Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.807
Filtrar
1.
Medicine (Baltimore) ; 103(18): e37943, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701305

RESUMO

BACKGROUND: Lumbar disc herniation was regarded as an age-related degenerative disease. Nevertheless, emerging reports highlight a discernible shift, illustrating the prevalence of these conditions among younger individuals. METHODS: This study introduces a novel deep learning methodology tailored for spinal canal segmentation and disease diagnosis, emphasizing image processing techniques that delve into essential image attributes such as gray levels, texture, and statistical structures to refine segmentation accuracy. RESULTS: Analysis reveals a progressive increase in the size of vertebrae and intervertebral discs from the cervical to lumbar regions. Vertebrae, bearing weight and safeguarding the spinal cord and nerves, are interconnected by intervertebral discs, resilient structures that counteract spinal pressure. Experimental findings demonstrate a lack of pronounced anteroposterior bending during flexion and extension, maintaining displacement and rotation angles consistently approximating zero. This consistency maintains uniform anterior and posterior vertebrae heights, coupled with parallel intervertebral disc heights, aligning with theoretical expectations. CONCLUSIONS: Accuracy assessment employs 2 methods: IoU and Dice, and the average accuracy of IoU is 88% and that of Dice is 96.4%. The proposed deep learning-based system showcases promising results in spinal canal segmentation, laying a foundation for precise stenosis diagnosis in computed tomography images. This contributes significantly to advancements in spinal pathology understanding and treatment.


Assuntos
Aprendizado Profundo , Canal Medular , Estenose Espinal , Tomografia Computadorizada por Raios X , Humanos , Estenose Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Canal Medular/diagnóstico por imagem , Masculino , Vértebras Lombares/diagnóstico por imagem , Feminino , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Adulto , Deslocamento do Disco Intervertebral/diagnóstico por imagem
2.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702954

RESUMO

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Assuntos
Biomarcadores , Aprendizado Profundo , Aprendizado de Máquina , Macrófagos , Análise de Célula Única , Hemorragia Subaracnóidea , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/metabolismo , Animais , Macrófagos/metabolismo , Análise de Célula Única/métodos , Ratos , Biomarcadores/metabolismo , Masculino , Perfilação da Expressão Gênica , Transcriptoma , Ratos Sprague-Dawley , Modelos Animais de Doenças , Redes Neurais de Computação , Simulação de Acoplamento Molecular
3.
Nat Commun ; 15(1): 3768, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704409

RESUMO

Accurate intraoperative differentiation of primary central nervous system lymphoma (PCNSL) remains pivotal in guiding neurosurgical decisions. However, distinguishing PCNSL from other lesions, notably glioma, through frozen sections challenges pathologists. Here we sought to develop and validate a deep learning model capable of precisely distinguishing PCNSL from non-PCNSL lesions, especially glioma, using hematoxylin and eosin (H&E)-stained frozen whole-slide images. Also, we compared its performance against pathologists of varying expertise. Additionally, a human-machine fusion approach integrated both model and pathologic diagnostics. In external cohorts, LGNet achieved AUROCs of 0.965 and 0.972 in distinguishing PCNSL from glioma and AUROCs of 0.981 and 0.993 in differentiating PCNSL from non-PCNSL lesions. Outperforming several pathologists, LGNet significantly improved diagnostic performance, further augmented to some extent by fusion approach. LGNet's proficiency in frozen section analysis and its synergy with pathologists indicate its valuable role in intraoperative diagnosis, particularly in discriminating PCNSL from glioma, alongside other lesions.


