Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
Curr Microbiol ; 81(10): 322, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179697

RESUMO

The spore-forming, anaerobic bacterium, Clostridium botulinum, can cause intestinal toxemia (colonization) botulism in adults and infants by colonizing the gut and producing botulinum neurotoxin in situ. In 2006, peanut butter was identified as a lab-confirmed source of C. botulinum spores for an adult colonization botulism case in Canada. It is recommended for infants to be exposed to peanut butter at an early age to help prevent the development of a peanut allergy, yet the prevalence of C. botulinum in retail peanut butters is currently unknown. This report details a survey that was conducted in 2007 for the presence of viable C. botulinum spores in 92 peanut butters and 12 other nut butter spreads obtained from retail grocery stores in Ottawa, Canada. Samples were tested for viable C. botulinum spores by detecting botulinum neurotoxin in enrichment cultures by mouse bioassay. Three of the peanut butters from the entire survey of nut butter spreads (3/104, 3%) produced cultures containing botulinum neurotoxin. Whole genome sequencing performed on one isolate from this survey, as well as a clinical isolate and peanut butter isolates associated with the 2006 adult colonization case revealed that all C. botulinum isolates contained a full-length chromosomal bont/A1 gene within an ha-orf + cassette. This study identifies retail peanut butters as a potential source of viable C. botulinum spores at the time of sampling. Whether peanut butter represents a food category that may be contributing to the incidence of infant botulism has yet to be determined.


Assuntos
Arachis , Clostridium botulinum , Clostridium botulinum/genética , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/classificação , Arachis/microbiologia , Canadá , Prevalência , Humanos , Animais , Botulismo/epidemiologia , Botulismo/microbiologia , Camundongos , Esporos Bacterianos , Toxinas Botulínicas/genética , Adulto , Microbiologia de Alimentos
2.
BMC Plant Biol ; 24(1): 760, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118060

RESUMO

BACKGROUND: Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi. AIM AND OBJECTIVES: The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani. Subsequently, maximization of Actino 48 production using different fermentation processes in a stirred tank bioreactor. Finally, preparation of bio-friendly formulations prepared from the culture broth of Actino 48 using talc powder (TP) and bentonite in a natural as well as nano forms as carriers. Meanwhile, investigating their activities in reducing the damping-off and root rot diseases of peanut plants, infected by R. solani under greenhouse conditions. RESULTS: Actino 48 was found to be the most significant antagonistic isolate strain at p ≤ 0.05 and showed the highest inhibition percentage of fungal mycelium growth, which reached 97%. The results of scanning electron microscope (SEM) images analysis showed a large reduction in R. solani mycelia mass. Additionally, many aberrations changes and fungal hypha damages were found. Batch fermentation No. 2, which was performed using agitation speed of 200 rpm, achieved high chitinase activity of 0.1163 U mL- 1 min- 1 with a yield coefficient of 0.004 U mL- 1 min- 1 chitinase activity/g chitin. Nano-talc formulation of Actino 48 had more a significant effect compared to the other formulations in reducing percentages of damping-off and root rot diseases that equal to 19.05% and 4.76% with reduction percentages of 60% and 80%, respectively. The healthy survival percentage of peanut plants recorded 76.19%. Furthermore, the nano-talc formulation of Actino 48 was sufficient in increasing the dry weight of the peanut plants shoot, root systems, and the total number of peanut pods with increasing percentages of 47.62%, 55.62%, and 38.07%, respectively. CONCLUSION: The bio-friendly formulations of actinobacteria resulting from this investigation may play an active role in managing soil-borne diseases.


Assuntos
Arachis , Quitinases , Fermentação , Doenças das Plantas , Rhizoctonia , Streptomyces , Streptomyces/enzimologia , Rhizoctonia/fisiologia , Quitinases/metabolismo , Arachis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia
3.
J Agric Food Chem ; 72(28): 15601-15612, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950526

RESUMO

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.


