Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Acta Trop ; 257: 107321, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972559

RESUMO

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.


Assuntos
Arbovírus , Biodiversidade , Culicidae , Mosquitos Vetores , Animais , Arbovírus/isolamento & purificação , Arbovírus/classificação , México/epidemiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/classificação , Culicidae/virologia , Culicidae/classificação , Agricultura , Aedes/virologia , Aedes/classificação , Cidades , Zika virus/isolamento & purificação , Zika virus/genética , Ecossistema
2.
Viruses ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066334

RESUMO

In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.


Assuntos
Aedes , Mosquitos Vetores , Viroma , Animais , Aedes/virologia , Camarões , Viroma/genética , Mosquitos Vetores/virologia , Metagenômica , Filogenia , Genoma Viral , Arbovírus/genética , Arbovírus/classificação , Arbovírus/isolamento & purificação
3.
Acta Trop ; 257: 107322, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004112

RESUMO

Arboviruses have always been a significant public health concern. Metagenomic surveillance has expanded the number of novel, often unclassified arboviruses, especially mosquito-borne and mosquito-specific viruses. This report presents the first description of a novel single-stranded RNA virus, Wanghe virus, identified from mosquitoes that were collected in Shandong Province in 2022. In this study, a total of 4,795 mosquitoes were collected and then divided into 105 pools according to location and species. QRT-PCR and nested PCR were performed to confirm the presence of Wanghe virus, and its genomic features and phylogenetic relationships were further analyzed. Our results revealed that Wanghe virus was detected in 9 out of the 105 mosquito pools, resulting in a minimum infection rate (MIR) of 0.19 % (9/4,795). One complete genome sequence and three viral partial sequences were obtained from the Wanghe virus-positive pools. Pairwise distance analysis indicated that these amplified sequences shared high nucleotide identity. Phylogenetic analysis demonstrated that Wanghe virus is most closely related to Guiyang Solinvi-like virus 3, which belongs to Solinviviridae. Further analyses indicated that Wanghe virus is a new, unclassified member of Solinviviridae.


Assuntos
Culicidae , Genoma Viral , Filogenia , Animais , China , Culicidae/virologia , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Viral/genética , Arbovírus/genética , Arbovírus/isolamento & purificação , Arbovírus/classificação , Mosquitos Vetores/virologia
4.
Viruses ; 16(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38932256

RESUMO

Dugbe virus (DUGV) is a tick-borne arbovirus first isolated in Nigeria in 1964. It has been detected in many African countries using such diverse methods as serological tests, virus isolation, and molecular detection. In Senegal, reports of DUGV isolates mainly occurred in the 1970s and 1980s. Here, we report a contemporary detection of three novel DUGV isolates upon screening of a total of 2877 individual ticks regrouped into 844 pools. The three positive pools were identified as Amblyomma variegatum, the main known vector of DUGV, collected in the southern part of the country (Kolda region). Interestingly, phylogenetic analysis indicates that the newly sequenced isolates are globally related to the previously characterized isolates in West Africa, thus highlighting potentially endemic, unnoticed viral transmission. This study was also an opportunity to develop a rapid and affordable protocol for full-genome sequencing of DUGV using nanopore technology. The results suggest a relatively low mutation rate and relatively conservative evolution of DUGV isolates.


Assuntos
Genoma Viral , Filogenia , Carrapatos , Animais , Senegal , Carrapatos/virologia , Amblyomma/virologia , Arbovírus/genética , Arbovírus/isolamento & purificação , Arbovírus/classificação
5.
Parasit Vectors ; 17(1): 268, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918818

RESUMO

BACKGROUND: Ticks are obligate hematophagous ectoparasites involved in transmitting viruses of public health importance. The objective of this work was to identify the Jingmen tick virus in hard ticks from the Colombian Caribbean, an arbovirus of importance for public health. METHODS: Ticks were collected in rural areas of Córdoba and Cesar, Colombia. Taxonomic identification of ticks was carried out, and pools of 13 individuals were formed. RNA extraction was performed. Library preparation was performed with the MGIEasy kit, and next-generation sequencing (NGS) with MGI equipment. Bioinformatic analyses and taxonomic assignments were performed using the Galaxy platform, and phylogenetic analyses were done using IQ-TREE2. RESULTS: A total of 766 ticks were collected, of which 87.33% (669/766) were Rhipicephalus microplus, 5.4% (42/766) Dermacentor nitens, 4.2% (32/766) Rhipicephalus linnaei, and 3.0% (23/766) Amblyomma dissimile. Complete and partial segments 1, 2, 3, and 4 of Jingmen tick virus (JMTV) were detected in the metatranscriptome of the species R. microplus, D. nitens, and A. dissimile. The JMTVs detected are phylogenetically related to JMTVs detected in Aedes albopictus in France, JMTVs detected in R. microplus in Trinidad and Tobago, JMTVs in R. microplus and A. variegatum in the French Antilles, and JMTVs detected in R. microplus in Colombia. Interestingly, our sequences clustered closely with JMTV detected in humans from Kosovo. CONCLUSIONS: JMTV was detected in R. microplus, D. nitens, and A. dissimile. JMTV could pose a risk to humans. Therefore, it is vital to establish epidemiological surveillance measures to better understand the possible role of JMTV in tropical diseases.


