Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
Water Sci Technol ; 90(1): 61-74, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007307

RESUMO

Wastewater reuse is one of the crucial water resources in Egypt due to the ongoing need to increase water resources and close the supply-demand gap. In this study, a new coagulant has been investigated before sand filters as an advanced wastewater treatment method. The sand filter pilot was run at a hydraulic loading rate of 0.75 m/h and two different dosages of three coagulants (Alum, FeCl3, and Ferrate VI) were selected using the jar tests. The sand filter without coagulant removed 12% of BOD5 and 70% of turbidity. Applying in-line coagulation before the sand filter provided effluents with better quality, especially for turbidity, organics, and microorganisms. Ferrate provided the highest removal of turbidity (90%) and BOD5 (93%) at very low dosages and lower costs compared with other coagulants, however, it adversely impacted both conductivity and dissolved solids. A significant effect on reducing bacteria was obtained with 40.0 mg/L of alum. According to the study's findings, the ferrate coagulant enhanced the sand filter's performance producing effluents with high quality, enabling it to meet strict water reuse regulations as well as aquatic environmental and health preservations.


Assuntos
Filtração , Ferro , Águas Residuárias , Purificação da Água , Filtração/métodos , Ferro/química , Águas Residuárias/química , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Areia/química , Dióxido de Silício/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38995165

RESUMO

A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Areia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , DNA Bacteriano/genética , República da Coreia , Areia/microbiologia , Água do Mar/microbiologia , Ubiquinona
3.
Environ Monit Assess ; 196(7): 619, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878080

RESUMO

Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.


Assuntos
Água Potável , Filtração , Helicobacter pylori , Microbiologia da Água , Purificação da Água , Abastecimento de Água , Filtração/métodos , Água Potável/microbiologia , Purificação da Água/métodos , Areia , Colômbia
4.
Rev Bras Parasitol Vet ; 33(2): e002124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896755

RESUMO

Ancylostoma spp. are found worldwide. Infected dog and cat feces can contaminate soil in public places. Despite prophylactic measures being available, studies on direct remediation of Ancylostoma-contaminated soils are scarce. This study aimed to determine the impact of heat treatment and liming on the viability of Ancylostoma spp. eggs in artificially contaminated sandy soil. Sterilized sand samples were contaminated with Ancylostoma spp. eggs extracted from infected dogs' feces. Samples were heated (trial I) to 70 °C or 80 °C, then sieved after 24 hours (212, 90, 38, and 25 µm). Larval cultures were assessed for larval development following heat treatment. Five quicklime concentrations (trial II; 50, 30, 20, 10 and 5%) were used to treat sand. The effect of liming on larval cultures was assessed by measuring embryonic development. Filariform larvae were exposed to 20% quicklime (25 °C and 37 °C, 20 min). Heat treatment destroys Ancylostoma spp. eggs and prevents in vitro larval development. Liming at 50, 30, and 20% concentrations made embryonic development impossible. However, filariform larvae treated with 20% lime solution retained their motility. Heating at 70 °C and liming at 20% were sufficient to make Ancylostoma spp. egg embryogenesis impossible in experimentally contaminated sand samples.


Assuntos
Ancylostoma , Temperatura Alta , Óvulo , Animais , Ancylostoma/isolamento & purificação , Areia/parasitologia , Compostos de Cálcio , Calefação , Óxidos
5.
Environ Sci Pollut Res Int ; 31(27): 39748-39759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833052

