Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Immun Inflamm Dis ; 12(8): e1343, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092750

RESUMO

The involvement of neutrophils in the lungs during the recovery phase of coronavirus disease 2019 (COVID-19) is not well defined mainly due to the limited accessibility of lung tissues from COVID-19 survivors. The lack of an appropriate small animal model has affected the development of effective therapeutic strategies. We here developed a long COVID mouse model to study changes in neutrophil phenotype and association with lung injury. Our data shows persistent neutrophil recruitment and neutrophil extracellular trap formation in the lungs for up to 30 days post-infection which correlates with lung fibrosis and inflammation.


Assuntos
COVID-19 , Modelos Animais de Doenças , Armadilhas Extracelulares , Pulmão , Neutrófilos , SARS-CoV-2 , Animais , Armadilhas Extracelulares/imunologia , COVID-19/imunologia , COVID-19/complicações , Camundongos , Neutrófilos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/virologia , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Infiltração de Neutrófilos/imunologia , Humanos , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/etiologia
2.
Front Immunol ; 15: 1416275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139560

RESUMO

The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils are not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.


Assuntos
Mitocôndrias , Neutrófilos , Espécies Reativas de Oxigênio , Vimentina , Espécies Reativas de Oxigênio/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Vimentina/metabolismo , Mitocôndrias/metabolismo , Animais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fagocitose , Inflamassomos/metabolismo , Inflamassomos/imunologia , Citocinas/metabolismo , Humanos , Rotenona/farmacologia
3.
Clin Immunol ; 266: 110334, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098706

RESUMO

Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.


Assuntos
Doenças Autoimunes , Neutrófilos , Humanos , Neutrófilos/imunologia , Doenças Autoimunes/imunologia , Animais , Armadilhas Extracelulares/imunologia
4.
Front Immunol ; 15: 1374934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148738

RESUMO

NETosis, a regulated form of neutrophil death, is crucial for host defense against pathogens. However, the release of neutrophil extracellular traps (NETs) during NETosis can have detrimental effects on surrounding tissues and contribute to the pro-inflammatory response, in addition to their role in controlling microbes. Although it is well-established that the IL-23-Th17 axis plays a key role in the pathogenesis of psoriasis, emerging evidence suggests that psoriasis, as an autoinflammatory disease, is also associated with NETosis. The purpose of this review is to provide a comprehensive understanding of the mechanisms underlying NETosis in psoriasis. It will cover topics such as the formation of NETs, immune cells involved in NETosis, and potential biomarkers as prognostic/predicting factors in psoriasis. By analyzing the intricate relationship between NETosis and psoriasis, this review also aims to identify novel possibilities targeting NETosis for the treatment of psoriasis.


Assuntos
Armadilhas Extracelulares , Inflamação , Neutrófilos , Psoríase , Psoríase/imunologia , Humanos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Inflamação/imunologia , Biomarcadores
5.
Nat Commun ; 15(1): 6519, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174512

RESUMO

Cathepsin C (CatC) is an enzyme which regulates the maturation of neutrophil serine proteases (NSPs) essential for neutrophil activation. Activated neutrophils are key players in the innate immune system, and are also implicated in the etiology of various inflammatory diseases. This study aims to demonstrate a therapeutic potential for CatC inhibitors against disorders in which activated neutrophil-derived neutrophil extracellular traps (NETs) play a significant role. We demonstrate that a CatC inhibitor, MOD06051, dose-dependently suppresses the cellular activity of NSPs, including neutrophil elastase (NE), in vitro. Neutrophils derived from MOD06051-administered rats exhibit significantly lower NE activity and NET-forming ability than controls. Furthermore, MOD06051 dose-dependently ameliorates vasculitis and significantly decreases NETs when administered to a rat model of myeloperoxidase (MPO)-antineutrophil cytoplasmic antibody-associated vasculitis (AAV). These findings suggest that CatC inhibition is a promising strategy to reduce neutrophil activation and improve activated neutrophil-mediated diseases such as MPO-AAV.