Assuntos
Arbovírus , Ixodidae , Filogenia , Animais , Colômbia/epidemiologia , Ixodidae/virologia , Ixodidae/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Arbovírus/classificação , Região do Caribe , Feminino , Masculino , Saúde Pública , Sequenciamento de Nucleotídeos em Larga Escala , Rhipicephalus/virologia , Rhipicephalus/classificação , Humanos , Amblyomma/virologia , Dermacentor/virologia
6.
Braz J Infect Dis ; 28(3): 103766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802065

RESUMO

BACKGROUND: The last five decades have seen a surge in viral outbreaks, particularly in tropical and subtropical regions like Brazil, where endemic arboviruses such as Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) pose significant threats. However, current diagnostic strategies exhibit limitations, leading to gaps in infection screening, arbovirus differential diagnoses, DENV serotyping, and life-long infection tracking. This deficiency impedes critical information availability regarding an individual's current infection and past infection history, disease risk assessment, vaccination needs, and policy formulation. Additionally, the availability of point-of-care diagnostics and knowledge regarding immune profiles at the time of infection are crucial considerations. OBJECTIVES: This review underscores the urgent need to strengthen diagnostic methods for arboviruses in Brazil and emphasizes the importance of data collection to inform public health policies for improved diagnostics, surveillance, and policy formulation. METHODS: We evaluated the diagnostic landscape for arboviral infections in Brazil, focusing on tailored, validated methods. We assessed diagnostic methods available for sensitivity and specificity metrics in the context of Brazil. RESULTS: Our review identifies high-sensitivity, high-specificity diagnostic methods for arboviruses and co-infections. Grifols transcription-mediated amplification assays are recommended for DENV, CHIKV, and ZIKV screening, while IgG/IgM ELISA assays outperform Rapid Diagnostic Tests (RDTs). The Triplex real-time RT-PCR assay is recommended for molecular screening due to its sensitivity and specificity. CONCLUSION: Enhanced diagnostic methods, on-going screening, and tracking are urgently needed in Brazil to capture the complex landscape of arboviral infections in the country. Recommendations include nationwide arbovirus differential diagnosis for DENV, ZIKV, and CHIKV, along with increased DENV serotyping, and lifelong infection tracking to combat enduring viral threats and reduce severe presentations.


Assuntos
Infecções por Arbovirus , Arbovírus , Humanos , Brasil/epidemiologia , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/epidemiologia , Arbovírus/imunologia , Arbovírus/classificação , Sensibilidade e Especificidade , Saúde Pública , Coleta de Dados , Dengue/diagnóstico , Dengue/epidemiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia
7.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519631

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Assuntos
Culicidae , Mosquitos Vetores , Viroma , Animais , Culicidae/virologia , China , Mosquitos Vetores/virologia , Metagenômica , Arbovírus/genética , Arbovírus/classificação , Filogenia , Biodiversidade
8.
Front Public Health ; 10: 900077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719644

RESUMO

Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/classificação , Vetores Artrópodes/classificação , Aprendizado de Máquina , Doenças Negligenciadas/virologia , Saúde Pública/métodos , Animais , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/transmissão , Arbovírus/patogenicidade , Arbovírus/fisiologia , Vetores Artrópodes/virologia , Humanos , Aprendizado de Máquina/normas , Aprendizado de Máquina/tendências , Modelos Estatísticos , Doenças Negligenciadas/epidemiologia , Saúde Pública/tendências
9.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215862

