Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
mSystems ; 9(8): e0078424, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38980050

RESUMO

Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE: C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Metabolismo Energético/fisiologia , Arcobacter/metabolismo , Arcobacter/genética , Arcobacter/patogenicidade , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Environ Sci Technol ; 58(29): 13065-13075, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989840

RESUMO

A. butzleri is an underappreciated emerging global pathogen, despite growing evidence that it is a major contributor of diarrheal illness. Few studies have investigated the occurrence and public health risks that this organism possesses from waterborne exposure routes including through stormwater use. In this study, we assessed the prevalence, virulence potential, and primary sources of stormwater-isolated A. butzleri in fecally contaminated urban stormwater systems. Based on qPCR, A. butzleri was the most common enteric bacterial pathogen [25%] found in stormwater among a panel of pathogens surveyed, including Shiga-toxin producing Escherichia coli (STEC) [6%], Campylobacter spp. [4%], and Salmonella spp. [<1%]. Concentrations of the bacteria, based on qPCR amplification of the single copy gene hsp60, were as high as 6.2 log10 copies/100 mL, suggesting significant loading of this pathogen in some stormwater systems. Importantly, out of 73 unique stormwater culture isolates, 90% were positive for the putative virulence genes cadF, ciaB, tlyA, cjl349, pldA, and mviN, while 50-75% of isolates also possessed the virulence genes irgA, hecA, and hecB. Occurrence of A. butzleri was most often associated with the human fecal pollution marker HF183 in stormwater samples. These results suggest that A. butzleri may be an important bacterial pathogen in stormwater, warranting further study on the risks it represents to public health during stormwater use.


Assuntos
Arcobacter , Arcobacter/genética , Arcobacter/patogenicidade , Virulência , Microbiologia da Água , Cidades , Humanos
3.
Microb Pathog ; 193: 106752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880315

RESUMO

Arcobacter butzleri is a foodborne pathogen that mainly causes enteritis in humans, but the number of cases of bacteraemia has increased in recent years. However, there is still limited knowledge on the pathogenic mechanisms of this bacterium. To investigate how A. butzleri causes disease, single knockout mutants were constructed in the cadF, ABU_RS00335, ciaB, and flaAB genes, which might be involved in adhesion and invasion properties. These mutants and the isogenic wild-type (WT) were then tested for their ability to adhere and invade human Caco-2 and HT29-MTX cells. The adhesion and invasion of A. butzleri RM4018 strain was also visualized by a Leica CTR 6500 confocal microscope. The adhesion and invasion abilities of mutants lacking the invasion antigen CiaB or a functional flagellum were lower than those of the WTs. However, the extent of the decrease varied depending on the strain and/or cell line. Mutants lacking the fibronectin (FN)-binding protein CadF consistently exhibited reduced abilities, while the inactivation of the other studied FN-binding protein, ABU_RS00335, led to a reduction in only one of the two strains tested. Therefore, the ciaB and flaAB genes appear to be important for A. butzleri adhesion and invasion properties, while cadF appears to be indispensable.


Assuntos
Adesinas Bacterianas , Arcobacter , Aderência Bacteriana , Flagelos , Aderência Bacteriana/genética , Humanos , Arcobacter/genética , Células CACO-2 , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Flagelos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Células HT29 , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Bacterianos/genética , Células Epiteliais/microbiologia , Virulência/genética
4.
Appl Environ Microbiol ; 90(5): e0029624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647295

RESUMO

The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.


Assuntos
Matadouros , Arcobacter , Galinhas , Arcobacter/isolamento & purificação , Arcobacter/genética , Arcobacter/classificação , Animais , Galinhas/microbiologia , Microbiologia de Alimentos , RNA Ribossômico 16S/genética , Aves Domésticas/microbiologia , Microbiota , Carne/microbiologia , Contaminação de Alimentos/análise
5.
Int Microbiol ; 27(4): 1321-1332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38206523

RESUMO

Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.