Assuntos
Neoplasias do Sistema Nervoso Central , Aprendizado Profundo , Secções Congeladas , Glioma , Linfoma , Humanos , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/cirurgia , Neoplasias do Sistema Nervoso Central/diagnóstico , Linfoma/patologia , Linfoma/diagnóstico , Linfoma/cirurgia , Glioma/cirurgia , Glioma/patologia , Estudo de Prova de Conceito , Masculino , Feminino , Diagnóstico Diferencial , Pessoa de Meia-Idade , Idoso , Período Intraoperatório
4.
BMC Bioinformatics ; 25(1): 177, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704528

RESUMO

BACKGROUND: Hepatitis B virus (HBV) integrates into human chromosomes and can lead to genomic instability and hepatocarcinogenesis. Current tools for HBV integration site detection lack accuracy and stability. RESULTS: This study proposes a deep learning-based method, named ViroISDC, for detecting integration sites. ViroISDC generates corresponding grammar rules and encodes the characteristics of the language data to predict integration sites accurately. Compared with Lumpy, Pindel, Seeksv, and SurVirus, ViroISDC exhibits better overall performance and is less sensitive to sequencing depth and integration sequence length, displaying good reliability, stability, and generality. Further downstream analysis of integrated sites detected by ViroISDC reveals the integration patterns and features of HBV. It is observed that HBV integration exhibits specific chromosomal preferences and tends to integrate into cancerous tissue. Moreover, HBV integration frequency was higher in males than females, and high-frequency integration sites were more likely to be present on hepatocarcinogenesis- and anti-cancer-related genes, validating the reliability of the ViroISDC. CONCLUSIONS: ViroISDC pipeline exhibits superior precision, stability, and reliability across various datasets when compared to similar software. It is invaluable in exploring HBV infection in the human body, holding significant implications for the diagnosis, treatment, and prognosis assessment of HCC.


Assuntos
Vírus da Hepatite B , Integração Viral , Vírus da Hepatite B/genética , Humanos , Integração Viral/genética , Software , Aprendizado Profundo , Masculino , Feminino , Hepatite B/genética , Hepatite B/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Biologia Computacional/métodos
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38704671

RESUMO

Computational analysis of fluorescent timelapse microscopy images at the single-cell level is a powerful approach to study cellular changes that dictate important cell fate decisions. Core to this approach is the need to generate reliable cell segmentations and classifications necessary for accurate quantitative analysis. Deep learning-based convolutional neural networks (CNNs) have emerged as a promising solution to these challenges. However, current CNNs are prone to produce noisy cell segmentations and classifications, which is a significant barrier to constructing accurate single-cell lineages. To address this, we developed a novel algorithm called Single Cell Track (SC-Track), which employs a hierarchical probabilistic cache cascade model based on biological observations of cell division and movement dynamics. Our results show that SC-Track performs better than a panel of publicly available cell trackers on a diverse set of cell segmentation types. This cell-tracking performance was achieved without any parameter adjustments, making SC-Track an excellent generalized algorithm that can maintain robust cell-tracking performance in varying cell segmentation qualities, cell morphological appearances and imaging conditions. Furthermore, SC-Track is equipped with a cell class correction function to improve the accuracy of cell classifications in multiclass cell segmentation time series. These features together make SC-Track a robust cell-tracking algorithm that works well with noisy cell instance segmentation and classification predictions from CNNs to generate accurate single-cell lineages and classifications.


Assuntos
Algoritmos , Linhagem da Célula , Rastreamento de Células , Análise de Célula Única , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado Profundo , Microscopia de Fluorescência/métodos
6.
J Pak Med Assoc ; 74(4 (Supple-4)): S5-S9, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38712403

RESUMO

OBJECTIVE: To segment dental implants on PA radiographs using a Deep Learning (DL) algorithm. To compare the performance of the algorithm relative to ground truth determined by the human annotator. Methodology: Three hundred PA radiographs were retrieved from the radiographic database and consequently annotated to label implants as well as teeth on the LabelMe annotation software. The dataset was augmented to increase the number of images in the training data and a total of 1294 images were used to train, validate and test the DL algorithm. An untrained U-net was downloaded and trained on the annotated dataset to allow detection of implants using polygons on PA radiographs. RESULTS: A total of one hundred and thirty unseen images were run through the trained U-net to determine its ability to segment implants on PA radiographs. The performance metrics are as follows: accuracy of 93.8%, precision of 90%, recall of 83%, F-1 score of 86%, Intersection over Union of 86.4% and loss = 21%. CONCLUSIONS: The trained DL algorithm segmented implants on PA radiographs with high performance similar to that of the humans who labelled the images forming the ground truth.