RESUMO

Alphaviruses (Togaviridae) are arthropod-borne viruses responsible for several emerging diseases, maintained in nature through transmission between hematophagous arthropod vectors and susceptible vertebrate hosts. Although bats harbor many species of viruses, their role as reservoir hosts in emergent zoonoses has been verified only in a few cases. With bats being the second most diverse order of mammals, their implication in arbovirus infections needs to be elucidated. Reports on arbovirus infections in bats are scarce, especially in South American indigenous species. In this work, we report the genomic detection and identification of two different alphaviruses in oral swabs from bats captured in Northern Uruguay. Phylogenetic analysis identified Río Negro virus (RNV) in two different species: Tadarida brasiliensis (n = 6) and Myotis spp. (n = 1) and eastern equine encephalitis virus (EEEV) in Myotis spp. (n = 2). Previous studies of our group identified RNV and EEEV in mosquitoes and horse serology, suggesting that they may be circulating in enzootic cycles in our country. Our findings reveal that bats can be infected by these arboviruses and that chiropterans could participate in the viral natural cycle as virus amplifiers or dead-end hosts. Further studies are warranted to elucidate the role of these mammals in the biological cycle of these alphaviruses in Uruguay.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/isolamento & purificação , Arbovírus/isolamento & purificação , Quirópteros/virologia , Vírus da Encefalite Equina do Leste/isolamento & purificação , Alphavirus/classificação , Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Infecções por Arbovirus/veterinária , Infecções por Arbovirus/virologia , Arbovírus/classificação , Arbovírus/genética , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Filogenia , Uruguai
10.
PLoS Negl Trop Dis ; 16(1): e0010171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35073317

RESUMO

Aedes simpsoni complex has a wide distribution in Africa and comprises at least three described sub-species including the yellow fever virus (YFV) vector Ae. bromeliae. To date, the distribution and relative contributions of the sub-species and/or subpopulations including bionomic characteristics in relation to YF transmission dynamics remain poorly studied. In this study conducted in two areas with divergent ecosystems: peri-urban (coastal Rabai) and rural (Rift Valley Kerio Valley) in Kenya, survival rate was estimated by parity in Ae. simpsoni s.l. mosquitoes sampled using CO2-baited BG Sentinel traps. We then applied PCR targeting the nuclear internal transcribed spacer 2 (ITS2), region followed by sequencing and phylogenetic analytics to identify the sibling species in the Ae. simpsoni complex among parous and blood fed cohorts. Our results show that Ae. bromeliae was the most dominant sub-species in both areas, exhibiting high survival rates, human blood-feeding, and potentially, high vectorial capacity for pathogen transmission. We document for the first time the presence of Ae. lilii in Kenya and potentially yet-to-be described species in the complex displaying human feeding tendencies. We also infer a wide host feeding range on rodents, reptile, and domestic livestock besides humans especially for Ae. bromeliae. This feeding trend could likely expose humans to various zoonotic pathogens. Taken together, we highlight the utility of genotype-based analyses to generate precision surveillance data of vector populations for enhanced disease risk prediction and to guide cost-effective interventions (e.g. YF vaccinations).


Assuntos
Aedes/classificação , Aedes/virologia , Infecções por Arbovirus/transmissão , Arbovírus/isolamento & purificação , Mosquitos Vetores/virologia , Febre Amarela/transmissão , Aedes/fisiologia , África Oriental/epidemiologia , Animais , Infecções por Arbovirus/epidemiologia , Arbovírus/classificação , Ecossistema , Meio Ambiente , Comportamento Alimentar , Feminino , Especificidade de Hospedeiro , Febre Amarela/epidemiologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação
11.
J Virol ; 96(4): e0146421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586860