Assuntos
Arachis , Basidiomycota , Doenças das Plantas , Arachis/microbiologia , Arachis/metabolismo , Arachis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fungicidas Industriais/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
4.
Pestic Biochem Physiol ; 203: 106025, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084764

RESUMO

Peanut web blotch (PWB) caused by Phoma arachidicola, is one of the most serious foliar diseases of peanut. Although prochloraz is an active fungicide with broad anti-fungal spectrum, it has not been registered for the control of PWB in China. The activity of prochloraz against P. arachidicola and the risk of resistance to prochloraz in P. arachidicola are still unclear. In current study, the inhibitory activity of prochloraz against 96 P. arachidicola strains was determined with the average EC50 value of 1.2700 ± 0.7786 µg/mL. Prochloraz exhibited excellent protective and curative effect on detached peanut leaves, and the effect was obviously better than that of carbendazim and difenoconazole at the same concentration. After prochloraz treatment, the mycelium of P. arachidicola contorted, shrunk and ruptured, with shrinking of cell wall and membrane, enhanced cell membrane permeability, and reduced ergosterol content. Totally 80 prochloraz-resistant mutants were obtained by fungicide adaptation with the frequency of 6.7 × 10-3. All the selected 12 prochloraz-resistant mutants lost their resistance to prochloraz after 10 transfers on PDA plates. And these mutants exhibited decreased biological fitness in mycelial growth and pathogenicity. Moreover, there was positive cross-resistance between prochloraz and other demethylation inhibitor (DMI) fungicides, such as tebuconazole, triflumizole and difenoconazole, but no cross-resistance was found between prochloraz and other classes of fungicides, such as carbendazim, pydiflumetofen or fludioxonil. Overexpression of PaCYP51 and PaAtrB genes were detected in the resistant mutants. All the above results demonstrated that prochloraz has a great potential in management of PWB. The risk of P. arachidicola developing resistance to prochloraz is relatively low-to-medium. Overexpressing of PaCYP51 and PaAtrB might be linked to prochloraz resistance in P. arachidicola.


Assuntos
Arachis , Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais , Imidazóis , Doenças das Plantas , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Fungicidas Industriais/farmacologia , Imidazóis/farmacologia , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Arachis/microbiologia , Medição de Risco , Carbamatos/farmacologia , Mutação , Benzimidazóis
5.
Toxins (Basel) ; 16(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39057945

RESUMO

The use of microorganisms to manage aflatoxin contamination is a gentle and effective approach. The aim of this study was to test the removal of AFB1 from AFB1-contaminated peanut meal by a strain of Meyerozyma guilliermondii AF01 screened by the authors and to optimize the conditions of the biocontrol. A regression model with the removal ratio of AFB1 as the response value was established by means of single-factor and response surface experiments. It was determined that the optimal conditions for the removal of AFB1 from peanut meal by AF01 were 75 h at 29 °C under the natural pH, with an inoculum of 5.5%; the removal ratio of AFB1 reached 69.31%. The results of simulating solid-state fermentation in production using shallow pans and fermentation bags showed that the removal ratio of AFB1 was 68.85% and 70.31% in the scaled-up experiments, respectively. This indicated that AF01 had strong adaptability to the environment with facultative anaerobic fermentation detoxification ability. The removal ratio of AFB1 showed a positive correlation with the growth of AF01, and there were no significant changes in the appearance and quality of the peanut meal after fermentation. This indicated that AF01 had the potential to be used in practical production.