RESUMO

The objective of this study is to assess the effectiveness of a novel structure comprising a geocomposite drainage layer and a thin sand layer (GDL + sand) in mitigating the rapid dumping of excavated clay and its associated issues, such as landslides. Two sets of direct shear tests were conducted to investigate the influence of sand layer thickness and compaction degree on the interface shear behavior of the GDL + sand structure. As the sand layer thickness increased, both the interface shear strength and friction angle gradually increased, first more sharply and then at a slower rate toward stability, while the interface cohesion decreased gradually. The optimal sand layer thickness for achieving the most effective reinforcement in stabilizing the clay was identified as 10 mm. A higher sand layer compaction degree was found to result in increased interface shear strength, interface friction angle, and interface cohesion. Building on these findings, the reinforcing efficiency of the GDL + sand structure was investigated through mechanism analysis in comparison to that of a geogrid + sand structure and GDL structure as per the interface friction coefficient. The ranking of interface friction coefficients among the three structures emerged as: geogrid + sand > GDL + sand > GDL. These results suggests that the GDL + sand structure exhibits superior reinforcement efficiency compared to the GDL structure and offers better drainage efficiency than the geogrid + sand structure.


Assuntos
Argila , Areia , Areia/química , Argila/química , Resistência ao Cisalhamento , Silicatos de Alumínio/química , Dióxido de Silício/química
6.
Ying Yong Sheng Tai Xue Bao ; 35(4): 897-908, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884224

RESUMO

Understanding water absorption mechanisms of sand-fixing plants is important for the rational establishment of plant community structures, thereby providing a scientific basis for desertification control and the efficient utilization of water resources in sandy areas. Based on the hydrogen and oxygen isotopic compositions of precipi-tation, soil water, xylem water, and groundwater, coupled with soil water-heat dynamics, annual water consumption characteristics of vegetation, using the multi-source linear mixing model (IsoSource), we analyzed the differences in water sources between Salix psammophila and Artemisia ordosica, during winter and the growing season. We further examined the effects of groundwater depth (2 m and 10 m), soil freezing-thawing, and drought on their water utilization to elucidate water absorption mechanisms of those species. The results showed that: 1) During soil freezing-thawing period (January to March), S. psammophila mainly utilized soil water in 60-120 cm depths below the frozen layer (69.1%). In the green-up season (April and May), soil water from the 0-60 cm layers could satisfy the water demand of S. psammophila (30.9%-87.6%). During the dry period of the growing season (June), it predominantly utilized soil water at the depth of 120-160 cm (27.4%-40.8%). Over the rainy season (July and September), soil water in 0-60 cm depths provided 59.8%-67.9% of the total water required. A. ordosica, with shallow roots, could not utilize soil water after complete freezing of root zone but could overwinter by storing water in rhizomes during autumn. During the growing season, it primarily relied on 0-40 cm soil layer (23.4%-86.8%). During the dry period, it mainly utilized soil water from 40-80 cm and 80-160 cm soil layers, with utilization rates of 14.6%-74.4% and 21.8%-78.2%, respectively. 2) With decreasing groundwater depth, vegetation shifted its water absorption depth upward, with water source of S. psammophila transitioning from 120-160 cm to 60-160 cm layers, while A. ordosica shifted water absorption depth from 80-160 cm to 0-40 cm. S. psammophila's utilization of soil water is influenced by transpiration, adopting an "on-demand" approach to achieve a balance between water supply and energy conservation, whereas A. ordosica tends to utilize shallow soil water, exhibiting a higher depen-dence on water sources from a single soil layer.


Assuntos
Artemisia , Salix , Areia , Solo , Água , Água/análise , Água/metabolismo , Artemisia/crescimento & desenvolvimento , Artemisia/metabolismo , China , Solo/química , Salix/crescimento & desenvolvimento , Salix/metabolismo , Clima Desértico , Água Subterrânea/química , Água Subterrânea/análise , Ecossistema
7.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825655

RESUMO

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Assuntos
Bacillus , Biodegradação Ambiental , Carbonato de Cálcio , RNA Ribossômico 16S , Areia , Microbiologia do Solo , Ureia , Ureia/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Areia/microbiologia , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Temperatura , Filogenia , Precipitação Química
8.
Sci Total Environ ; 940: 173548, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38830418