RESUMO

Bats are reservoirs of important zoonotic viruses like Nipah and SARS viruses. However, whether the blood-sucking arthropods on the body surface of bats also carry these viruses and the relationship between viruses carried by the blood-sucking arthropods and viruses carried by bats have not been reported. This study collected 686 blood-sucking arthropods on the body surface of bats from Yunnan Province, China, between 2012 and 2015, and they included wingless bat flies, bat flies, ticks, mites, and fleas. The viruses carried by these arthropods were analyzed using a meta-transcriptomic approach, and 144 highly diverse positive-sense single-stranded RNA, negative-sense single-stranded RNA, and double-stranded RNA viruses were found, of which 138 were potentially new viruses. These viruses were classified into 14 different virus families or orders, including Bunyavirales, Mononegavirales, Reoviridae, and Picornavirales. Further analyses found that Bunyavirales were the most abundant virus group (84% of total virus RNA) in ticks, whereas narnaviruses were the most abundant (52 to 92%) in the bat flies and wingless bat flies libraries, followed by solemoviruses (1 to 29%) and reoviruses (0 to 43%). These viruses were highly structured based on the arthropod types. It is worth noting that no bat-borne zoonotic viruses were found in the virome of bat-infesting arthropod, seemingly not supporting that bat surface arthropods are vectors of zoonotic viruses carried by bats. IMPORTANCE Bats are reservoirs of many important viral pathogens. To evaluate whether bat-parasitic blood-sucking arthropods participate in the circulation of these important viruses, it is necessary to conduct unbiased virome studies on these arthropods. We evaluated five types of blood-sucking parasitic arthropods on the surface of bats in Yunnan, China, and identified a variety of viruses, some of which had high prevalence and abundance levels, although there is limited overlap in virome between distant arthropods. While most of the virome discovered here is potentially arthropod-specific viruses, we identified three possible arboviruses, including one orthobunyavirus and two vesiculoviruses (family Rhabdoviridae), suggesting bat-parasitic arthropods carry viruses with risk of spillage, which warrants further study.


Assuntos
Artrópodes/virologia , Quirópteros/parasitologia , Reservatórios de Doenças/virologia , Viroma , Animais , Arbovírus/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Artrópodes/classificação , Artrópodes/genética , China , Reservatórios de Doenças/parasitologia , Ectoparasitoses/parasitologia , Ectoparasitoses/veterinária , Ectoparasitoses/virologia , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Viroma/genética
12.
Viruses ; 13(12)2021 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-34960816

RESUMO

Jingmen tick virus (JMTV) and the related jingmenvirus-termed Alongshan virus are recognized as globally emerging human pathogenic tick-borne viruses. These viruses have been detected in various mammals and invertebrates, although their natural transmission cycles remain unknown. JMTV and a novel jingmenvirus, tentatively named Takachi virus (TAKV), have now been identified during a surveillance of tick-borne viruses in Japan. JMTV was shown to be distributed across extensive areas of Japan and has been detected repeatedly at the same collection sites over several years, suggesting viral circulation in natural transmission cycles in these areas. Interestingly, these jingmenviruses may exist in a host tick species-specific manner. Vertical transmission of the virus in host ticks in nature was also indicated by the presence of JMTV in unfed host-questing Amblyomma testudinarium larvae. Further epidemiological surveillance and etiological studies are necessary to assess the status and risk of jingmenvirus infection in Japan.


Assuntos
Arbovírus/isolamento & purificação , Carrapatos/virologia , Animais , Arbovírus/classificação , Arbovírus/genética , Especificidade de Hospedeiro , Transmissão Vertical de Doenças Infecciosas , Larva/virologia , Filogenia
13.
PLoS Negl Trop Dis ; 15(11): e0009905, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788303

RESUMO

Dugbe orthonairovirus (DUGV), a tick-borne zoonotic arbovirus, was first isolated in 1964 in Nigeria. For over four decades, no active surveillance was conducted to monitor the spread and genetic variation of DUGV. This study detected and genetically characterized DUGV circulating in cattle and their infesting ticks (Amblyomma and Rhipicephalus (Boophilus)) in Kwara State, North-Central Nigeria. Blood and or ticks were collected from 1051 cattle at 31 sampling sites (abattoirs and farms) across 10 local government areas of the State. DUGV detection was carried out by RT-qPCR, and positive samples sequenced and phylogenetically analysed. A total of 11824 ticks, mostly A. variegatum (36.0%) and R. (B.) microplus (63.9%), were obtained with mean tick burden of 12 ticks/cattle. Thirty-four (32 A. variegatum and two R. (B.) microplus) of 4644 examined ticks were DUGV-positive, whereas all of the cattle sera tested negative for DUGV genome. Whole genome sequence (S, M and L segments) and phylogenetic analyses indicate that the positive samples shared up to 99.88% nucleotide identity with and clustered around the Nigerian DUGV prototype strain IbAr 1792. Hence, DUGV with high similarity to the previously characterised strain has been detected in Nigeria. To our knowledge, this is the first report of DUGV in North-Central Nigeria and the most recent information after its last surveillance in 1974.


Assuntos
Amblyomma/virologia , Vetores Aracnídeos/virologia , Arbovírus/genética , Doenças dos Bovinos/virologia , Rhipicephalus/virologia , Amblyomma/fisiologia , Animais , Vetores Aracnídeos/fisiologia , Arbovírus/classificação , Arbovírus/isolamento & purificação , Bovinos , Doenças dos Bovinos/transmissão , Feminino , Masculino , Nigéria , Filogenia , Rhipicephalus/fisiologia
14.
Viruses ; 13(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834955

RESUMO

Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.