Assuntos
Catepsina C , Armadilhas Extracelulares , Elastase de Leucócito , Ativação de Neutrófilo , Neutrófilos , Peroxidase , Catepsina C/metabolismo , Catepsina C/antagonistas & inibidores , Animais , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Humanos , Ratos , Elastase de Leucócito/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Masculino , Peroxidase/metabolismo , Peroxidase/antagonistas & inibidores , Serina Proteases/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia
6.
Front Immunol ; 15: 1425251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170617

RESUMO

Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.


Assuntos
Colite Ulcerativa , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colite Ulcerativa/terapia , Animais , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
7.
Front Immunol ; 15: 1436193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185410

RESUMO

Objective: Neutrophil extracellular traps (NETs) are important factors in initiating and perpetuating inflammation. However, the role of NETs in different subtypes of juvenile idiopathic arthritis (JIA) has been rarely studied. Therefore, we aimed to explore the ability of JIA-derived neutrophils to release NETs and the effect of TNF-α (tumor necrosis factor-alpha) inhibitors on NET formation both in vitro and in vivo, and evaluate the associations of NET-derived products with clinical and immune-related parameters. Methods: The ability of neutrophils to release NETs and the effect of adalimumab on NET formation was assessed via in vitro stimulation and inhibition studies. Plasma NET-derived products were detected to assess the incidence of NET formation in vivo. Furthermore, flow cytometry and western blotting were used to detect NET-associated signaling components in neutrophils. Results: Compared to those derived from HCs, neutrophils derived from patients with oligoarticular-JIA, polyarticular-JIA and enthesitis-related arthritis were more prone to generate NETs spontaneously and in response to TNF-α or PMA in vitro. Excessive NET formation existed in peripheral circulation of JIA patients, and elevated plasma levels of NET-derived products (cell-free DNA and MPO-DNA complexes) could accurately distinguish JIA patients from HCs and were positively correlated with disease activity. Multiple linear regression analysis showed that erythrocyte sedimentation rate and TNF-α levels were independent variables and were positively correlated with cell-free DNA concentration. Notably, TNF-α inhibitors could effectively prevent NET formation both in vitro and in vivo. Moreover, the phosphorylation levels of NET-associated kinases in JIA-derived neutrophils were markedly increased. Conclusion: Our data suggest that NETs might play pathogenic roles and may be involved in TNF-α-mediated inflammation in JIA. Circulating NET-derived products possess potential diagnostic and disease monitoring value. Furthermore, the preliminary results related to the molecular mechanisms of NET formation in JIA patients provide a theoretical basis for NET-targeted therapy.


Assuntos
Artrite Juvenil , Biomarcadores , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Artrite Juvenil/diagnóstico , Artrite Juvenil/sangue , Humanos , Biomarcadores/sangue , Masculino , Feminino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Criança , Adolescente , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/farmacologia , Adalimumab/uso terapêutico , Pré-Escolar , Ácidos Nucleicos Livres/sangue
8.
Medicine (Baltimore) ; 103(34): e39342, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39183388

RESUMO

Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.


Assuntos
Asma , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/imunologia , Humanos , Asma/imunologia , Neutrófilos/imunologia
10.
Nat Cardiovasc Res ; 3(5): 525-540, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39195931

RESUMO

Post-injury dysfunction of humoral immunity accounts for infections and poor outcomes in cardiovascular diseases. Among immunoglobulins (Ig), IgA, the most abundant mucosal antibody, is produced by plasma B cells in intestinal Peyer's patches (PP) and lamina propria. Here we show that patients with stroke and myocardial ischemia (MI) had strongly reduced IgA blood levels. This was phenocopied in experimental mouse models where decreased plasma and fecal IgA were accompanied by rapid loss of IgA-producing plasma cells in PP and lamina propria. Reduced plasma IgG was detectable in patients and experimental mice 3-10 d after injury. Stroke/MI triggered the release of neutrophil extracellular traps (NETs). Depletion of neutrophils, NET degradation or blockade of NET release inhibited the loss of IgA+ cells and circulating IgA in experimental stroke and MI and in patients with stroke. Our results unveil how tissue-injury-triggered systemic NET release disrupts physiological Ig secretion and how this can be inhibited in patients.