RESUMO

Coastal dunes result from complex interactions between sand transport, topography and vegetation. However, uncertainty still persists due to limited quantitative analyses, integrating plant distribution and morphologic changes. This study aims to assess the initiation and maintenance of feedback processes by analysing the early development stages of incipient foredunes, combining data on the evolution of the plant cover and communities and dune morphology. Over three years, the monitoring of a newly formed dune (1 ha plot) reveals the progressive plant colonisation and the episodic accumulation of sand around vegetated areas controlled by sediment availability. Distinct colonisation rates were observed, influenced by inherited marine conditions, namely topography and presence of beach wrack. Berm-ridges provided elevations above the critical threshold for plant colonisation and surface roughness, aiding sediment accumulation. Beach wrack above this threshold led to rapid expansion and higher plant concentration. In the initial stages, vegetation cover significantly influenced sediment accumulation patterns, with higher accumulation around areas with high plant cover and low slopes or around areas with sparse vegetation but milder slopes. As the dune system matured and complexity grew, the link between vegetation cover and accumulation became nonlinear. Mid to low coverages (5-30 %) retained most of the observed accumulation, especially when coupled with steep slopes, resulting from positive feedbacks between vegetation, topography and sand transport. As foredune developed, vegetation cover and diversity increased while inherited morphologies grew vertically, explaining the emergence of dune ridge morphological types. Flat surfaces lacking wrack materials experienced a three-year delay in colonisation and sand accumulation, leading to the formation of terrace-type incipient foredunes. These observations underline feedback processes during the early stages of dune formation, with physical feedbacks primarily driving initiation and biophysical feedbacks prevailing in subsequent colonisation stages.


Assuntos
Ecossistema , Plantas , Sedimentos Geológicos , Monitoramento Ambiental , Areia , Desenvolvimento Vegetal
9.
J Sports Sci Med ; 23(2): 465-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841634

RESUMO

This study aimed to identify the optimal surface for sprint interval training to maximize transfer effects on physical performance measures on the grass pitch. Using a randomized controlled trial design, 40 collegiate female soccer players were equally assigned to three experimental groups performing short sprint interval training (SSIT: 4 sets of 10 repetitions with 5 seconds all-out running, with a 50-second recovery period between each effort and a 3-minute rest interval between sets) on SAND, GRASS, LAND, and a control group. Before and after a 7-week training period, participants underwent a series of field-based tests to evaluate countermovement jump (CMJ), 20-m linear sprint, Illinois change of direction (CoD) speed, Yo-Yo IR1, 2.4 km time trial, and maximal kicking distance (MKD) performance. A two-way analysis of variance with repeated measures was conducted on the data, along with Bonferroni post hoc testing. After the intervention, the control group did not show any changes, while the SAND, GRASS and LAND training groups demonstrated improvements (p = 0.001) in their performance as follows: CMJ (effect size [ES] = 1.21, 0.97, 0.64), 20-m linear sprint (ES = -0.81, -0.55, -0.41), Illinois CoD (ES = -0.72, -0.79, -0.41), Yo-Yo IR1 (ES = 1.86, 1.19, 1.12), 2.4 km time trail (ES = -0.82, -0.62, -0.49), and MKD (ES = 0.60, 0.90, 0.72), respectively. Comparative analysis of SAND, GRASS, and LAND revealed that performing SSIT on SAND results in a significantly greater gain in CMJ than LAND (p = 0.041). Analyzing individual responses to training interventions indicated that the training surface had a favorable influence on CMJ (SAND vs. LAND, p = 0.009), but on other variables no statistically significant (p > 0.05) differences were observed. Considering these findings, it is advised that strength and conditioning coaches use the SAND surface as the initial choice for SSIT sessions regarding greater gains (i.e., ES) in performance. This recommendation aims to facilitate more favorable transfer in physical fitness adaptation on a soccer grass pitch. In case of unavailability of SAND surface, GRASS surface would be a suitable alternative to enhance the physical fitness of collegiate female soccer players.