Assuntos
Culicidae/virologia , Flavivirus/classificação , Flavivirus/isolamento & purificação , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Anopheles/virologia , Arbovírus/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Culex/virologia , Flavivirus/genética , Vírus de Insetos/isolamento & purificação , Filogenia , África do Sul
15.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34609940

RESUMO

Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms 'Arboviruses in Uganda' and 'Mosquitoes and Viruses in Uganda' in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7%) of the viruses were associated with febrile illnesses. Ten (41.7%) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. Next generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.


Assuntos
Infecções por Arbovirus , Arbovírus , Culicidae/virologia , Mosquitos Vetores/virologia , Animais , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/transmissão , Infecções por Arbovirus/veterinária , Infecções por Arbovirus/virologia , Arbovírus/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Arbovírus/fisiologia , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças , Doenças Endêmicas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prevalência , Uganda/epidemiologia
16.
Sci Rep ; 11(1): 21129, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702887

RESUMO

In the Americas, some mosquito-borne viruses such as Zika, chikungunya, and dengue circulate among humans in urban transmission cycles, while others, including yellow fever and Mayaro, circulate among monkeys in sylvatic cycles. The intersection of humans and wildlife at forest edges creates risk for zoonotic virus exchange. We built a scaffold tower at the edge of a treefall gap in rainforest bordering Manaus, Brazil, to identify vectors that may bridge transmission between humans and monkeys. We vertically sampled diurnally active, anthropophilic mosquitoes using handheld nets at 0, 5, and 9 m and container-breeding mosquitoes in ovitraps at 0, 5, 10, and 15 m. Haemagogus janthinomys and Psorophora amazonica were present in high relative abundance in nets at each height sampled, while anthropophilic species were uncommon in ovitraps. Hg. janthinomys was more abundant at elevated heights than at ground level, while Ps. amazonica abundance was not significantly stratified across heights. The presence of each species increased with increasing 7-day rainfall lagged at 1 week, and at 1 and 4 weeks prior to collection, respectively. In addition, Hg. janthinomys was most frequently collected at 29.9 °C, irrespective of height. These data provide insight into the potential role of each species as bridge vectors.


Assuntos
Arbovírus , Culicidae/virologia , Florestas , Microclima , Modelos Biológicos , Mosquitos Vetores/virologia , Animais , Arbovírus/classificação , Arbovírus/isolamento & purificação , Arbovírus/metabolismo , Brasil , Culicidae/fisiologia , Haplorrinos , Mosquitos Vetores/fisiologia
17.
PLoS Negl Trop Dis ; 15(10): e0009790, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648498

RESUMO

Dengue fever and chikungunya are viral diseases that have spread rapidly throughout the world in recent decades. The occurrence of complications is well known, including prerenal acute kidney injury (AKI), which is usually thought to be caused by dehydration and fluid loss. Thrombotic microangiopathy (TMA) is an uncommon aggravation of dengue fever and chikungunya, with only a few cases described in the medical literature. The aim of this study is to present 3 cases of TMA associated with arboviral infection. Three patients with clinical history, laboratory test, and kidney biopsy results compatible with TMA were selected for the study, 2 of whom had a serological diagnosis of dengue fever and 1 of chikungunya. The 3 patients were followed up at the Federal University of Maranhão Hospital's Nephrology Service in 2018. A targeted gene panel sequencing (TGPS) plus multiple to atypical hemolytic uremic syndrome (aHUS) multiplex ligation-dependent probe amplification (MLPA) was performed in 2 of the patients and revealed in the patient 1 a heterozygous pathogenic variant in the gene THBD, as well as heterozygous deletions in CFH, CFHR1, and CFHR3. In the patient 2, there were heterozygous pathogenic variant in the genes CFI and CFB, in addition to heterozygous deletions in the genes CFHR1 and CFHR3. Both received treatment with eculizumab and undergone recovery of renal function. The third patient had TMA not classified as either aHUS or thrombotic thrombocytopenic purpura (TTP); he abandoned the treatment and returned to the service after 2 years for a dialysis emergency. Patients with arboviral infectious disease and changes that suggest TMA should have appropriate support to establish early diagnosis and useful treatment.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/isolamento & purificação , Microangiopatias Trombóticas/virologia , Adolescente , Adulto , Infecções por Arbovirus/genética , Arbovírus/classificação , Arbovírus/genética , Arbovírus/fisiologia , Proteínas Sanguíneas/genética , Proteínas Inativadoras do Complemento C3b/genética , Heterozigoto , Humanos , Masculino , Mutação , Microangiopatias Trombóticas/genética , Adulto Jovem
19.
Parasit Vectors ; 14(1): 403, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391467