Assuntos
Aprendizado Profundo , Implantes Dentários , Humanos , Algoritmos , Inteligência Artificial , Radiografia Dentária/métodos
7.
Platelets ; 35(1): 2344512, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38722090

RESUMO

The last decade has seen increasing use of advanced imaging techniques in platelet research. However, there has been a lag in the development of image analysis methods, leaving much of the information trapped in images. Herein, we present a robust analytical pipeline for finding and following individual platelets over time in growing thrombi. Our pipeline covers four steps: detection, tracking, estimation of tracking accuracy, and quantification of platelet metrics. We detect platelets using a deep learning network for image segmentation, which we validated with proofreading by multiple experts. We then track platelets using a standard particle tracking algorithm and validate the tracks with custom image sampling - essential when following platelets within a dense thrombus. We show that our pipeline is more accurate than previously described methods. To demonstrate the utility of our analytical platform, we use it to show that in vivo thrombus formation is much faster than that ex vivo. Furthermore, platelets in vivo exhibit less passive movement in the direction of blood flow. Our tools are free and open source and written in the popular and user-friendly Python programming language. They empower researchers to accurately find and follow platelets in fluorescence microscopy experiments.


In this paper we describe computational tools to find and follow individual platelets in blood clots recorded with fluorescence microscopy. Our tools work in a diverse range of conditions, both in living animals and in artificial flow chamber models of thrombosis. Our work uses deep learning methods to achieve excellent accuracy. We also provide tools for visualizing data and estimating error rates, so you don't have to just trust the output. Our workflow measures platelet density, shape, and speed, which we use to demonstrate differences in the kinetics of clotting in living vessels versus a synthetic environment. The tools we wrote are open source, written in the popular Python programming language, and freely available to all. We hope they will be of use to other platelet researchers.


Assuntos
Plaquetas , Aprendizado Profundo , Trombose , Plaquetas/metabolismo , Trombose/sangue , Humanos , Processamento de Imagem Assistida por Computador/métodos , Animais , Camundongos , Algoritmos
8.
Radiol Cardiothorac Imaging ; 6(3): e230177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722232

RESUMO

Purpose To develop a deep learning model for increasing cardiac cine frame rate while maintaining spatial resolution and scan time. Materials and Methods A transformer-based model was trained and tested on a retrospective sample of cine images from 5840 patients (mean age, 55 years ± 19 [SD]; 3527 male patients) referred for clinical cardiac MRI from 2003 to 2021 at nine centers; images were acquired using 1.5- and 3-T scanners from three vendors. Data from three centers were used for training and testing (4:1 ratio). The remaining data were used for external testing. Cines with downsampled frame rates were restored using linear, bicubic, and model-based interpolation. The root mean square error between interpolated and original cine images was modeled using ordinary least squares regression. In a prospective study of 49 participants referred for clinical cardiac MRI (mean age, 56 years ± 13; 25 male participants) and 12 healthy participants (mean age, 51 years ± 16; eight male participants), the model was applied to cines acquired at 25 frames per second (fps), thereby doubling the frame rate, and these interpolated cines were compared with actual 50-fps cines. The preference of two readers based on perceived temporal smoothness and image quality was evaluated using a noninferiority margin of 10%. Results The model generated artifact-free interpolated images. Ordinary least squares regression analysis accounting for vendor and field strength showed lower error (P < .001) with model-based interpolation compared with linear and bicubic interpolation in internal and external test sets. The highest proportion of reader choices was "no preference" (84 of 122) between actual and interpolated 50-fps cines. The 90% CI for the difference between reader proportions favoring collected (15 of 122) and interpolated (23 of 122) high-frame-rate cines was -0.01 to 0.14, indicating noninferiority. Conclusion A transformer-based deep learning model increased cardiac cine frame rates while preserving both spatial resolution and scan time, resulting in images with quality comparable to that of images obtained at actual high frame rates. Keywords: Functional MRI, Heart, Cardiac, Deep Learning, High Frame Rate Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Aprendizado Profundo , Imagem Cinética por Ressonância Magnética , Humanos , Masculino , Imagem Cinética por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Feminino , Estudos Prospectivos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos
9.
Neurosurg Rev ; 47(1): 200, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722409