Assuntos
Matadouros , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Fatores de Virulência , Animais , Bovinos , Fatores de Virulência/genética , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana , Variação Genética , Arcobacter/genética , Arcobacter/isolamento & purificação , Arcobacter/efeitos dos fármacos , Arcobacter/classificação , Microbiologia de Alimentos , Reação em Cadeia da Polimerase
6.
BMC Microbiol ; 24(1): 17, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191309

RESUMO

BACKGROUND: Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals. Cultures were isolated from surface waters of a mixed-use but predominately agricultural watershed in eastern Ontario, Canada. The detection of antimicrobial resistance (AMR) and virulence-associated genes (VAGs), as well as enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) assays were performed on 913 A. butzleri strains isolated from 11 agricultural sampling sites. RESULTS: All strains were resistant to one or more antimicrobial agents, with a high rate of resistance to clindamycin (99%) and chloramphenicol (77%), followed by azithromycin (48%) and nalidixic acid (49%). However, isolates showed a significantly (p < 0.05) high rate of susceptibility to tetracycline (1%), gentamycin (2%), ciprofloxacin (4%), and erythromycin (5%). Of the eight VAGs tested, ciaB, mviN, tlyA, and pldA were detected at high frequency (> 85%) compared to irgA (25%), hecB (19%), hecA (15%), and cj1349 (12%) genes. Co-occurrence analysis showed A. butzleri strains resistant to clindamycin, chloramphenicol, nalidixic acid, and azithromycin were positive for ciaB, tlyA, mviN and pldA VAGs. ERIC-PCR fingerprint analysis revealed high genetic similarity among strains isolated from three sites, and the genotypes were significantly associated with AMR and VAGs results, which highlight their potential environmental ubiquity and potential as pathogenic. CONCLUSIONS: The study results show that agricultural activities likely contribute to the contamination of A. butzleri in surface water. The findings underscore the importance of farm management practices in controlling the potential spread of A. butzleri and its associated health risks to humans and animals through contaminated water.


Assuntos
Arcobacter , Animais , Humanos , Arcobacter/genética , Canadá , Azitromicina , Clindamicina , Virulência , Ácido Nalidíxico/farmacologia , Cloranfenicol , Enterobacteriaceae
7.
PLoS One ; 18(9): e0291742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768925

RESUMO

Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.


Assuntos
Aeromonas , Arcobacter , Mycobacterium , Purificação da Água , Águas Residuárias , Arcobacter/genética , Klebsiella pneumoniae/genética , Klebsiella/genética , Aeromonas/genética , RNA Ribossômico 16S/genética , Escherichia coli/genética , Mycobacterium/genética
8.
World J Microbiol Biotechnol ; 39(7): 183, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147408

RESUMO

Arcobacter spp. has gained clinical significance as an emerging diarrheagenic pathogen associated with water reservoirs in recent years. The complete clinical significance of Arcobacter remains rather speculative due to the virulence and antibiotic susceptibility of individual strains. This study aimed to assess the prevalence of Arcobacter spp. in fish, water, and shellfish. A total of 150 samples were collected from the Adana, Kayseri and Kahramanmaras provinces in Turkey. Arcobacter spp. was isolated from 32 (21%) of the 150 samples. The most prevalent species was A. cryaerophilus, 17 (56%), A. butzleri 13 (37%) and A. lacus 2 (6%). As a result, the ratios of the mviN, irgA, pldA, tlyA and hecA target genes were found as 17 (51%), 1 (3%), 7 (23%), 7 (23%), 1 (3%), respectively. While bla OXA-61, tetO and tetW were positive in all isolates, were found as mcr1/2/6, mcr3/7, and mcr5, genes %37.5, %25, and %34.3, respectively. Although in A. butzleri was found 10 (58%), 1 (3%), 3 (43%), 2 (28%) (mviN, irgA, pldA, and tlyA, respectively) virulence genes 7 (42%), 4 (57%), 5 (72%), 1 (3%) was found (mviN, irgA, tlyA, and hecA, respectively) virulence genes in A. cryoaerophilus. Moreover, was found for the mcr 1/2/6 7 (58%) genes, for the mcr 3/7 genes 3 (38%) in A. butzleri. In A. cryoaerophilus was found for the mcr 1/2/6 genes 5 (42%), for the mcr 3/7 genes 5 (62%), and for the mcr 5 gene 10 (100%). Thus, the current study indicated that the existence of Arcobacter spp. isolated from fish and mussel samples may pose a potential risk to public health.