Assuntos
Armadilhas Extracelulares , Infarto do Miocárdio , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Animais , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Nódulos Linfáticos Agregados/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Idoso , Pessoa de Meia-Idade , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunidade Humoral , Estudos de Casos e Controles , Camundongos , Plasmócitos/imunologia , Plasmócitos/metabolismo
11.
J Med Virol ; 96(8): e29887, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189651

RESUMO

Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.


Assuntos
Autoimunidade , COVID-19 , Armadilhas Extracelulares , Inflamação , Neutrófilos , SARS-CoV-2 , Humanos , Neutrófilos/imunologia , Armadilhas Extracelulares/imunologia , COVID-19/imunologia , Inflamação/imunologia , Autoimunidade/imunologia , SARS-CoV-2/imunologia , Síndrome de COVID-19 Pós-Aguda , Autoanticorpos/imunologia , Trombose/imunologia , Trombose/virologia , Retroalimentação Fisiológica
12.
Front Immunol ; 15: 1422440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050841

RESUMO

Background: NETs, a unique neutrophil immune mechanism, are vital in defending against microbial invasions. Understanding the mechanisms of co-infection by Candida albicans and Staphylococcus aureus, which often leads to higher mortality and poorer prognosis, is crucial for studying infection progression. Methods: In our study, we established a mouse model of subcutaneous infection to characterize the inflammation induced by co-infection. By purifying and extracting NETs to interact with microorganisms, we delve into the differences in their interactions with various microbial species. Additionally, we investigated the differences in NETs production by neutrophils in response to single or mixed microorganisms through the interaction between neutrophils and these microorganisms. Furthermore, we analyzed the gene expression differences during co-infection using transcriptomics. Results: In vivo, C. albicans infections tend to aggregate, while S. aureus infections are more diffuse. In cases of co-infection, S. aureus adheres to and wraps C. albicans. NETs exhibit strong killing capability against C. albicans but weaker efficacy against S. aureus. When NETs interact with mixed microorganisms, they preferentially target and kill the outer layer of S. aureus. In the early stages, neutrophils primarily rely on phagocytosis to kill S. aureus, but as the bacteria accumulate, they stimulate neutrophils to produce NETs. Interestingly, in the presence of neutrophils, S. aureus promotes the proliferation and hyphal growth of C. albicans. Conclusion: Our research has showed substantial differences in the progression of co-infections compared to single-microbial infections, thereby providing scientific evidence for NETs as potential therapeutic targets in the treatment of co-infections.


Assuntos
Candida albicans , Candidíase , Coinfecção , Armadilhas Extracelulares , Neutrófilos , Infecções Estafilocócicas , Staphylococcus aureus , Candida albicans/imunologia , Animais , Armadilhas Extracelulares/imunologia , Staphylococcus aureus/imunologia , Neutrófilos/imunologia , Camundongos , Coinfecção/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Candidíase/imunologia , Candidíase/microbiologia , Modelos Animais de Doenças , Fagocitose/imunologia , Feminino , Camundongos Endogâmicos C57BL , Evasão da Resposta Imune
13.
Clin Immunol ; 266: 110308, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002794

RESUMO

Psoriasis is a chronic inflammatory skin disease connected with immune dysregulation. Macrophages are key inflammatory cells in psoriasis but the specific mechanism of their activation is not fully understood. Neutrophil extracellular traps (NETs) have been shown to regulate macrophage function. Here, we found that NET deposition was increased in psoriasis lesions. Peptidylarginine deaminase 4 (PAD4, a key enzyme for NET formation) deficiency attenuated skin lesions and inflammation in an imiquimod-induced psoriatic mouse model. Furthermore, the STING signaling pathway was markedly activated in psoriasis and abolished by PAD4 deficiency. PAD4-deficient mice treated with the STING agonist DMXAA exhibited more severe symptoms and inflammation than control mice. Mechanistically, the STING inhibitor C-176 inhibited NET-induced macrophage inflammation and further inhibited the proliferation of HaCaT cells. Our findings suggest an important role of NETs in the pathogenesis of psoriasis, and activation of macrophage STING/NF-κB signaling pathway might involve in NETs related psoriasis.