Assuntos
Aflatoxina B1 , Arachis , Biodegradação Ambiental , Fermentação , Arachis/microbiologia , Aflatoxina B1/metabolismo , Saccharomycetales/metabolismo , Contaminação de Alimentos/análise
6.
Int J Food Microbiol ; 423: 110831, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083880

RESUMO

In this study, a multi-scale attention transformer (MSAT) was coupled with hyperspectral imaging for classifying peanut kernels contaminated with diverse Aspergillus flavus fungi. The results underscored that the MSAT significantly outperformed classic deep learning models, due to its sophisticated multi-scale attention mechanism which enhanced its classification capabilities. The multi-scale attention mechanism was utilized by employing several multi-head attention layers to focus on both fine-scale and broad-scale features. It also integrated a series of scale processing layers to capture features at different resolutions and incorporated a self-attention mechanism to integrate information across different levels. The MSAT model achieved outstanding performance in different classification tasks, particularly in distinguishing healthy peanut kernels from those contaminated with aflatoxigenic fungi, with test accuracy achieving 98.42±0.22%. However, it faced challenges in differentiating peanut kernels contaminated with aflatoxigenic fungi from those with non-aflatoxigenic contamination. Visualization of attention weights explicitly revealed that the MSAT model's multi-scale attention mechanism progressively refined its focus from broad spatial-spectral features to more specialized signatures. Overall, the MSAT model's advanced processing capabilities marked a notable advancement in the field of food quality safety, offering a robust and reliable tool for the rapid and accurate detection of Aspergillus flavus contaminations in food.


Assuntos
Arachis , Aspergillus flavus , Contaminação de Alimentos , Microbiologia de Alimentos , Aspergillus flavus/isolamento & purificação , Arachis/microbiologia , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Aflatoxinas/análise , Imageamento Hiperespectral/métodos
7.
Food Microbiol ; 123: 104588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038893

RESUMO

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Assuntos
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Espécies Reativas de Oxigênio , Zea mays , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arachis/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo
8.
J Agric Food Chem ; 72(31): 17572-17587, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069673

RESUMO

Contamination of crop seeds and feed with Aspergillus flavus and its associated aflatoxins presents a significant threat to human and animal health due to their hepatotoxic and carcinogenic properties. To address this challenge, researchers have screened for potential biological control agents in peanut soil and pods. This study identified a promising candidate, a strain of the nonpigmented bacterium, Achromobacter xylosoxidans ZJS2-1, isolated from the peanut rhizosphere in Zhejiang Province, China, exhibiting notable antifungal and antiaflatoxin activities. Further investigations demonstrated that ZJS2-1 active substances (ZAS) effectively inhibited growth at a MIC of 60 µL/mL and nearly suppressed AFB1 production by 99%. Metabolomic analysis revealed that ZAS significantly affected metabolites involved in cell wall and membrane biosynthesis, leading to compromised cellular integrity and induced apoptosis in A. flavus through the release of cytochrome c. Notably, ZAS targeted SrbA, a key transcription factor involved in ergosterol biosynthesis and cell membrane integrity, highlighting its crucial role in ZJS2-1's biocontrol mechanism. Moreover, infection of crop seeds and plant wilt caused by A. flavus can be efficiently alleviated by ZAS. Additionally, ZJS2-1 and ZAS demonstrated significant inhibitory effects on various Aspergillus species, with inhibition rates ranging from 80 to 99%. These findings highlight the potential of ZJS2-1 as a biocontrol agent against Aspergillus species, offering a promising solution to enhance food safety and protect human health.


Assuntos
Achromobacter denitrificans , Aflatoxinas , Apoptose , Arachis , Aspergillus flavus , Membrana Celular , Rizosfera , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Arachis/microbiologia , Arachis/química , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Apoptose/efeitos dos fármacos , Achromobacter denitrificans/metabolismo , Sementes/microbiologia , Sementes/química , Sementes/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , China , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo
9.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898415

RESUMO

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Assuntos
Arachis , Microbiologia do Solo , Arachis/microbiologia , Arachis/genética , Micobioma , Fungos/fisiologia , Fungos/genética , Florida , Rizoma/microbiologia , Filogenia
10.
J Hazard Mater ; 475: 134897, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876018