RESUMO

BACKGROUND: The emergence and re-emergence of infectious diseases are a cause for worldwide concern. The introduction of Zika and Chikungunya diseases in the Americas has exposed unforeseen medical and logistical challenges for public health systems. Moreover, the lack of preventive measures and vaccination against known and emerging mosquito-transmitted pathogens, and the occurrence of unanticipated clinical complications, has had an enormous social and economic impact on the affected populations. In this study, we aimed to measure the seroprevalence of endemic and emerging viral pathogens in military personnel stationed in Manaus, Amazonas state. METHODS: We measured the seropositivity of antibodies against 19 endemic and emerging viruses in a healthy military personnel group using a hemagglutination inhibition assay (HIA). RESULTS: Overall, DENV positivity was 60.4%, and 30.9% of the individuals reacted against ZIKV. Also, 46.6%, 54.7%, 51.3% and 48.7% individuals reacted against West Nile virus (WNV), Saint Louis encephalitis virus (SLEV), Ilheus virus (ILHV) and Rocio virus (ROCV), respectively. Individuals with high DENV HIA titer reacted more frequently with ZIKV or WNV compared to those with low HIA titers. Observed cross-reactivity between Flaviviruses varied depending on the virus serogroup. Additionally, 0.6% and 0.3% individuals were seropositive for Oropouche virus (OROV) and Catu virus (CATUV) from the family Peribunyaviridae, respectively. All samples were negative for Eastern Equine Encephalitis virus (EEEV), Western Equine Encephalomyelitis virus (WEEV), Mayaro virus (MAYV), Mucambo virus (MUCV) and CHIKV from the family Togaviridae. CONCLUSIONS: A high proportion of individuals in our high-risk population (~ 60%) lacked antibodies against major endemic and emerging viruses, which makes them susceptible for further infections. Military personnel serving in the Amazon region could serve as sentinels to strengthen global infectious disease surveillance, particularly in remote areas.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Arbovirus/imunologia , Arbovírus/imunologia , Adulto , Fatores Etários , Infecções por Arbovirus/epidemiologia , Arbovírus/classificação , Brasil , Vírus da Dengue/imunologia , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Militares/estatística & dados numéricos , Prevalência , Estudos Soroepidemiológicos , Vírus do Nilo Ocidental/imunologia , Adulto Jovem , Zika virus/imunologia , Infecção por Zika virus/sangue , Infecção por Zika virus/imunologia
20.
Viruses ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372505

RESUMO

Despite the health, social and economic impact of arboviruses in French Guiana, very little is known about the extent to which infection burden is shared between individuals. We conducted a large multiplexed serological survey among 2697 individuals from June to October 2017. All serum samples were tested for IgG antibodies against DENV, CHIKV, ZIKV and MAYV using a recombinant antigen-based microsphere immunoassay with a subset further evaluated through anti-ZIKV microneutralization tests. The overall DENV seroprevalence was estimated at 73.1% (70.6-75.4) in the whole territory with estimations by serotype at 68.9% for DENV-1, 38.8% for DENV-2, 42.3% for DENV-3, and 56.1% for DENV-4. The overall seroprevalence of CHIKV, ZIKV and MAYV antibodies was 20.3% (17.7-23.1), 23.3% (20.9-25.9) and 3.3% (2.7-4.1), respectively. We provide a consistent overview of the burden of emerging arboviruses in French Guiana, with useful findings for risk mapping, future prevention and control programs. The majority of the population remains susceptible to CHIKV and ZIKV, which could potentially facilitate the risk of further re-emergences. Our results underscore the need to strengthen MAYV surveillance in order to rapidly detect any substantial changes in MAYV circulation patterns.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/imunologia , Arbovírus/genética , Arbovírus/imunologia , Adolescente , Adulto , Idoso , Infecções por Arbovirus/classificação , Arbovírus/classificação , Arbovírus/patogenicidade , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Estudos Transversais , Demografia , Feminino , Guiana Francesa/epidemiologia , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Soroepidemiológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...