Assuntos
Desempenho Atlético , Aptidão Física , Poaceae , Corrida , Futebol , Humanos , Futebol/fisiologia , Feminino , Desempenho Atlético/fisiologia , Aptidão Física/fisiologia , Adulto Jovem , Corrida/fisiologia , Areia , Treinamento Intervalado de Alta Intensidade/métodos , Teste de Esforço
10.
PLoS One ; 19(6): e0304204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843205

RESUMO

Vegetation construction is a key process for restoring and rehabilitating degraded ecosystems. However, the spatial pattern and process of native plants colonized by different vegetation restoration methods in semi-arid sandy land are poorly understood. In this study, two artificial vegetation restoration patterns (P1: row belt restoration pattern of Salix matsudana with low coverage; P2: a living sand barrier pattern of Caryopteris mongolica with low coverage) were selected to analyze the spatial distribution pattern and interspecific association of the colonizing native shrubs. The effects of the two restoration models on the spatial patterns of the main native semi-shrubs of the colonies (i.e., Artemisia ordosica and Corethrodendron lignosum var. leave) were studied using single variable and bivariate transformation point pattern analysis based on Ripley's L function. Our results showed that two restoration patterns significantly facilitated the establishment of A. ordosica and C. lignosum var. leave, with their coverage reaching 17.04% and 22.62%, respectively. In P1, the spatial distribution pattern of colonial shrubs tended to be a random distribution, and there was no spatial correlation between the species. In P2, the colonial shrub aggregation distribution was more dominant, and with the increase in scale, the aggregation distribution changed to a random distribution, whereas the interspecific association was negatively correlated. The differences in the spatial distribution patterns of colonized native semi-shrubs in these two restoration patterns could be related to the life form of planted plants, configuration methods, biological characteristics of colonized plants, and intra- and interspecific relationships of plants. Our results demonstrated that the nurse effect of artificially planted vegetation in the early stage of sand ecological restoration effectively facilitated the near-natural succession of communities. These findings have important implications for ecological restoration of degraded sandy land in the semi-arid region of northern China.


Assuntos
Ecossistema , China , Conservação dos Recursos Naturais/métodos , Artemisia/crescimento & desenvolvimento , Artemisia/fisiologia , Salix/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Areia
11.
Sci Rep ; 14(1): 14791, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926449

RESUMO

The effects of wind erosion, one of the crucial causes of soil desertification in the world, on the terrestrial ecosystem are well known. However, ecosystem responses regarding soil microbial carbon metabolism to sand deposition caused by wind erosion, a crucial driver of biogeochemical cycles, remain largely unclear. In this study, we collected soil samples from typical aeolian deposition farmland in the Songnen Plain of China to evaluate the effects of sand deposition on soil properties, microbial communities, and carbon metabolism function. We also determined the reads number of carbon metabolism-related genes by high-throughput sequencing technologies and evaluated the association between sand deposition and them. The results showed that long-term sand deposition resulted in soil infertile, roughness, and dryness. The impacts of sand deposition on topsoil were more severe than on deep soil. The diversity of soil microbial communities was significantly reduced due to sand deposition. The relative abundances of Nitrobacteraceae, Burkholderiaceae, and Rhodanobacteraceae belonging to α-Proteobacteria significantly decreased, while the relative abundances of Streptomycetaceae and Geodermatophilaceae belonging to Actinobacteria increased. The results of the metagenomic analysis showed that the gene abundances of carbohydrate metabolism and carbohydrate-activity enzyme (GH and CBM) significantly decreased with the increase of sand deposition amount. The changes in soil microbial community structure and carbon metabolism decreased soil carbon emissions and carbon cycling in aeolian deposition farmland, which may be the essential reasons for land degradation in aeolian deposition farmland.