RESUMO

Appropriate needle manipulation to avoid abrupt deformation of fragile vessels is a critical determinant of the success of microvascular anastomosis. However, no study has yet evaluated the area changes in surgical objects using surgical videos. The present study therefore aimed to develop a deep learning-based semantic segmentation algorithm to assess the area change of vessels during microvascular anastomosis for objective surgical skill assessment with regard to the "respect for tissue." The semantic segmentation algorithm was trained based on a ResNet-50 network using microvascular end-to-side anastomosis training videos with artificial blood vessels. Using the created model, video parameters during a single stitch completion task, including the coefficient of variation of vessel area (CV-VA), relative change in vessel area per unit time (ΔVA), and the number of tissue deformation errors (TDE), as defined by a ΔVA threshold, were compared between expert and novice surgeons. A high validation accuracy (99.1%) and Intersection over Union (0.93) were obtained for the auto-segmentation model. During the single-stitch task, the expert surgeons displayed lower values of CV-VA (p < 0.05) and ΔVA (p < 0.05). Additionally, experts committed significantly fewer TDEs than novices (p < 0.05), and completed the task in a shorter time (p < 0.01). Receiver operating curve analyses indicated relatively strong discriminative capabilities for each video parameter and task completion time, while the combined use of the task completion time and video parameters demonstrated complete discriminative power between experts and novices. In conclusion, the assessment of changes in the vessel area during microvascular anastomosis using a deep learning-based semantic segmentation algorithm is presented as a novel concept for evaluating microsurgical performance. This will be useful in future computer-aided devices to enhance surgical education and patient safety.


Assuntos
Algoritmos , Anastomose Cirúrgica , Aprendizado Profundo , Humanos , Anastomose Cirúrgica/métodos , Projetos Piloto , Microcirurgia/métodos , Microcirurgia/educação , Agulhas , Competência Clínica , Semântica , Procedimentos Cirúrgicos Vasculares/métodos , Procedimentos Cirúrgicos Vasculares/educação
10.
Environ Monit Assess ; 196(6): 527, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722419

RESUMO

Understanding the connections between human activities and the natural environment depends heavily on information about land use and land cover (LULC) in the form of accurate LULC maps. Environmental monitoring using deep learning (DL) is rapidly growing to preserve a sustainable environment in the long term. For establishing effective policies, regulations, and implementation, DL can be a valuable tool for assessing environmental conditions and natural resources that will positively impact the ecosystem. This paper presents the assessment of land use and land cover change detection (LULCCD) and prediction using DL techniques for the southwestern coastal region, Goa, also known as the tourist destination of India. It consists of three components: (i) change detection (CD), (ii) quantification of LULC changes, and (iii) prediction. A new CD assessment framework, Spatio-Temporal Encoder-Decoder Self Attention Network (STEDSAN), is proposed for the LULCCD process. A dual branch encoder-decoder network is constructed using strided convolution with downsampling for the encoder and transpose convolution with upsampling for the decoder to assess the bitemporal images spatially. The self-attention (SA) mechanism captures the complex global spatial-temporal (ST) interactions between individual pixels over space-time to produce more distinct features. Each branch accepts the LULC map of 2 years as one of its inputs to determine binary and multiclass changes among the bitemporal images. The STEDSAN model determines the patterns, trends, and conversion from one LULC type to another for the assessment period from 2005 to 2018. The binary change maps were also compared with the existing state of the art (SOTA) CD methods, with STEDSAN having an overall accuracy of 94.93%. The prediction was made using an recurrent neural network (RNN) known as long short term memory network (LSTM) for the year 2025. Experiments were conducted to determine area-wise changes in several LULC classes, such as built-up (BU), crops (kharif crop (KC), rabi crop (RC), zaid crop (ZC), double/triple (D/T C)), current fallow (CF), plantation (PL), forests (evergreen forest (EF), deciduous forest (DF), degraded/scurb forest (D/SF) ), littoral swamp (LS), grassland (GL), wasteland (WL), waterbodies max (Wmx), and waterbodies min (Wmn). As per the analysis, over the period of 13 years, there has been a net increase in the amount of BU (1.25%), RC (1.17%), and D/TC( 2.42%) and a net decrease in DF (3.29%) and WL(1.44%) being the most dominant classes being changed. These findings will offer a thorough description of identifying trends in coastal areas that may incorporate methodological hints for future studies. This study will also promote handling the spatial and temporal complexity of remotely sensed data employed in categorizing the coastal LULC of a heterogeneous landscape.


