2c as hub genes responsible for regulating anthocyanin biosynthesis. By integrating the findings from the comparative transcriptome analysis, WGCNA, and anthocyanin biosynthetic pathway-related gene expression patterns, it is hypothesized that genes RsDFR.9c and RsUGT78D2.2c may serve as pivotal regulators of anthocyanins in the four radish tissues. Furthermore, the tissue-specific expression of the four copies of RsPAP1 is deemed crucial in governing anthocyanin synthesis and accumulation. Our results provide new insights into the molecular mechanism of anthocyanin biosynthesis and accumulation in different tissues of radish.


Assuntos
Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raphanus , Raphanus/genética , Raphanus/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Transcriptoma , Vias Biossintéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo
4.
Plant Physiol Biochem ; 213: 108792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851149

RESUMO

Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.


Assuntos
Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Tubérculos , Solanum tuberosum , Fatores de Transcrição , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Pigmentação/genética , Antocianinas/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Transcriptoma/genética
5.
Genes (Basel) ; 15(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927692

RESUMO

Anthocyanidin reductase (ANR) is a key enzyme regulating anthocyanin synthesis and accumulation in plants. Here, lychee ANR genes were globally identified, their sequence and phylogenetic characteristics were analyzed, and their spatiotemporal expression patterns were characterized. A total of 51 ANR family members were identified in the lychee genome. The length of the encoded amino acid residues ranged from 87 aa to 289 aa, the molecular weight ranged from 9.49 KD to 32.40 KD, and the isoelectric point (pI) ranged from 4.83 to 9.33. Most of the members were acidic proteins. Most members of the LcANR family were located in the cytoplasm. The 51 LcANR family members were unevenly distributed in 11 chromosomes, and their exons and motif conserved structures were significantly different from each other. Promoters in over 90% of LcANR members contained anaerobically induced response elements, and 88% contained photoresponsive elements. Most LcANR family members had low expression in nine lychee tissues and organs (root, young leaf, bud, female flower, male flower, pericarp, pulp, seed, and calli), and some members showed tissue-specific expression patterns. The expression of one gene, LITCHI029356.m1, decreased with the increase of anthocyanin accumulation in 'Feizixiao' and 'Ziniangxi' pericarp, which was negatively correlated with pericarp coloring. The identified LcANR gene was heterologously expressed in tobacco K326, and the function of the LcANR gene was verified. This study provides a basis for the further study of LcANR function, particularly the role in lychee pericarp coloration.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Litchi , Família Multigênica , Filogenia , Proteínas de Plantas , Litchi/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta
6.
PeerJ ; 12: e17540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887620

RESUMO

Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Pyrus , Fatores de Transcrição , Pyrus/metabolismo , Pyrus/genética , Antocianinas/metabolismo , Antocianinas/genética , Antocianinas/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Frutas/metabolismo , Frutas/genética
7.
Theor Appl Genet ; 137(6): 118, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709404

RESUMO

KEY MESSAGE: Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Cebolas , Pigmentação , Alelos , Antocianinas/genética , Cor , Marcadores Genéticos , Cebolas/genética , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691187

RESUMO

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Punica granatum , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Punica granatum/genética , Punica granatum/metabolismo , Pigmentação/genética , Perfilação da Expressão Gênica , Cor , Metabolômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Genes (Basel) ; 15(5)2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38790216

RESUMO

The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Juglans , Proteínas de Plantas , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta , Estudo de Associação Genômica Ampla , Juglans/genética , Juglans/metabolismo , Juglans/crescimento & desenvolvimento , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
10.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709311

RESUMO

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Vitis , Vitis/genética , Vitis/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentação/genética , Frutas/genética , Frutas/metabolismo , Alelos
11.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791283

RESUMO

Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.


Assuntos
Antocianinas , Mapeamento Cromossômico , Frutas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Genes (Basel) ; 15(4)2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674445