Assuntos
Carbono , Microbiologia do Solo , Solo , Carbono/metabolismo , Carbono/análise , China , Solo/química , Ecossistema , Fazendas , Microbiota , Areia/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Vento
12.
Radiat Environ Biophys ; 63(2): 195-202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709277

RESUMO

This study investigated natural sand thermoluminescence (TL) response as a possible option for retrospective high-dose gamma dosimetry. The natural sand under investigation was collected from six locations with selection criteria for sampling sites covering the highest probability of exposure to unexpected radiation on the Egyptian coast. Dose-response, glow curve, chemical composition, linearity, and fading rate for different sand samples were studied. Energy Dispersive X-ray Spectroscopy (EDX) analysis revealed differences in chemical composition among the various geological sites, leading to variations in TL glow curve intensity. Sand samples collected from Ras Sedr, Taba, Suez, and Enshas showed similar TL patterns, although with different TL intensities. Beach sands of Matrouh and North Coastal with a high calcite content did not show a clear linear response to the TL technique, in the dose range of 10 Gy up to 30 kGy. The results show that most sand samples are suitable as a radiation dosimeter at accidental levels of exposure. It is proposed here that for high-dose gamma dosimetry with doses ranging from 3 to 10 kGy, a single calibration factor might be enough for TL measurements using sand samples. However, proper calibration might allow dose assessment for doses even up to 30 kGy. Most of the investigated sand samples had nearly stable fading rates after seven days of storage. The Ras Sedr sands sample was the most reliable for retrospective dose reconstruction.


Assuntos
Areia , Dosimetria Termoluminescente , Raios gama , Doses de Radiação , Calibragem
13.
Chemosphere ; 361: 142375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772514

RESUMO

Oil sands process affected water (OSPW) is produced during bitumen extraction and typically contains high concentrations of trace metals. Constructed wetlands have emerged as a cost effective and green technology for the treatment of metals in wastewaters. Whether the addition of amendments to constructed wetlands can improve metal removal efficiency is unknown. We investigated the synergistic effects of carbon based amendments and wetland plant species in removal of arsenic, cadmium, cobalt, chromium, copper, nickel, and selenium from OSPW. Three native wetland species (Carex aquatilis, Juncus balticus, Scirpus validus) and two amendments (canola straw biochar, nano humus) were investigated in constructed wetland mesocosms over 60 days. Amendment effect on metal removal efficiency was not significant, while plant species effect was. Phytoremediation resulted in removal efficiencies of 78.61-96.31 % for arsenic, cadmium, and cobalt. Carex aquatilis had the highest removal efficiencies for all metals. Amendments alone performed well in removing some metals and were comparable to phytoremediation for cadmium, cobalt, copper, and nickel. Metals were primarily distributed in roots with negligible translocation to shoots. Our work provides insights into the role of plants and amendments during metal remediation and their complex interactions in constructed treatment wetlands.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Substâncias Húmicas , Poluentes Químicos da Água , Áreas Alagadas , Carvão Vegetal/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Metais Pesados/metabolismo , Metais Pesados/análise , Areia , Águas Residuárias/química , Metais/metabolismo , Arsênio/metabolismo , Arsênio/análise , Hidrocarbonetos/metabolismo
14.
J Contam Hydrol ; 264: 104363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805790

RESUMO

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Assuntos
Silicatos de Alumínio , Cátions , Argila , Água Subterrânea , Mineração , Areia , Argila/química , Concentração de Íons de Hidrogênio , Cátions/química , Água Subterrânea/química , Silicatos de Alumínio/química , Areia/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
15.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690765

RESUMO

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Assuntos
Coloides , Recuperação e Remediação Ambiental , Água Subterrânea , Água Subterrânea/química , Coloides/química , Recuperação e Remediação Ambiental/métodos , Polímeros/química , Carvão Vegetal/química , Areia/química , Poluentes Químicos da Água/química , Carbono/química
16.
Sci Total Environ ; 938: 173354, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38796007

RESUMO

Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.