RESUMO

Microplastics (MPs), widely presented in cultivated soil, have caused serious stresses on crop growth. However, the mechanism by which MPs affect legumes and rhizobia symbiosis is still unclear. Here, peanut seedlings were inoculated with Bradyrhizobium zhanjiangense CCBAU 51778 and were grown in vermiculite with 3 %/5 % (w/w) addition of PVC (polyvinyl chloride)-MPs/PBAT (polybutylene adipate)-MPs. PVC-MPs and PBAT-MPs separately decreased nodule number by 33-100 % and 2.62-80.91 %. Transcriptome analysis showed that PVC-MPs affected more DEGs (differentially expressed genes) than PBAT-MPs, indicating PVC-MPs were more devastating for the symbiosis than PBAT-MPs. Functional annotation revealed that PVC-MPs and PBAT-MPs enriched DEGs related to biosynthesis pathways such as flavonoid, isoflavonoid, and phenylpropanoid, in peanut. And when the dose increased from 3 % to 5 %, PVC-MPs mainly enriched the pathways of starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, diterpenoid biosynthesis, etc.; PBAT-MPs enriched cysteine and methionine metabolism, photosynthesis, MAPK signaling, and other pathways. These significantly enriched pathways functioned in reducing nodule number and promoting peanut tolerance to MPs stresses. This study reveals the effect of PVC-MPs and PBAT-MPs on peanut and rhizobium symbiosis, and provides new perspectives for legume production and environmental safety.


Assuntos
Arachis , Microplásticos , Cloreto de Polivinila , Simbiose , Arachis/microbiologia , Arachis/metabolismo , Arachis/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Rhizobium/metabolismo , Rhizobium/efeitos dos fármacos , Poliésteres/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Bradyrhizobium/metabolismo , Bradyrhizobium/efeitos dos fármacos
11.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932147

RESUMO

Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.


Assuntos
Arachis , Micovírus , Filogenia , Doenças das Plantas , Vírus de RNA , Arachis/virologia , Arachis/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Micovírus/classificação , Micovírus/isolamento & purificação , Micovírus/genética , Genoma Viral , Virulência , RNA Viral/genética
12.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844667

RESUMO

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Assuntos
Arachis , Biofilmes , Bradyrhizobium , Fixação de Nitrogênio , Nodulação , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo , Interações Microbianas , Desenvolvimento Vegetal
13.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824228

RESUMO

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Assuntos
Arachis , Resistência à Doença , Doenças das Plantas , Resistência à Doença/genética , Arachis/genética , Arachis/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Marcadores Genéticos , Melhoramento Vegetal/métodos , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Mapeamento Cromossômico/métodos
14.
Food Chem ; 456: 140037, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870801

RESUMO

Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.


Assuntos
Aspergillus flavus , Betaína , Timol , Timol/química , Timol/farmacologia , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/química , Betaína/química , Betaína/farmacologia , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Preparações de Ação Retardada/química , Arachis/química , Arachis/microbiologia , Cristalização , Aflatoxinas/química , Aflatoxina B1/química
15.
Plant Signal Behav ; 19(1): 2365574, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38912872