Assuntos
Conservação dos Recursos Naturais , Aprendizado Profundo , Monitoramento Ambiental , Índia , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura/métodos
11.
Science ; 384(6696): eadm7168, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723062

RESUMO

Despite a half-century of advancements, global magnetic resonance imaging (MRI) accessibility remains limited and uneven, hindering its full potential in health care. Initially, MRI development focused on low fields around 0.05 Tesla, but progress halted after the introduction of the 1.5 Tesla whole-body superconducting scanner in 1983. Using a permanent 0.05 Tesla magnet and deep learning for electromagnetic interference elimination, we developed a whole-body scanner that operates using a standard wall power outlet and without radiofrequency and magnetic shielding. We demonstrated its wide-ranging applicability for imaging various anatomical structures. Furthermore, we developed three-dimensional deep learning reconstruction to boost image quality by harnessing extensive high-field MRI data. These advances pave the way for affordable deep learning-powered ultra-low-field MRI scanners, addressing unmet clinical needs in diverse health care settings worldwide.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Imagem Corporal Total , Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/métodos , Humanos , Imageamento Tridimensional/métodos
12.
Methods Mol Biol ; 2799: 281-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727914

RESUMO

Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood-brain barrier (BBB) permeability prediction, the quantitative structure-activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.


Assuntos
Barreira Hematoencefálica , Aprendizado Profundo , Relação Quantitativa Estrutura-Atividade , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Barreira Hematoencefálica/metabolismo , Desenvolvimento de Medicamentos/métodos
13.
BMC Bioinformatics ; 25(1): 178, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714921

RESUMO

BACKGROUND: In low-middle income countries, healthcare providers primarily use paper health records for capturing data. Paper health records are utilized predominately due to the prohibitive cost of acquisition and maintenance of automated data capture devices and electronic medical records. Data recorded on paper health records is not easily accessible in a digital format to healthcare providers. The lack of real time accessible digital data limits healthcare providers, researchers, and quality improvement champions to leverage data to improve patient outcomes. In this project, we demonstrate the novel use of computer vision software to digitize handwritten intraoperative data elements from smartphone photographs of paper anesthesia charts from the University Teaching Hospital of Kigali. We specifically report our approach to digitize checkbox data, symbol-denoted systolic and diastolic blood pressure, and physiological data. METHODS: We implemented approaches for removing perspective distortions from smartphone photographs, removing shadows, and improving image readability through morphological operations. YOLOv8 models were used to deconstruct the anesthesia paper chart into specific data sections. Handwritten blood pressure symbols and physiological data were identified, and values were assigned using deep neural networks. Our work builds upon the contributions of previous research by improving upon their methods, updating the deep learning models to newer architectures, as well as consolidating them into a single piece of software. RESULTS: The model for extracting the sections of the anesthesia paper chart achieved an average box precision of 0.99, an average box recall of 0.99, and an mAP0.5-95 of 0.97. Our software digitizes checkbox data with greater than 99% accuracy and digitizes blood pressure data with a mean average error of 1.0 and 1.36 mmHg for systolic and diastolic blood pressure respectively. Overall accuracy for physiological data which includes oxygen saturation, inspired oxygen concentration and end tidal carbon dioxide concentration was 85.2%. CONCLUSIONS: We demonstrate that under normal photography conditions we can digitize checkbox, blood pressure and physiological data to within human accuracy when provided legible handwriting. Our contributions provide improved access to digital data to healthcare practitioners in low-middle income countries.