Assuntos
Bactérias , Mineração , Microbiologia do Solo , Solo , Solo/química , Areia , Nitrogênio , Carbono
17.
Sci Rep ; 14(1): 12412, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816387

RESUMO

This study introduces microbiologically induced calcium phosphate precipitation (MICPP) as a novel and environmentally sustainable method of soil stabilization. Using Limosilactobacillus sp., especially NBRC 14511 and fish bone solution (FBS) extracted from Tuna fish bones, the study was aimed at testing the feasibility of calcium phosphate compounds (CPCs) deposition and sand stabilization. Dynamic changes in pH and calcium ion (Ca2+) concentration during the precipitation experiments affected the precipitation and sequential conversion of dicalcium phosphate dihydrate (DCPD) to hydroxyapatite (HAp), which was confirmed by XRD and SEM analysis. Sand solidification experiments demonstrated improvements in unconfined compressive strength (UCS), especially at higher Urea/Ca2+ ratios. The UCS values obtained were 10.35 MPa at a ratio of 2.0, 3.34 MPa at a ratio of 1.0, and 0.43 MPa at a ratio of 0.5, highlighting the advantages of MICPP over traditional methods. Microstructural analysis further clarified the mineral composition, demonstrating the potential of MICPP in environmentally friendly soil engineering. The study highlights the promise of MICPP for sustainable soil stabilization, offering improved mechanical properties and reducing environmental impact, paving the way for novel geotechnical practices.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Areia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Areia/química , Animais , Concentração de Íons de Hidrogênio , Durapatita/química , Solo/química , Força Compressiva , Difração de Raios X
18.
PLoS One ; 19(5): e0304061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787843

RESUMO

Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.


Assuntos
Praias , Escherichia coli , Escherichia coli/isolamento & purificação , Microbiologia da Água , Areia/microbiologia , Sedimentos Geológicos/microbiologia , South Carolina , Água do Mar/microbiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-38787370

RESUMO

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Deinococcus , Ácidos Graxos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Regiões Antárticas , RNA Ribossômico 16S/genética , Deinococcus/genética , Deinococcus/classificação , Deinococcus/isolamento & purificação , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Fosfolipídeos/análise , Fosfolipídeos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Vitamina K 2/química , Areia/microbiologia
20.
J Environ Manage ; 359: 121048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723498

RESUMO

The microbially induced calcium carbonate precipitation (MICP) technology is an emerging novel and sustainable technique for soil stabilization and remediation. MICP, a microorganism-mediated biomineralization process, has attracted interest for its potential to enhance soil characteristics. The inclusion of biochar, a carbon-rich substance formed by biomass pyrolysis, adds another degree of intricacy to this process. The study highlights the impact of the combination of biochar and MICP together, using a bacterium, Sporosarcina ureae, on soil improvement. This blend of MICP and biochar improved the soil in terms of its geotechnical properties and also enabled the sequestering of carbon safely. It was observed that addition of 4% biochar significantly increased the soil's shear strength parameters (c and φ) as well as its stiffness after 21 treatment cycles. This improvement was because the calcium carbonate precipitate, which acts as a crucial binding agent, increased significantly due to microbial action in the soil-biochar mixture compared to the pure soil sample. The excess carbonate precipitation on account of biochar addition was verified through SEM-EDAX analysis where the images showed noteworthy carbonate precipitation on the surface of particles and increment in the calcium mass at the same treatment cycles when compared with untreated sand. The collaboration between MICP and biochar effectively increased the carbon sequestration within the sand sample. It was observed that at 21 cycles of treatment, the carbon storage within the sand sample increased by almost 3 times at 4% biochar compared to sand without any biochar. The statistical analysis further affirmed that strength depends on both biochar and the number of treatment cycles, whereas carbon sequestration potential is primarily influenced by the biochar content alone. This strategy, as a sustainable and environmentally friendly approach, has the potential to reform soil improvement practices and contribute to both soil strength enhancement and climate change mitigation, supporting the maintenance of ecological balance.


Assuntos
Carbonato de Cálcio , Carvão Vegetal , Solo , Sporosarcina , Carbonato de Cálcio/química , Carvão Vegetal/química , Solo/química , Areia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...