Assuntos
Arcobacter , Fatores de Virulência , Animais , Virulência/genética , Fatores de Virulência/genética , Arcobacter/genética , Água , Antibacterianos/farmacologia , Alimentos Marinhos , Resistência Microbiana a Medicamentos
9.
Front Cell Infect Microbiol ; 13: 1094067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761899

RESUMO

In recent years, Arcobacter butzleri has gained clinical significance as an emerging diarrheagenic pathogen associated with poultry and water reservoirs. The full clinical significance of Arcobacter remains rather speculative due to variable virulence and antibiotic susceptibility of individual strains. The aims of the present study were (i) to identify antibiotic resistance genes (ARGs) in the genome sequences of two multidrug-resistant A. butzleri isolates, (ii) to use multilocus-sequence typing (MLST) to generate a guiding phylogeny of A. butzleri isolates collected in Kumasi, Ghana, (iii) to examine the distribution of ARGs in the test cohort, and (iv) to assess the strain's virulence and possible antibiotic treatment options for arcobacteriosis based on the genome sequences and the ARG distribution. A total of 48 A. butzleri isolates obtained from poultry were included in the analysis. These isolates were genotyped by MLST and the antibiotic susceptibilities of isolates to ampicillin, ciprofloxacin, tetracycline, gentamicin, and erythromycin were tested by disk diffusion. Whole genome sequence data of two multidrug-resistant (MDR) A. butzleri isolates were obtained by a combination of single-molecule real-time (SMRT) and Illumina sequencing technology. A total of 14 ARGs were identified in the two generated genome sequences. For all 48 isolates, the frequency of these 14 ARGs was investigated by PCR or amplicon sequencing. With 44 different sequence types found among 48 isolates, strains were phylogenetically heterogeneous. Four of 48 isolates showed an ARG constellation indicating a multidrug-resistant phenotype. The virulence genes in the two A. butzleri genomes showed that the species might be characterized by a somewhat lower virulence as Campylobacter species. The phenotypic susceptibility data combined with the distribution of the particular ARGs especially oxa-464 and the T81I point mutation of the quinolone resistance determining region (QRDR) in a significant percentage of isolates indicated that macrolides and tetracycline can be recommended for calculated antibiotic treatment of arcobacteriosis in Ghana, but not ampicillin and quinolones.


Assuntos
Arcobacter , Infecções por Bactérias Gram-Negativas , Animais , Aves Domésticas , Arcobacter/genética , Tipagem de Sequências Multilocus , Gana , Antibacterianos/farmacologia , Tetraciclina/farmacologia
10.
Microbiol Spectr ; 11(1): e0207122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622176

RESUMO

Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.


Assuntos
Arcobacter , Animais , Humanos , Arcobacter/genética , Células CACO-2 , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Perfilação da Expressão Gênica
11.
Microbiol Spectr ; 10(4): e0100322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862990

RESUMO

Aliarcobacter butzleri is an emerging gastrointestinal pathogen found in many countries worldwide. In France, it has become the third most commonly isolated bacterial species from the stools of patients with intestinal infections. No interpretative criteria for antimicrobial susceptibility testing have been proposed for A. butzleri, and most strains are categorized using the recommendations of the Clinical and Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing for Campylobacter or Enterobacterales. In the present study, the genomes of 30 resistant A. butzleri isolates were analyzed to propose specific epidemiological cut-off values for ampicillin, ciprofloxacin, erythromycin, and tetracycline. The identification of a ß-lactamase and the T85I GyrA mutation associated with ampicillin and ciprofloxacin resistance, respectively, allowed us to adjust the disk diffusion (DD) and MIC cut-off values for these molecules. However, epidemiological cut-off values for erythromycin and tetracycline could not be estimated due to the absence of known resistance mechanisms. The present study paves the way for building a consensus for antimicrobial susceptibility testing for this concerning pathogen. IMPORTANCE Aliarcobacter butzleri is an emerging and concerning intestinal pathogen. Very few studies have focused on this particular species, and antimicrobial susceptibility testing (AST) is based on methods that have been mostly developed for Campylobacter spp. In fact, no disk diffusion and E-tests adapted cut-offs for A. butzleri are available which leads to misinterpretations. We have shown here that NGS approach to identify genes and mutations in close relation to phenotypic resistance levels is a robust way to solve that issue and precisely differentiate WT and NWT A. butzleri isolates for frequently used antimicrobials. MIC and DD cut-off values have been significantly adjusted and answer the need for a global consensus regarding AST for A. butzleri.