RESUMO

The potential of rhizobacteria with plant growth promoting (PGP) traits in alleviating abiotic stresses, especially drought, is significant. However, their exploitation in the semi-arid regions of Ethiopian soils remains largely unexplored. This research aimed to isolate and evaluate the PGP potential of bacterial isolates collected from groundnut cultivation areas in Ethiopia. Multiple traits were assessed, including phosphate solubilization, indole-3-acetic acid (IAA) production, ammonia production, salt and heavy metal tolerance, drought tolerance, enzyme activities, hydrogen cyanide production, antibiotic resistance, and antagonistic activity against fungal pathogens. The identification of potent isolates was carried out using MALDI-TOF MS. Out of the 82 isolates, 63 were gram-negative and 19 were gram-positive. Among them, 19 isolates exhibited phosphate solubilization, with AAURB 34 demonstrating the highest efficiency, followed by AURB 12. Fifty-six isolates produce IAA in varying amounts and all isolates produce ammonia with AAURB12, AAURB19, and AAURB34 displaying strong production. Most isolates demonstrated tolerance to temperatures up to 40°C and salt concentrations up to 3%. Notably, AAURB12 and AAURB34 exhibited remarkable drought tolerance at an osmotic potential of -2.70 Mpa. When subjected to levels above 40%, the tested isolates moderately produced lytic enzymes and hydrogen cyanide. The isolates displayed resistance to antibiotics, except gentamicin, and all isolates demonstrated resistance to zinc, with 81-91% showing resistance to other heavy metals. AAURB34 and AAURB12 exhibited suppression against fungal pathogens, with percent inhibition of 38% and 46%, respectively. Using MALDI-TOF MS, the promising PGP isolates were identified as Bacillus megaterium, Bacillus pumilus, and Enterobacter asburiae. This study provides valuable insights into the potential of rhizobacteria as PGP agents for mitigating abiotic stresses and contribute to the understanding of sustainable agricultural practices in Ethiopia and similar regions facing comparable challenges.


Assuntos
Rizosfera , Microbiologia do Solo , Etiópia , Estresse Fisiológico , Ácidos Indolacéticos/metabolismo , Secas , Solo/química , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Bactérias/metabolismo
16.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38794879

RESUMO

AIMS: This study explores the potential of cadmium (Cd)-resistant bacteria, specifically Bacillus megaterium A14, to decrease Cd accumulation in peanuts, a crop susceptible to metal uptake from contaminated soils, by understanding the bacterium's impact on plant Cd absorption mechanisms. METHODS AND RESULTS: Through pot experiments, we observed that A14 inoculation significantly increased peanut biomass under Cd stress conditions, primarily by immobilizing the metal and reducing its bioavailability. The bacterium effectively changed the distribution of Cd, with a notable 46.53% reduction in the exchangeable fraction, which in turn limited the expression of genes related to Cd transport in peanuts. Additionally, A14 enhanced the plant's antioxidant response, improving its tolerance to stress. Microbial analysis through 16S sequencing demonstrated that A14 inoculation altered the peanut rhizosphere, particularly by increasing populations of Firmicutes and Proteobacteria, which play crucial roles in soil remediation from heavy metals. CONCLUSION: The A14 strain effectively counters Cd toxicity in peanuts, promoting growth through soil Cd sequestration, root barrier biofilm formation, antioxidant system enhancement, suppression of Cd transport genes, and facilitation of Cd-remediating microorganisms.


Assuntos
Arachis , Bacillus megaterium , Cádmio , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Solo , Cádmio/metabolismo , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/efeitos dos fármacos , Arachis/microbiologia , Arachis/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
17.
Sci Rep ; 14(1): 10525, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720057

RESUMO

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Assuntos
Arachis , Bactérias , Metagenômica , Microbiota , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Arachis/microbiologia , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Fazendas , Raízes de Plantas/microbiologia , Filogenia , Metagenoma , Biodiversidade
18.
Int J Food Microbiol ; 420: 110767, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38820989

RESUMO

Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.


Assuntos
Arachis , Genoma Bacteriano , Tipagem de Sequências Multilocus , Filogenia , Salmonella enterica , Arachis/microbiologia , Brasil , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Microbiologia de Alimentos , Ilhas Genômicas , Dessecação , Genômica
19.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709040

RESUMO

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Assuntos
Aflatoxinas , Arachis , Fitoalexinas , Sementes , Sesquiterpenos , Estilbenos , Arachis/microbiologia , Arachis/química , Sementes/química , Aflatoxinas/análise , Aflatoxinas/metabolismo , Estilbenos/metabolismo , Estilbenos/análise , Estilbenos/química , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Cromatografia Líquida de Alta Pressão/métodos
20.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...