RESUMO

The loss of anthocyanin pigments is one of the most common evolutionary transitions in petal color, yet the genetic basis for these changes in flax remains largely unknown. In this study, we used crossing studies, a bulk segregant analysis, genome-wide association studies, a phylogenetic analysis, and transgenic testing to identify genes responsible for the transition from blue to white petals in flax. This study found no correspondence between the petal color and seed color, refuting the conclusion that a locus controlling the seed coat color is associated with the petal color, as reported in previous studies. The locus controlling the petal color was mapped using a BSA-seq analysis based on the F2 population. However, no significantly associated genomic regions were detected. Our genome-wide association study identified a highly significant QTL (BP4.1) on chromosome 4 associated with flax petal color in the natural population. The combination of a local Manhattan plot and an LD heat map identified LuMYB314, an R2R3-MYB transcription factor, as a potential gene responsible for the natural variations in petal color in flax. The overexpression of LuMYB314 in both Arabidopsis thaliana and Nicotiana tabacum resulted in anthocyanin deposition, indicating that LuMYB314 is a credible candidate gene for controlling the petal color in flax. Additionally, our study highlights the limitations of the BSA-seq method in low-linkage genomic regions, while also demonstrating the powerful detection capabilities of GWAS based on high-density genomic variation mapping. This study enhances our genetic insight into petal color variations and has potential breeding value for engineering LuMYB314 to develop colored petals, bast fibers, and seeds for multifunctional use in flax.


Assuntos
Linho , Flores , Pigmentação , Fatores de Transcrição , Antocianinas/genética , Antocianinas/metabolismo , Mapeamento Cromossômico , Linho/genética , Linho/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Agric Food Chem ; 72(17): 10138-10148, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637271

RESUMO

Passion fruit (Passiflora spp.) is an important fruit tree in the family Passifloraceae. The color of the fruit skin, a significant agricultural trait, is determined by the content of anthocyanin in passion fruit. However, the regulatory mechanisms behind the accumulation of anthocyanin in different passion fruit skin colors remain unclear. In the study, we identified and characterized a R2R3-MYB transcription factor, PeMYB114, which functions as a transcriptional activator in anthocyanin biosynthesis. Yeast one-hybrid system and dual-luciferase analysis showed that PeMYB114 could directly activate the expression of anthocyanin structural genes (PeCHS and PeDFR). Furthermore, a natural variation in the promoter region of PeMYB114 alters its expression. PeMYB114purple accessions with the 224-bp insertion have a higher anthocyanin level than PeMYB114yellow accessions with the 224-bp deletion. The findings enhance our understanding of anthocyanin accumulation in fruits and provide genetic resources for genome design for improving passion fruit quality.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Passiflora , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Antocianinas/metabolismo , Antocianinas/genética , Passiflora/genética , Passiflora/metabolismo , Passiflora/química , Frutas/metabolismo , Frutas/genética , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação INDEL
14.
Sci Rep ; 14(1): 5364, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438787

RESUMO

Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.


Assuntos
Genes myb , Liliaceae , Humanos , Antocianinas/genética , Polimorfismo Genético , Deriva Genética
15.
Plant Genome ; 17(2): e20439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485674

RESUMO

Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.


Assuntos
Flores , Genoma de Planta , Flores/genética , Pigmentação/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Antocianinas/metabolismo , Antocianinas/genética , Cor , Multiômica
16.
J Evol Biol ; 37(4): 429-441, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452247

RESUMO

Members of the genus Clivia show considerable variation in flower pigmentation and morphology. Such variation is affected by mutations that emerge in candidate flower development genes over time. Besides population history, mutations can further illuminate the effects of demographic events in populations in addition to population genetic parameters including selection, recombination, and linkage disequilibrium (LD). The current study aimed to find sequence variants in 2 anthocyanin biosynthetic genes (DFR and bHLH) of Clivia miniata and use the data to assess population genetic factors from a random collection of orange/red- and yellow-flowered specimens. Overall, average nucleotide diversity in the 2 anthocyanin genes was moderate (π = 0.00646), whereas haplotypes differed significantly (Hd ≥ 0.9). Gene evolution was seemingly driven by mutations (CmiDFR) or recombinations (CmibHLH001). LD decayed swiftly within the analyzed gene regions and supported the feasibility of assessing trait-variant associations via the association/linkage mapping approach. In the end, most associations were found to be spurious, but 1 haplotype in CmibHLH001 showed a promising correlation to the orange/red flower phenotype in Clivia specimens. In all, the present study is the first to measure gene-level diversity in C. miniata-data that had never been reported so far. Furthermore, the study also identified allelic and haplotypic variants that may be beneficial in future association genetic studies of Clivia. Such studies, however, consider large diverse populations to control for statistical bias intrinsic to the analysis of small datasets.