Assuntos
Arcobacter , Ampicilina , Antibacterianos/farmacologia , Arcobacter/genética , Ciprofloxacina , Farmacorresistência Bacteriana/genética , Eritromicina , Humanos , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia
13.
World J Microbiol Biotechnol ; 38(8): 132, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689134

RESUMO

This study was aimed at the isolation and identification of Arcobacter spp. and Campylobacter spp. from fresh vegetables sold at district markets in the Kayseri province, and at the determination of the antibacterial susceptibility of the recovered isolates. For this purpose, a total of 175 vegetable samples, including 35 spinach, 35 lettuce, 35 parsley, 35 arugula, and 35 radish samples, were collected. While the pre-enrichment and membrane filtration techniques were used for the isolation of Arcobacter spp., the pre-enrichment and direct inoculation methods were used for the isolation of Campylobacter spp. The isolates were identified by means of phenotypic tests and the polymerase chain reaction (PCR), using genus- and species-specific primers. In addition, the susceptibilities of the isolates to amoxicillin-clavulanic acid, enrofloxacin, erythromycin, gentamicin, neomycin, streptomycin, and tetracycline were determined by the disk diffusion method. Out of the 175 vegetable samples tested, 93 (53.14%) were found to be positive for Arcobacter spp., and 119 Arcobacter spp. isolates were recovered from these 93 positive samples. All of the samples examined were found to be negative for Campylobacter spp. One hundred one (86%) and 14 (10%) of the 119 Arcobacter isolates obtained were identified as A. butzleri and A. cryaerophilus, respectively, but four isolates could not be identified at the species level by mPCR. Mixed contamination with more than one species and/or genotypes of Arcobacter was detected in 24 of the positive samples. While all of the Arcobacter isolates were susceptible to erythromycin, gentamicin, streptomycin, and tetracycline, 2 (1.68%), 2 (1.68%), and 5 (4.20%) isolates were resistant to amoxicillin/clavulanic acid, enrofloxacin, and neomycin, respectively. Consequently, the determination of a high prevalence of arcobacters and mixed contamination with more than one species and/or genotypes of arcobacters in vegetables often consumed raw by humans demonstrated that the consumption of raw vegetables may be a risk to the public health.


Assuntos
Arcobacter , Campylobacter , Antibacterianos/farmacologia , Arcobacter/genética , Campylobacter/genética , Enrofloxacina , Eritromicina/farmacologia , Microbiologia de Alimentos , Gentamicinas , Humanos , Neomicina , Prevalência , Estreptomicina , Tetraciclinas , Verduras
14.
Vet Microbiol ; 270: 109462, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35640411