Assuntos
Smartphone , Humanos , Anestesia , Registros Eletrônicos de Saúde , Países em Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
14.
PLoS One ; 19(5): e0301714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713679

RESUMO

The development of intelligent education has led to the emergence of knowledge tracing as a fundamental task in the learning process. Traditionally, the knowledge state of each student has been determined by assessing their performance in previous learning activities. In recent years, Deep Learning approaches have shown promising results in capturing complex representations of human learning activities. However, the interpretability of these models is often compromised due to the end-to-end training strategy they employ. To address this challenge, we draw inspiration from advancements in graph neural networks and propose a novel model called GELT (Graph Embeddings based Lite-Transformer). The purpose of this model is to uncover and understand the relationships between skills and questions. Additionally, we introduce an energy-saving attention mechanism for predicting knowledge states that is both simple and effective. This approach maintains high prediction accuracy while significantly reducing computational costs compared to conventional attention mechanisms. Extensive experimental results demonstrate the superior performance of our proposed model compared to other state-of-the-art baselines on three publicly available real-world datasets for knowledge tracking.


Assuntos
Conhecimento , Redes Neurais de Computação , Humanos , Aprendizado Profundo , Algoritmos
15.
J Transl Med ; 22(1): 438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720336

RESUMO

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Assuntos
Aprendizado Profundo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Estudos Retrospectivos , Curva ROC , Adulto
16.
J Transl Med ; 22(1): 434, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720370

RESUMO

BACKGROUND: Cardiometabolic disorders pose significant health risks globally. Metabolic syndrome, characterized by a cluster of potentially reversible metabolic abnormalities, is a known risk factor for these disorders. Early detection and intervention for individuals with metabolic abnormalities can help mitigate the risk of developing more serious cardiometabolic conditions. This study aimed to develop an image-derived phenotype (IDP) for metabolic abnormality from unenhanced abdominal computed tomography (CT) scans using deep learning. We used this IDP to classify individuals with metabolic syndrome and predict future occurrence of cardiometabolic disorders. METHODS: A multi-stage deep learning approach was used to extract the IDP from the liver region of unenhanced abdominal CT scans. In a cohort of over 2,000 individuals the IDP was used to classify individuals with metabolic syndrome. In a subset of over 1,300 individuals, the IDP was used to predict future occurrence of hypertension, type II diabetes, and fatty liver disease. RESULTS: For metabolic syndrome (MetS) classification, we compared the performance of the proposed IDP to liver attenuation and visceral adipose tissue area (VAT). The proposed IDP showed the strongest performance (AUC 0.82) compared to attenuation (AUC 0.70) and VAT (AUC 0.80). For disease prediction, we compared the performance of the IDP to baseline MetS diagnosis. The models including the IDP outperformed MetS for type II diabetes (AUCs 0.91 and 0.90) and fatty liver disease (AUCs 0.67 and 0.62) prediction and performed comparably for hypertension prediction (AUCs of 0.77). CONCLUSIONS: This study demonstrated the superior performance of a deep learning IDP compared to traditional radiomic features to classify individuals with metabolic syndrome. Additionally, the IDP outperformed the clinical definition of metabolic syndrome in predicting future morbidities. Our findings underscore the utility of data-driven imaging phenotypes as valuable tools in the assessment and management of metabolic syndrome and cardiometabolic disorders.