Assuntos
Amaryllidaceae , Amaryllidaceae/genética , Antocianinas/genética , Polimorfismo Genético , Desequilíbrio de Ligação , Flores/genética , Haplótipos , Pigmentação/genética , Polimorfismo de Nucleotídeo Único
17.
Mol Biol Rep ; 51(1): 328, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393428

RESUMO

BACKGROUND: WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS: The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION: These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.


Assuntos
Antocianinas , Hydrangea , Antocianinas/genética , Hydrangea/química , Hydrangea/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Pigmentação/genética , Flores/metabolismo , Glucosídeos/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Plant Physiol ; 194(4): 2549-2563, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235827

RESUMO

Gene duplications have long been recognized as a driving force in the evolution of genes, giving rise to novel functions. The soybean (Glycine max) genome is characterized by a large number of duplicated genes. However, the extent and mechanisms of functional divergence among these duplicated genes in soybean remain poorly understood. In this study, we revealed that 4 MYB genes (GmMYBA5, GmMYBA2, GmMYBA1, and Glyma.09g235000)-presumably generated by tandem duplication specifically in the Phaseoleae lineage-exhibited a stronger purifying selection in soybean compared to common bean (Phaseolus vulgaris). To gain insights into the diverse functions of these tandemly duplicated MYB genes in anthocyanin biosynthesis, we examined the expression, transcriptional activity, induced metabolites, and evolutionary history of these 4 MYB genes. Our data revealed that Glyma.09g235000 is a pseudogene, while the remaining 3 MYB genes exhibit strong transcriptional activation activity, promoting anthocyanin biosynthesis in different soybean tissues. GmMYBA5, GmMYBA2, and GmMYBA1 induced anthocyanin accumulation by upregulating the expression of anthocyanin pathway-related genes. Notably, GmMYBA5 showed a lower capacity for gene induction compared to GmMYBA2 and GmMYBA1. Metabolomics analysis further demonstrated that GmMYBA5 induced distinct anthocyanin accumulation in Nicotiana benthamiana leaves and soybean hairy roots compared to GmMYBA2 and GmMYBA1, suggesting their functional divergence leading to the accumulation of different metabolites accumulation following gene duplication. Together, our data provide evidence of functional divergence within the MYB gene cluster following tandem duplication, which sheds light on the potential evolutionary directions of gene duplications during legume evolution.


Assuntos
Genes myb , Glycine max , Glycine max/genética , Antocianinas/genética , Duplicação Gênica , Família Multigênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256237

RESUMO

R2R3-MYB represents a substantial gene family that plays diverse roles in plant development. In this study, 102 SmR2R3-MYB genes were identified from eggplant fruit and classified into 31 subfamilies. Analysis indicated that segmental duplication events played a pivotal role in the expansion of the SmR2R3-MYB gene family. Furthermore, the prediction of miRNAs targeting SmR2R3-MYB genes revealed that 60 SmR2R3-MYBs are targeted by 57 miRNAs, with specific miRNAs displaying varying numbers of target genes, providing valuable insights into the regulatory functions of miRNAs in plant growth, development, and responses to stress conditions. Through expression profile analysis under various treatment conditions, including low temperature (4 °C), plant hormone (ABA, Abscisic acid), and drought stress (PEG, Polyethylene glycol), diverse and complex regulatory mechanisms governing SmR2R3-MYB gene expression were elucidated. Notably, EGP21875.1 and EGP21874.1 exhibited upregulation in expression under all treatment conditions. Transcriptome and metabolome analyses demonstrated that, apart from anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-(6-O-p-coumaroyl)-glucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside), overexpression of SmMYB75 could also elevate the content of various beneficial compounds, such as flavonoids, phenolic acids, and terpenes, in eggplant pulp. This comprehensive study enhances our understanding of SmR2R3-MYB gene functions and provides a strong basis for further research on their roles in regulating anthocyanin synthesis and improving eggplant fruit quality.


Assuntos
MicroRNAs , Solanum melongena , Genes myb , Antocianinas/genética , Solanum melongena/genética , Frutas/genética , Glucosídeos , MicroRNAs/genética
20.
PeerJ ; 12: e16792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250728

RESUMO

Background: Pepper (Capsicum annuum L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated. Methods: RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software. Results: The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 vs EJT-10, HN191-20 vs EJT-20, HN191-30 vs EJT-30, HN192-30 vs EJT-30, and HN005-30 vs EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.


Assuntos
Frutas , Piper nigrum , Frutas/genética , Antocianinas/genética , Genes Reguladores , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...