RESUMO

Campylobacteriosis is a significant public health concern with Campylobacter jejuni and Campylobacter coli as main causative agents. Moreover, there is an increasing recognition of other pathogenic Campylobacter species and Campylobacter-like organisms as Arcobacter. However, current knowledge on presence of Arcobacter species in wild boars (Sus scrofa) is lacking, and knowledge on Campylobacter species is based on methods favoring growth of thermotolerant species. In this study, fecal samples originating from 76 wild boars hunted in Campania region (Italy) were examined for the presence of Campylobacter(-like) organisms by a culture dependent approach. Three isolation protocols were performed in parallel: Arcobacter-selective agar plates, mCCDA plates and isolation by passive filtration onto non-selective blood agar plates were used as quantitative isolation methods. Enrichment broths, i.e. Arcobacter selective enrichment broth, Preston broth and CAT broth were used for qualitative detection of low levels or stressed Campylobacter(-like) organisms. The Arcobacter and Campylobacter isolates were identified at species level using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S ribosomal RNA (rRNA) sequence analysis. Overall, 41 (53.9%) of the animals excreted Arcobacter or Campylobacter while 38 (50.0%) shed Campylobacter and 8 (10.5%) Arcobacter. Campylobacter lanienae predominated and was isolated from 31 (40.8%) animals. No statistical difference between the age groups or gender with regard to the fecal excretion of Campylobacter(-like) organisms was observed. Thirty animals (39.5%) shed Campylobacter spp. exceeding levels of 10 ³ CFU g-1 feces. As samples were obtained from hunted wild boars intended for consumption, a potential contamination of meat with these bacterial pathogens must be considered.


Assuntos
Arcobacter , Infecções por Campylobacter , Campylobacter , Doenças dos Suínos , Ágar , Animais , Arcobacter/genética , Campylobacter/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Sus scrofa , Suínos
15.
Vet Med Sci ; 8(4): 1841-1849, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35426255

RESUMO

BACKGROUND: Arcobacter spp. has been considered an emerging foodborne pathogen and a hazard to human health. The dairy chain has been isolated from different sources; nevertheless, data on Arcobacter occurrence in raw milk and dairy products in Iran are still scant. OBJECTIVE: The present study investigates the prevalence, antimicrobial susceptibility and the presence of virulence genes of Arcobacters species isolated from milk and dairy products. METHODS: Then, a total of 350 raw milk samples and 400 dairy product samples were collected from dairy supply centers in Isfahan, Iran. Presumptive Arcobacter strains were obtained by enriching samples in Oxoid Arcobacter enrichment broth (AEB) followed by the filtration of enrichment product through 0.45-µm pore size membrane filters laid onto non-selective blood at 30°C under microaerophilic conditions. Molecular identification of Arcobacter cryaerophilus and A. butzleri was performed by Polymerase chain reaction (PCR) amplification of the 16S rRNA gene, followed by sequencing. The disc diffusion method was used to determine the antimicrobial susceptibility of isolates. Targeted resistance and virulence genes were detected using multiplex PCR. RESULTS: The results show a low recovery rate of Arcobacter spp. in milk. Arcobacters were found in all types of milk, except raw camel milk, but were absent from all dairy products. Arcobacter butzleri was the predominant species in raw milk. Detection of virulence genes shows that all virulence genes targeted were found among A. butzleri, and six (cadF, cj1349, irgA, mviN, pldA, tlyA) were found among A. cryaerophilus. All A. butzleri strains and some A. cryaerophilus strains isolated from milk were resistant to amoxicillin-clavulanic acid and tetracycline. All A. cryaerophilus isolates from milk were susceptible to gentamycin, streptomycin, erythromycin and ciprofloxacin. The distribution of resistance genes in Arcobacter strains in milk shows that all isolates carried tet(O) and blaOXA-61 genes. CONCLUSIONS: In conclusion, the results indicate a low recovery rate of Arcobacter spp. in milk and milk products. However, a significant number of Arcobacter strains with putative virulence genes may be potential pathogens for humans and an overall increase in Arcobacter resistance to first-line antibiotics. These results highlight the need for regular surveillance of Arcobacter strains in milk and milk products in Iran.


Assuntos
Arcobacter , Animais , Antibacterianos/farmacologia , Arcobacter/genética , Resistência Microbiana a Medicamentos , Genótipo , Humanos , Leite , Reação em Cadeia da Polimerase Multiplex/veterinária , Prevalência , RNA Ribossômico 16S , Fatores de Virulência/genética
16.
Microbiol Spectr ; 9(2): e0095521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34468192

RESUMO

Conspicuous egg-shaped, white, and smooth structures were observed at a hydrothermal vent site in the Guaymas Basin, Gulf of California. The gelatinous structures decomposed within hours after sampling. Scanning electron microscopy (SEM) and light microscopy showed that the structure consisted of filaments of less than 0.1 µm thickness, similar to those observed for "Candidatus Arcobacter sulfidicus." SEM-energy-dispersive X-ray spectroscopy (EDS) showed that the filaments were sulfur rich. According to 16S rRNA gene amplicon and fluorescence in situ hybridization (FISH) analyses, Arcobacter, a sulfide oxidizer that is known to produce filamentous elemental sulfur, was among the dominant species in the structure and was likely responsible for its formation. Arcobacter normally produces woolly snowflake like structures in opposed gradients of sulfide and oxygen. In the laboratory, we observed sulfide consumption in the anoxic zone of the structure, suggesting an anaerobic conversion. The sulfide oxidation and decomposition of the structure in the laboratory may be explained by dissolution of the sulfur filaments by reaction with sulfide under formation of polysulfides. IMPORTANCE At the deep-sea Guaymas Basin hydrothermal vent system, sulfide-rich hydrothermal fluids mix with oxygenated seawater, thereby providing a habitat for microbial sulfur oxidation. Microbial sulfur oxidation in the deep sea involves a variety of organisms and processes and can result in the excretion of elemental sulfur. Here, we report on conspicuous white and smooth gelatinous structures found on hot vents. These strange egg-shaped structures were often observed on previous occasions in the Guaymas Basin, but their composition and formation process were unknown. Our data suggest that the notable and highly ephemeral structure was likely formed by the well-known sulfide-oxidizing Arcobacter. While normally Arcobacter produces loose flocs or woolly layers, here smooth gel-like structures were found.


Assuntos
Arcobacter/classificação , Arcobacter/metabolismo , Fontes Hidrotermais/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Anaerobiose/fisiologia , Arcobacter/genética , Hibridização in Situ Fluorescente , México , Oceanos e Mares , Oxirredução , RNA Ribossômico 16S/genética , Água do Mar/química
17.
J Water Health ; 19(4): 657-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34371501

RESUMO

The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.


Assuntos
Arcobacter , Arcobacter/genética , Escherichia coli/genética , Rios , Especificidade da Espécie , Tailândia
18.
PLoS One ; 16(8): e0256305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411155

RESUMO

Andros Island, The Bahamas, composed of porous carbonate rock, has about 175 inland blue holes and over 50 known submerged ocean caves along its eastern barrier reef. These ocean blue holes can have both vertical and horizontal zones that penetrate under the island. Tidal forces drive water flow in and out of these caves. King Kong Cavern has a vertical collapse zone and a deep penetration under Andros Island that emits sulfidic, anoxic water and masses of thin, mucoid filaments ranging to meters in length and off-white turbid water during ebb flow. Our objective was to determine the microbial composition of this mucoid material and the unconsolidated water column turbidity based on the concept that they represent unique lithoautotrophic microbial material swept from the cave into the surrounding ocean. Bacterial DNA extracted from these filaments and surrounding turbid water was characterized using PCR that targeted a portion of the 16S rRNA gene. The genus Arcobacter dominated both the filaments and the water column above the cave entrance. Arcobacter nitrofigilis and Arcobacter sp. UDC415 in the mucoid filaments accounted for as much as 80% of mapped DNA reads. In the water column Arcobacter comprised from 65% to over 85% of the reads in the depth region from about 18 m to 34 m. Bacterial species diversity was much higher in surface water and in water deeper than 36 m than in the intermediate zone. Community composition indicates that ebb flow from the cavern influences the entire water column at least to within 6 m of the surface and perhaps the near surface as well.