Assuntos
Aprendizado Profundo , Síndrome Metabólica , Fenótipo , Humanos , Síndrome Metabólica/diagnóstico por imagem , Síndrome Metabólica/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Doenças Cardiovasculares/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos
17.
Cancer Imaging ; 24(1): 60, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720391

RESUMO

BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS: A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS: Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION: We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
18.
Microbiome ; 12(1): 84, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725076

RESUMO

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Assuntos
Bactérias , Redes Neurais de Computação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Aprendizado Profundo
19.
Invest Ophthalmol Vis Sci ; 65(5): 6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696188

RESUMO

Purpose: Thyroid eye disease (TED) is characterized by proliferation of orbital tissues and complicated by compressive optic neuropathy (CON). This study aims to utilize a deep-learning (DL)-based automated segmentation model to segment orbital muscle and fat volumes on computed tomography (CT) images and provide quantitative volumetric data and a machine learning (ML)-based classifier to distinguish between TED and TED with CON. Methods: Subjects with TED who underwent clinical evaluation and orbital CT imaging were included. Patients with clinical features of CON were classified as having severe TED, and those without were classified as having mild TED. Normal subjects were used for controls. A U-Net DL-model was used for automatic segmentation of orbital muscle and fat volumes from orbital CTs, and ensemble of Random Forest Classifiers were used for volumetric analysis of muscle and fat. Results: Two hundred eighty-one subjects were included in this study. Automatic segmentation of orbital tissues was performed. Dice coefficient was recorded to be 0.902 and 0.921 for muscle and fat volumes, respectively. Muscle volumes among normal, mild, and severe TED were found to be statistically different. A classification model utilizing volume data and limited patient data had an accuracy of 0.838 and an area under the curve (AUC) of 0.929 in predicting normal, mild TED, and severe TED. Conclusions: DL-based automated segmentation of orbital images for patients with TED was found to be accurate and efficient. An ML-based classification model using volumetrics and metadata led to high diagnostic accuracy in distinguishing TED and TED with CON. By enabling rapid and precise volumetric assessment, this may be a useful tool in future clinical studies.


Assuntos
Tecido Adiposo , Aprendizado Profundo , Oftalmopatia de Graves , Músculos Oculomotores , Tomografia Computadorizada por Raios X , Humanos , Oftalmopatia de Graves/diagnóstico por imagem , Oftalmopatia de Graves/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Tecido Adiposo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Músculos Oculomotores/diagnóstico por imagem , Adulto , Órbita/diagnóstico por imagem , Idoso , Estudos Retrospectivos , Curva ROC , Tamanho do Órgão
20.
Artigo em Inglês | MEDLINE | ID: mdl-38696294

RESUMO

To evaluate sleep quality, it is necessary to monitor overnight sleep duration. However, sleep monitoring typically requires more than 7 hours, which can be inefficient in termxs of data size and analysis. Therefore, we proposed to develop a deep learning-based model using a 30 sec sleep electroencephalogram (EEG) early in the sleep cycle to predict sleep onset latency (SOL) distribution and explore associations with sleep quality (SQ). We propose a deep learning model composed of a structure that decomposes and restores the signal in epoch units and a structure that predicts the SOL distribution. We used the Sleep Heart Health Study public dataset, which includes a large number of study subjects, to estimate and evaluate the proposed model. The proposed model estimated the SOL distribution and divided it into four clusters. The advantage of the proposed model is that it shows the process of falling asleep for individual participants as a probability graph over time. Furthermore, we compared the baseline of good SQ and SOL and showed that less than 10 minutes SOL correlated better with good SQ. Moreover, it was the most suitable sleep feature that could be predicted using early EEG, compared with the total sleep time, sleep efficiency, and actual sleep time. Our study showed the feasibility of estimating SOL distribution using deep learning with an early EEG and showed that SOL distribution within 10 minutes was associated with good SQ.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Qualidade do Sono , Humanos , Masculino , Feminino , Adulto , Latência do Sono/fisiologia , Pessoa de Meia-Idade , Algoritmos , Idoso , Polissonografia , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA