Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.516
Filtrar
1.
Mar Pollut Bull ; 207: 116929, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236489

RESUMO

Coastlines are susceptible to plastic and heavy metal pollution, which can accumulate from both marine and terrestrial sources. Shorebirds, top-level predators in these fragile ecosystems are considered as indicators of environmental health. Here, we tested the occurrence of microplastics and heavy metals in the droppings of ten regular wintering migrant shorebird species in Kadalundi-Vallikkunnu Community Reserve and adjoining sand beaches during November, December and January, each year, between 2019 and 2021. Heavy metals were analysed by Flame Atomic Absorption Spectrophotometer and the microplastic polymer compositions were identified using ATR-FTIR spectroscopy. We detected high concentrations of heavy metals such as Zinc, Copper, Cobalt, Chromium, Lead and Cadmium in droppings. Polyethylene, Polypropylene, Polystyrene, Poly Vinyl Chloride, Nitrile and Polyethylene terephthalate were the polymers identified. Polystyrene (42.6 %) and chromium (ranges between 7.83 and 88.45 mg/kg) were found to be the most abundant contaminants in most of the species.


Assuntos
Monitoramento Ambiental , Metais Pesados , Microplásticos , Poluentes Químicos da Água , Animais , Metais Pesados/análise , Microplásticos/análise , Índia , Poluentes Químicos da Água/análise , Aves , Areia
2.
Mar Pollut Bull ; 207: 116911, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241369

RESUMO

The accumulation of marine litter on beaches has a detrimental impact on the environment, human health, and recreational activities. A total of 116 monitoring surveys were conducted along the shore of the Kaliningrad region between 2019 and 2023. Sampling of anthropogenic and plastic litter (>0.5 cm) was carried out under various meteorological conditions on eight sandy beaches. The greatest abundance and mass of plastic marine litter (mean ± SE: 13.75 ± 8.61 items/m2 and 19.97 ± 5.92 gDW/m2, correspondingly) were observed in the aftermath of storms within beach-cast accumulation stains at the shoreline, where it was intermixed with organic debris. This is two orders of magnitude greater than the plastic litter contamination obtained using the OSPAR methodology at the same beach during fine weather (0.11 ± 0.01 items/m2, 0.33 ± 0.02 gDW/m2). The results suggest that the most effective strategy for beach cleaning is to implement it in the post-storm period.


Assuntos
Praias , Monitoramento Ambiental , Plásticos , Plásticos/análise , Praias/estatística & dados numéricos , Resíduos/análise , Areia
3.
J Contam Hydrol ; 266: 104416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236379

RESUMO

The residual air saturation plays a crucial role in modeling hydrological processes of groundwater and the migration and distribution of contaminants in subsurface environments. However, the influence of factors such as media properties, displacement history, and hydrodynamic conditions on the residual air saturation is not consistent across different displacement scenarios. We conducted consecutive drainage-imbibition cycles in sand-packed columns under hydraulic conditions resembling natural subsurface environments, to investigate the impact of wetting flow rate, initial fluid state, and number of imbibition rounds (NIR) on residual air saturation. The results indicate that residual air saturation changes throughout the imbibition process, with variations separated into three distinct stages, namely, unstable residual air saturation (Sgr-u), momentary residual air saturation (Sgr-m), and stable residual air saturation (Sgr). The results also suggest that the transition from Sgr-u to Sgr is driven by changes in hydraulic pressure and gradient; the calculated values followed the following trend: Sgr > Sgr-u > Sgr-m. An increase in capillary number, which ranged from 1.46 × 10-7 to 3.07 × 10-6, increased Sgr-u and Sgr-m in some columns. The increase in Sgr ranged from 0.034 to 0.117 across all the experimental columns; this consistent increase can be explained by water film expansion at the primary wetting front along with a strengthening of the hydraulic gradient during water injection. Both the pre-covered water film on the sand grain surface and a pore-to-throat aspect ratio of up to 4.42 were identified as important factors for the increased residual air saturation observed during the imbibition process. Initial air saturation (Sai) positively influenced all three types of residual air saturation, while initial capillary pressure (Pci) exhibited a more pronounced inhibitory effect on residual air saturation, as it can partly characterized the initial connectivity of the air phase generated under different drying flow rates. Under identical wetting flow rate conditions, Sgr was higher during the second imbibition than during the first imbibition due to variations in initial fluid state, involving both fluid distribution and the concentration of dissolved air in the pore water. In contrast, NIR did not have an obvious effect on the three types of residual air saturation. This work aims to provide empirical evidences and offer further insights into the capture of non-wetting phases in groundwater environments, as well as to put forward some potential suggestion for future investigations on the retention and migration of contaminants that involves multiphase interface interactions in subsurface environments.


Assuntos
Ar , Água Subterrânea , Água Subterrânea/química , Areia , Hidrodinâmica , Movimentos da Água
4.
PLoS One ; 19(9): e0310111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39255294

RESUMO

The excavation of Earth Pressure Balance (EPB) shield can be divided into two distinct stages, i.e. advancing and lining installation. The frictional force applied on surrounding soils reverses at these two stages, which is harmful to the settlement control. Based on Mindlin's method, a new model of surface settlement is derived to involve the reversed friction. A closed form formula is then obtained for the major type of metro tunnels. Main operational parameters are also used as input of the formula. Numerous operational data and measured settlements are collected from EPB tunnels of Chengdu Metro, Line 7. The proposed formula is validated against these field data in sandy gravels. It is shown that the new formula gives reasonable prediction of surface settlement along the tunnel sections. The accuracy of new formula is significantly higher than that of Peck's formula. This study provides a new vision in settlement control of EPB shield tunneling. The increase of chamber pressure will induce higher negative friction during the lining installation. Therefore, surface settlement of EPB tunneling cannot be controlled by just increasing chamber pressure. A balanced relationship between the chamber pressure and the thrust should be maintained instead.


Assuntos
Fricção , Pressão , Areia , Modelos Teóricos , Propriedades de Superfície , Solo/química
5.
PLoS One ; 19(9): e0309381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39241082

RESUMO

Determination of the cracking behavior during crack propagation helps to better understand damage and fracture processes in brittle rocks. The paper studies the cracking behavior of rocks on three scales: macro-deformation (or macro-cracking), internal micro-fracture, and surface crack coalescence. Under uniaxial compression, the cracking behavior of two types of sandstone specimens having single flaws was experimentally and systematically investigated. Acoustic emission (AE) and three-dimensional digital image correlation (3D-DIC) techniques were utilized to continuously monitor the acoustic shock signals generated by micro-fracture events inside the specimen and the specimen surface cracking process. The experimental results show that at the crack initiation stage, many micro-tensile fractures within the rock are initiated and coalesced, and small strain localized zones (SLZs) appear on the specimen surface. In the crack propagation stage, micro-fractures coalesce into macro-fractures that propagate in tensile mode to form surface cracks, which finally break in tension or slide against each other in shear mode. The formation of SLZs is related to the dip angle of pre-existing flaws, which determines the direction and mode of crack propagation. In conclusion, the strong acoustic-optical evidence accompanying different cracking behaviors is discussed in detail. From both acoustic and optical perspectives, it reveals and explains how flaws and material properties affect the strength and cracking mechanisms of brittle rocks. The study aids comprehension of the potential relation between internal micro-fracture and surface cracking in the process of engineering rock mass failure.


Assuntos
Acústica , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Resistência à Tração , Estresse Mecânico , Areia
6.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1807-1814, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233409

RESUMO

Soil microorganisms play a crucial role as a link between vegetation and soil nutrient cycling. However, it is unclear how vegetation and soil influence microbial community during the ecological restoration process of the Mu Us Desert. Using phospholipid fatty acid (PLFA) markers and integrating shrub, herbaceous plants, and soil factors, we explored the characteristics and regulations of soil microbial community changes. In this study, we used and took the soil after 10, 30, 50, and 70 years of Caragana korshinskii sand-fixing forest restoration, with moving dunes as a control (0 year). The results showed that the ecological restoration effect index increased significantly with the increase of recovery years. The total PLFA contents in 0, 10, 30, 50, and 70 years were 47.75, 55.89, 63.53, 67.23, and 82.29 nmol·g-1, respectively. With the increases of ecological restoration index, the biomass of fungi and bacteria, as well as the ratio of Gram-positive to Gram-negative bacteria, all showed significant increase, while the biomass of Gram-positive and Gram-negative bacterial communities, and the ratio of fungi to bacteria, demonstrated significant decrease. Shrub, herbaceous plants, and soil factors could explain 72.4% of the vari-ation of soil microbial community composition, with higher contribution of soil factors than vegetation factors. The total content of phospholipid fatty acids of soil microbial community in Mu Us Desert increased with the increases of restoration years. Soil water content, pH, total nitrogen, and soil organic carbon were the main driving factors affecting the characteristics of soil microbial community. With the increases of restoration years of C. korshinskii sand-fixation forests in the Mu Us Desert, there were significant changes in the structure of soil microbial communities, which were primarily driven by soil factors.


Assuntos
Caragana , Clima Desértico , Microbiota , Microbiologia do Solo , Caragana/crescimento & desenvolvimento , China , Florestas , Fosfolipídeos/análise , Recuperação e Remediação Ambiental/métodos , Solo/química , Areia , Ácidos Graxos/análise , Conservação dos Recursos Naturais
7.
Environ Sci Pollut Res Int ; 31(40): 52905-52916, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39168933

RESUMO

In this research paper, we introduce a novel and sustainable approach for forecasting the hydraulic conductivity of sand layers subjected to microbial-induced carbonate precipitation (MICP) to mitigate the diffusion of toxic pollutants. The proposed model uniquely integrates the impact of varying CaCO3 contents on the void ratio and estimates the average particle size of CaCO3 crystals through scanning electron microscopy (SEM) analysis. By incorporating these parameters into the K-C equation, a simplified predictive model is formulated for assessing the hydraulic conductivity of MICP-treated sand layers. The model's effectiveness is validated through comparison with experimental data and alternative models. The outcomes demonstrate a substantial reduction in hydraulic conductivity, with a decrease ranging between 93 and 97% in the initial assessment and a decrease between 67 and 92% in the follow-up assessment, both at 10% CaCO3 content. Notably, the hydraulic conductivity shows an initial sharp decrease followed by stabilization. These findings provide valuable insights into improving the prediction of hydraulic conductivity in MICP-treated sand layers, promoting a sustainable method for preventing pollution dispersion.


Assuntos
Areia , Areia/química , Carbonato de Cálcio/química , Modelos Teóricos , Carbonatos/química
8.
Environ Sci Technol ; 58(36): 15971-15983, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190587

RESUMO

Whether maternal exposure to dust-sourced particulate matter (hereafter, dust PM2.5) is associated with stillbirth remains unknown. We adopted a sibling-matched case-control design to analyze 9332 stillbirths and 17,421 live births. We associated the risk of stillbirth simultaneously with dust and nondust components of PM2.5 and developed a nonlinear joint exposure-response function. Next, we estimated the burden of stillbirths attributable to the PM2.5 mixture. The concentration index was used to evaluate whether the burden of PM2.5-related stillbirths was disproportionally distributed among pregnancies exposed to dust-rich particles. Each 10 µg/m3 increase in dust PM2.5 was associated with a 14.5% (95% confidence interval: 5.5, 24.2%) increase in the odds of stillbirth. Based on the risk assessment across 137 countries, sand dust contributed to about 15% of the PM2.5 exposure but to about 45% of the PM2.5-related stillbirths during 2003-2019. In 2015, 30% of the PM2.5-related stillbirths were concentrated within 15% of pregnancies exposed to the dust-richest PM2.5. The index increased in subregions, such as South Asia, suggesting the growth of health inequality due to exposure to dust PM2.5. Based on our findings, land management, such as halting desertification, will help prevent stillbirths and reduce global maternal health inequality.


Assuntos
Poeira , Material Particulado , Natimorto , Natimorto/epidemiologia , Humanos , Feminino , Gravidez , Poluentes Atmosféricos , Areia , Exposição Materna , Poluição do Ar , Países em Desenvolvimento , Estudos de Casos e Controles
9.
PLoS One ; 19(8): e0307370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39172761

RESUMO

Post-contact immobility (PCI) is a final attempt to avoid predation. Here, for the first time, we examine the pattern of movement and immobility when antlion larvae resume activity after PCI. To simulate contact with, and escape from, a predator we dropped the larvae onto three different substrates: Paper, Shallow sand (2.3mm-deep) and Deep sand (4.6mm-deep). The Paper lining a Petri dish represented a hard surface that antlion larvae could not penetrate to hide. The Shallow sand permitted the antlions to dig but not to submerge completely whereas the Deep sand allowed them both to dig and to submerge. We tracked their paths automatically and recorded alternating immobility and movement durations over 90min. On the impenetrable substrate, antlion larvae showed super-diffusive dispersal, their movement durations became longer, their immobility durations became shorter and their instantaneous speeds increased. This is consistent with the antlions needing to leave an area of hard substrate and quickly to find somewhere to hide. On Shallow sand, antlion larvae exhibited a modest increase in movement duration, a modest decrease in immobility duration and a concomitant diffusive dispersal. This is consistent with their use of a spiral search, presumably for a suitable depth of sand, to conceal themselves. On Deep sand, the movement and immobility durations of the antlion larvae did not change and their dispersal was sub-diffusive because they were able to bury themselves. On Paper, the distribution of immobility durations had a long tail, consistent with a log-normal distribution. On Shallow and Deep sand, most of the distribution was fitted better by a power law or a log-normal. Our results suggest that PCI in antlion larvae is a disruptive event and that post-PCI movement and immobility gradually return to the pattern typical of intermittent locomotion, depending on the scope for burying and hiding in the substrate.


Assuntos
Larva , Movimento , Animais , Larva/fisiologia , Movimento/fisiologia , Comportamento Predatório/fisiologia , Areia
10.
Sci Rep ; 14(1): 19753, 2024 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187560

RESUMO

Adding organic soil amendments can improve the physical and hydrological properties of soil, subsequently enhancing fertility for better crop production. In this study, spent Arabica and Columbian coffee wastes and their respective biochars were evaluated as soil amendments to improve the physical and hydrological properties of loamy sand soil and enhance maize (Zea mays L.) crop growth. Spent Arabica coffee (AC) and Columbian coffee (CC) wastes were collected and transformed into biochar through pyrolysis process at 550 °C with a residence time of 3 h and pyrolysis rate of 5 °C per minute. The AC and CC derived biochar were termed as ABC and CBC, respectively. The produced soil amendments were applied to soil at 0% (control), 1%, 3%, and 5% in a column setup. The moisture characteristics, including water infiltration, evaporation, and water retention, were investigated. Thereafter, the prepared amendments were applied to loamy sand soils at 0% (control), 1%, 3%, and 5% (w/w) application rates. Maize growth was then observed for a period of 30 days under greenhouse conditions. Results of the column trials showed that ABC and CBC applied at 5% reduced the cumulative water evaporation by 57%-66% and cumulative infiltration by 124%-181% compared to control. Likewise, 5% application of ABC and CBC resulted in 101 to 130% higher water retention in loamy sand soil. Results of the greenhouse experiment showed that 5% application of ABC and CBC amendments resulted in root biomass of 2.12 and 2.38 g, respectively, as compared to 0.51 g in control treatment. Similar treatments resulted in shoot biomass of 9.70 and 9.93 g respectively, as compared to 7.37 g in control. Likewise, 5% application of CBC and ABC increase plant height from 15.71 to 30.94 cm in ABC and 33.23 cm in CBC. Overall, 5% application of coffee waste-derived biochars significantly reduced water evaporation and infiltration, while increasing soil water retention and maize plant height, root biomass, and shoot biomass. Therefore, spent coffee waste-derived biochar could effectively be employed to improve physical and hydrological properties of loamy sand soils for better crop productivity.


Assuntos
Carvão Vegetal , Solo , Água , Zea mays , Zea mays/crescimento & desenvolvimento , Carvão Vegetal/química , Solo/química , Água/química , Café/crescimento & desenvolvimento , Areia , Coffea/crescimento & desenvolvimento
11.
An Acad Bras Cienc ; 96(4): e20230082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39194028

RESUMO

Amazonian white-sand ecosystems have predominantly sandy soils and a high amount of endemism, and several species found within them are adapted to long periods of drought. However, little is known about the variation in the structure of anuran assemblages in these ecosystems. Considering that most species are not uniformly distributed in heterogeneous landscapes, we tested the hypothesis that anuran assemblage variation in white-sand ecosystems is related to changes in vegetation structure. Specifically, we focused on a heterogeneous patch of white-sand ecosystems of the central Amazon and evaluated whether vegetation structure and soil characteristics, including root depth, influence the richness, abundance, and composition of anuran assemblages. Our results showed that low amounts of clay in the soil play an important role in structuring vegetation in these ecosystems, and these are the main factors that organize anuran assemblages. The Campinaranas close to the water bodies have a high species richness, while Campina landscapes limit the occupation of most of species. Our findings indicate that anurans undergo environmental filtering in white-sand ecosystems and are organized into hierarchical subgroups, in which only species with specialized reproduction can successfully occupy the most water-restricted environments.


Assuntos
Anuros , Biodiversidade , Ecossistema , Animais , Anuros/classificação , Anuros/fisiologia , Brasil , Solo/química , Densidade Demográfica , Areia
12.
Environ Sci Technol ; 58(35): 15827-15835, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39171685

RESUMO

Understanding contaminant transport through unsaturated porous media is a considerable challenge, given the complex interplay of nonlinear physical and biogeochemical processes driven by variations in water saturation. In this study, we tackled this challenge through a series of column experiments involving fine (100-300 µm) and coarse (1.0-1.4 mm) sand particles coated with birnessite (MnO2) under variable saturation degrees. Dynamic flow experiments in sand columns revealed that desaturation altered the ability of MnO2 in removing tetracycline (TTC), a redox-active antibiotic, yet the effect depends on the sand type and then on the saturation degree. Moderate saturation degrees in fine-grained sand columns promoted fractional and preferential water flow which favored a more acidic pH and increased dissolved oxygen levels. These conditions enhanced TTC removal, despite the reduced physical accessibility of reactive phases. In contrast, lower saturation degrees in coarse-grained sand columns induced stronger flow heterogeneity with a very small fraction of the water content participating in flow. The mobility behavior of all the columns was predicted using transport models that consider TTC adsorption and transformation, as well as dual porosity under variable water saturation degrees. This research offers valuable insights into predicting the fate and transport of redox-active contaminants in unsaturated soils and subsurface environments.


Assuntos
Antibacterianos , Porosidade , Antibacterianos/química , Água/química , Compostos de Manganês/química , Areia/química , Adsorção , Poluentes Químicos da Água/química
13.
J Environ Qual ; 53(5): 727-742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39162095

RESUMO

Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.


Assuntos
Microplásticos , Quartzo , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Areia , Água Subterrânea/química , Monitoramento Ambiental , Solo/química , Modelos Químicos
14.
Ecotoxicol Environ Saf ; 282: 116732, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018733

RESUMO

Process affected water and other industrial wastewaters are a major environmental concern. During oil sands mining, large amounts of oil sands process affected water (OSPW) are generated and stored in ponds until reclaimed and ready for surface water discharge. While much research has focused on organics in process waters, trace metals at high concentrations may also pose environmental risks. Phytoremediation is a cost effective and sustainable approach that employs plants to extract and reduce contaminants in water. The research was undertaken in mesocosm scale constructed wetlands with plants exposed to OSPW for 60 days. The objective was to screen seven native emergent wetland species for their ability to tolerate high metal concentrations (arsenic, cadmium, copper, chromium, copper, nickel, selenium, zinc), and then to evaluate the best performing species for OSPW phytoremediation. All native plant species, except Glyceria grandis, tolerated and grew in OSPW. Carex aquatilis (water sedge), Juncus balticus (baltic rush), and Typha latifolia (cattail) had highest survival and growth, and had high metal removal efficiencies for arsenic (81-87 %), chromium (78-86 %), and cadmium (74-84 %), relative to other metals; and greater than 91 % of the dissolved portions were removed. The native plant species were efficient accumulators of all metals, as demonstrated by high root and shoot bioaccumulation factors; root accumulation was greater than shoot accumulation. Translocation factor values were greater than one for Juncus balticus (chromium, zinc) and Carex aquatilis (cadmium, chromium, cobalt, nickel). The results demonstrate the potential suitability of these species for phytoremediation of a number of metals of concern and could provide an effective and environmentally sound remediation approach for wastewaters.


Assuntos
Metais , Óleos , Areia , Áreas Alagadas , Areia/química , Óleos/química , Água/química , Metais/metabolismo , Carex (Planta)/química , Carex (Planta)/metabolismo , Typhaceae/química , Typhaceae/metabolismo , Magnoliopsida/química , Campos de Petróleo e Gás , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
15.
J Contam Hydrol ; 266: 104410, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067353

RESUMO

In this study, we focused on the 3D dispersion of colloids. To our knowledge, we were the first to do so. Thereto, we injected silica encapsulated DNA tagged superparamagnetic particles (SiDNAmag) in a homogeneous coarse grain sand tank. At four downstream locations, SiDNAmag concentrations were determined as a function of time. Longitudinal and transverse dispersivity values and associated uncertainties of SiDNAmag were determined using Monte Carlo modelling approach. The parameter associated uncertainties of hydraulic conductivity as well as of the effective porosity estimated from SiDNAmag breakthrough curves were statistically similar to those estimated from salt tracer breakthrough curves. Further, the SiDNAmag dispersivity uncertainty ranges were then statistically compared with the salt tracer (NaCl, and fluorescein) dispersivities. Our results indicated that time to rise, time of peak concentration and shape of the breakthrough curves of SiDNAmag were similar to those of the salt tracer breakthrough curves. Despite the size difference between the salt tracer molecules and SiDNAmag, size exclusion did not occur, probably due to the large pore throat diameter to SiDNAmag diameter ratio. The median longitudinal dispersivity (αL) of salt tracer and SiDNAmag were 4.9 and 5.8 × 10-4 m, respectively. The median ratio of horizontal and vertical transverse dispersivities to αL, (αTH /αL and αTV /αL, respectively), for salt tracer and SiDNAmag ranged between 0.52 and 0.56. Through the statistical tests, we concluded that the longitudinal and traverse dispersivities of SiDNAmag were not statistically significantly different from salt tracer in 3 dimensions and could be used to characterize the dispersive properties of the medium we used. Our work contributes to a better understanding of 3D dispersion of SiDNAmag in saturated porous media.


Assuntos
DNA , Areia , Dióxido de Silício , Dióxido de Silício/química , DNA/química , Areia/química , Porosidade , Método de Monte Carlo
16.
Phys Ther Sport ; 69: 22-32, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996759

RESUMO

OBJECTIVE: Investigate the effect of surface on frontal plane knee angle, knee moment and muscle activity. DESIGN: Randomised cross over. SETTING: University Laboratory. METHODS: Twenty females performed single-leg hop-landings onto sand, grass and firm surfaces. Kinematic, kinetic and muscle activity data were obtained. Compatibility curves were used to visualise parameter estimates alongside P- values, and S-value transforms. RESULTS: Knee angle for firm-sand (mean difference (d)‾ = -2.2°; 95% compatibility interval (CI): -4.6 to 0.28, p = 0.083, s = 3.6) and firm-grass (d‾ = -1.9; 95% CI: -4.3 to 0.5, p = 0.125, S = 3) yielded <4 bits of reputational information against the null hypothesis (H). 5 bits (p = 0.025) of information against H were observed for knee moment between firm-sand (d‾ = 0.17 N m/kg-1. m-1; 95% CI: 0.02 to 0.31) with similar effects for firm-grass (d‾ = 0.14 N m/kg-1. m-1; 95% CI: -0.02 to 0.29, p = 0.055, S = 4). Muscle activity across surfaces ranged from almost no (S = 1) reputational evidence against H (Quadriceps and Hamstrings) to 10-13 'bits' against H for lateral gastrocnemius (lower on sand). CONCLUSIONS: Our study provides valuable information for practitioners of the observed effect sizes for lower-limb landing mechanics across surfaces in asymptomatic females.


Assuntos
Articulação do Joelho , Músculo Esquelético , Humanos , Feminino , Fenômenos Biomecânicos , Adulto Jovem , Músculo Esquelético/fisiologia , Articulação do Joelho/fisiologia , Estudos Cross-Over , Eletromiografia , Adulto , Areia
17.
Life Sci Space Res (Amst) ; 42: 84-90, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067996

RESUMO

In this study, we conducted polymerase chain reaction (PCR) experiments using Escherichia coli (E. coli) and a Mars sand simulant (Mars Global Simulant MGS-1, Exolith Lab) to detect and analyze potential extraterrestrial life. The targeted DNA sequence is common among the bacterial kingdom on Earth. PCR experiments conducted after alkaline heat extraction, wherein samples with varying amounts of Mars sand simulant were compared, revealed that the simulant interfered with DNA detection. We then conducted PCR experiments following treatment with a sand DNA extraction kit on samples with various E. coli densities. DNA bands for a minimum E. coli density of 900 cells/(g sand) were confirmed, while no DNA bands were visible in the 90 cells/(g sand) sample with and without the Mars sand simulant. The total DNA mass contained in 900 cells was calculated to be 15.3 pg (i.e., 1.53 pg in 0.1 g sand sample we evaluated). We tested and compared the influence of the eluate of Mars sand simulant and DNA adsorption onto Mars sand simulant based on optical absorbance measurements. Our findings suggest that the mechanism by which the Mars sand simulant prevents PCR is through the adsorption of DNA onto the Mars sand simulant.


Assuntos
DNA Bacteriano , Escherichia coli , Exobiologia , Meio Ambiente Extraterreno , Marte , Reação em Cadeia da Polimerase , Areia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Exobiologia/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética
18.
Sci Total Environ ; 947: 174409, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960158

RESUMO

Enzyme-induced carbonate precipitation (EICP) has been studied in remediation of heavy metal contaminated water or soil in recent years. This paper aims to investigate the immobilization mechanism of Zn2+, Ni2+, and Cr(VI) in contaminated sand, as well as strength enhancement of sand specimens by using EICP method with crude sword bean urease extracts. A series of liquid batch tests and artificially contaminated sand remediation experiments were conducted to explore the heavy metal immobilization efficacy and mechanisms. Results showed that the urea hydrolysis completion efficiency decreased as the Ca2+ concentration increased and the heavy metal immobilization percentage increased with the concentration of Ca2+ and treatment cycles in contaminated sand. After four treatment cycles with 0.5 mol/L Ca2+ added, the immobilization percentage of Zn2+, Ni2+, and Cr(VI) were 99.99 %, 86.38 %, and 75.18 %, respectively. The microscale analysis results presented that carbonate precipitates and metallic oxide such as CaCO3, ZnCO3, NiCO3, Zn(OH)2, and CrO(OH) were generated in liquid batch tests and sand remediation experiments. The SEM-EDS and FTIR results also showed that organic molecules and CaCO3 may adsorb or complex heavy metal ions. Thus, the immobilization mechanism of EICP method with crude sword bean urease can be considered as biomineralization, as well as adsorption and complexation by organic matter and calcium carbonate. The unconfined compressive strength of EICP-treated contaminated sand specimens demonstrated a positive correlation with the increased generation of carbonate precipitates, being up to 306 kPa after four treatment cycles with shear failure mode. Crude sword bean urease with 0.5 mol/L Ca2+ added is recommended to immobilize multiple heavy metal ions and enhance soil strength.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Areia , Poluentes do Solo , Urease , Recuperação e Remediação Ambiental/métodos , Carbonatos/química , Força Compressiva , Precipitação Química
19.
J Contam Hydrol ; 265: 104395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018629

RESUMO

Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.


Assuntos
Filtração , Microplásticos , Poliestirenos , Zeolitas , Zeolitas/química , Poliestirenos/química , Microplásticos/química , Quartzo/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química , Purificação da Água/métodos , Propriedades de Superfície
20.
Chemosphere ; 363: 142890, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025311

RESUMO

Soil improvement techniques utilizing the metabolic functions of microorganisms, including microbially induced carbonate precipitation (MICP), have been extensively researched over the past few decades as part of bio-inspired geotechnical engineering research. Given that metabolic reactions in microorganisms produce carbonate minerals, an enhanced understanding of microbial interaction with soils could improve the effectiveness of MICP as a soil improvement technique. Therefore, this study investigated the effects of sands on MICP by denitrification to employ MICP for geotechnical soil improvement. Under the coexistence of natural sand and artificial silica sand, nitrate-reducing bacteria were cultured in a mixed liquid medium with nitrate, acetate, and calcium ions at 37 °C. Nitrate reduction occurred only in the presence of natural sand. However, the lack of chemical weathering of the composed minerals likely prevented the progress of bacterial growth and nitrate reduction in artificial silica sands. For natural sand, artificial chemical weathering by acid wash and ferrihydrite coating of the sand improved bacterial growth and accelerated nitrate reduction. The calcium carbonate formation induced by denitrification was also influenced by the state of the minerals in the soil and the nitrate reduction rate. The observed MICP enhancement is due to the involvement of coexisting secondary minerals like ferrihydrite with large specific surface areas and surface charges, which may improve the reaction efficiency by serving as adsorbents for bacteria and electron donors and acceptors in the solid phases, thereby promoting the precipitation and crystallization of calcium carbonate on the surfaces. This crystal formation in the minerals provides valuable insights for improving sand solidification via MICP. Considering the interactions between the target soil and microorganisms is essential to improving MICP processes for ground improvement.


Assuntos
Carbonatos , Precipitação Química , Desnitrificação , Minerais , Nitratos , Areia , Microbiologia do Solo , Solo , Nitratos/metabolismo , Areia/química , Carbonatos/química , Minerais/química , Solo/química , Dióxido de Silício/química , Carbonato de Cálcio/química , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...