Assuntos
Arcobacter/isolamento & purificação , Microbiota/genética , Filogenia , Água do Mar/microbiologia , Arcobacter/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bahamas , Cavernas/microbiologia , Oceanos e Mares , RNA Ribossômico 16S/genética , Microbiologia da Água
19.
Genomics ; 113(4): 2065-2076, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961980

RESUMO

Aliarcobacter butzleri is an emerging pathogen that may cause enteritis in humans, however, the incidence of disease caused by this member of the Campylobacteriaceae family is still underestimated. Furthermore, little is known about the precise virulence mechanism and behavior during infection. Therefore, in the present study, through complementary use of comparative genomics and physiological tests on human gut models, we sought to elucidate the genetic background of a set of 32 A. butzleri strains of diverse origin and to explore the correlation with the ability to colonize and invade human intestinal cells in vitro. The simulated infection of human intestinal models showed a higher colonization rate in presence of mucus-producing cells. For some strains, human mucus significantly improved the resistance to physical removal from the in vitro mucosa, while short time-frame growth was even observed. Pangenome analysis highlighted a hypervariable accessory genome, not strictly correlated to the isolation source. Likewise, the strain phylogeny was unrelated to their shared origin, despite a certain degree of segregation was observed among strains isolated from different segments of the intestinal tract of pigs. The putative virulence genes detected in all strains were mostly encompassed in the accessory fraction of the pangenome. The LPS biosynthesis and in particular the chain glycosylation of the O-antigen is harbored in a region of high plasticity of the pangenome, which would indicate frequent horizontal gene transfer phenomena, as well as the involvement of this hypervariable structure in the adaptive behavior and sympatric evolution of A. butzleri. Results of the present study deepen the current knowledge on A. butzleri pangenome by extending the pool of genes regarded as virulence markers and provide bases to develop new diagnostic approaches for the detection of those strains with a higher virulence potential.


Assuntos
Arcobacter , Animais , Arcobacter/genética , Genoma Bacteriano , Genômica , Humanos , Muco , Filogenia , Suínos , Virulência/genética , Fatores de Virulência/genética
20.
Front Cell Infect Microbiol ; 11: 532989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816322

RESUMO

Aliarcobacter cibarius and Aliarcobacter thereius are two rarely detected Aliarcobacter species. In the study, we analyzed the antimicrobial susceptibility and provide detailed insights into the genotype and phylogeny of both species using whole-genome sequencing. Thermophilic Campylobacter species are the most common bacterial foodborne pathogens causing gastroenteritis in humans worldwide. The genus Aliarcobacter is part of the Campylobacteraceae family and includes the species Aliarcobacter butzleri, Aliarcobacter cryaerophilus, Aliarcobacter skirrowii, and the rarely described Aliarcobacter cibarius, Aliarcobacter faecis, Aliarcobacter lanthieri, Aliarcobacter thereius, and Acrobarter trophiarum. Aliarcobacter are emergent enteropathogens and potential zoonotic agents. Here, we generated, analyzed, and characterized whole-genome sequences of Aliarcobacter cibarius and Aliarcobacter thereius. They were isolated from water poultry farms in Germany, cultured and identified by MALDI-TOF MS. With PCR the identity was verified. Antibiotic susceptibility testing was carried out with erythromycin, ciprofloxacin, doxycycline, tetracycline, gentamicin, streptomycin, ampicillin, and cefotaxime using the gradient strip method (E-test). Whole-genome sequences were generated including those of reference strains. Complete genomes for six selected strains are reported. These provide detailed insights into the genotype. With these, we predicted in silico known AMR genes, virulence-associated genes, and plasmid replicons. Phenotypic analysis of resistance showed differences between the presence of resistance genes and the prediction of phenotypic resistance profiles. In Aliarcobacter butzleri, the nucleotide sequence of the gyrA gene (DQ464331) can show a signature mutation resulting in an amino acid change T85>I. Acrobarter cibarius and Acrobarter thereius showed the same gene as assessed by similarity annotation of the mutations 254C>G. Most of the isolates were found to be sensitive to ciprofloxacin. The ciprofloxacin-resistant Aliarcobacter thereius isolate was associated with the amino acid change T85>I. But this was not predicted with antibiotic resistance databases, before. Ultimately, a phylogenetic analysis was done to facilitate in future outbreak analysis.


Assuntos
Arcobacter , Antibacterianos/farmacologia , Arcobacter/genética , Farmacorresistência Bacteriana , Genômica , Alemanha , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...