Assuntos
Armadilhas Extracelulares , Inflamação , Macrófagos , Psoríase , Transdução de Sinais , Psoríase/imunologia , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Humanos , Macrófagos/imunologia , Inflamação/imunologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Imiquimode , Proteína-Arginina Desiminase do Tipo 4 , Modelos Animais de Doenças , Neutrófilos/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Feminino
14.
Heart Fail Rev ; 29(5): 1097-1106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073665

RESUMO

The hallmark of heart failure (HF) is structural myocardial remodeling including cardiomyocyte hypertrophy, fibrosis, cardiomyocyte cell death, and a low-grade aseptic inflammation. The initiation and maintenance of persistent chronic low-grade inflammation in HF are not fully understood. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. In the settings of myocardial infarction, myocarditis, or cardiomyopathies, neutrophils infiltrate the cardiac tissue and undergo NETosis that further aggravate the inflammation. A number of stimuli may cause NETosis that is a form of programmed cell death of neutrophils that is different from apoptosis of these cells. Whether NETosis is directly involved in the pathogenesis and development of HF is still unclear. In this review, we analyzed the mechanisms and markers of NETosis, especially placing the accent on the activation of the neutrophil-specific myeloperoxidase (MPO), elastase (NE), and peptidylarginine deiminase 4 (PAD4). These conclusions are supported by the recent genetic and pharmacological studies which demonstrated that MPO, NE, and PAD4 inhibitors are effective at least in the settings of post-myocardial infarction adverse remodeling, cardiac valve diseases, cardiomyopathies, and decompensated left ventricular hypertrophy whose deterioration can lead to HF. This is essential for understanding NETosis as a contributor to pathophysiology of HF and developments of new therapies of HF.


Assuntos
Armadilhas Extracelulares , Insuficiência Cardíaca , Neutrófilos , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estresse Oxidativo/fisiologia , Remodelação Ventricular/fisiologia , Inflamação
15.
Biomed Pharmacother ; 178: 117211, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068851

RESUMO

Triple-negative breast cancer (TNBC) is labeled as an aggressive type of breast cancer and still has limited therapeutic targets despite the advanced development of cancer therapy. Neutrophils, representing the conventional inflammatory response, significantly influence the malignant phenotype of tumors, supported by abundant evidence. As a vital function of neutrophils, NETs are the extracellular fibrous networks including the depolymerized chromatin DNA frames with several antimicrobial proteins. They are produced by activated neutrophils and are involved in host defence or immunological reactions. This review focuses more on the interactions between neutrophils and TNBC, focusing on how neutrophils modulate the immune response within the tumor milieu. Specifically, we delve into the role of NETs, which are involved in promoting tumor growth and metastasis, inhibiting anti-tumor immunity, and promoting tumor-associated thrombosis. Furthermore, we discuss recent advancements in therapeutic strategies aimed at targeting NETs to enhance the efficacy of TNBC treatment. The advances in the knowledge of the dynamics between neutrophils and TNBC may lead to the opportunity to devise new immunotherapeutic strategies targeted to fight this hostile type of breast cancer.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Feminino , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos
16.
Sci Rep ; 14(1): 17241, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060348

RESUMO

Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.


Assuntos
Asma , Ovalbumina , Progesterona , Animais , Feminino , Camundongos , Asma/imunologia , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Microambiente Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Progesterona/farmacologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
17.
mBio ; 15(8): e0140924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953359

RESUMO

Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30%-60% mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed neutrophil extracellular trap (NET) presence in the lungs of the P. murina-infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina. Isolated NETs compromised P. murina viability in vitro, highlighting the potential role of neutrophils in controlling fungal growth and promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.IMPORTANCEPneumocystis jirovecii pneumonia (PjP) affects individuals with weakened immunity, such as HIV/AIDS, cancer, and organ transplant patients. Severe PjP triggers lung inflammation, impairing function and potentially causing acute respiratory distress syndrome. Non-HIV individuals face a 30%-60% mortality rate, underscoring the need for deeper insight into PjP's inflammatory responses. Past research focused on macrophages in managing Pneumocystis infection and its inflammation, while the role of neutrophils was generally overlooked. In contrast, our findings in P. murina-infected mouse lungs showed neutrophil involvement during inflammation and increased expression of NLRP3 inflammasome and NETosis pathways. Detection of neutrophil extracellular traps further indicated their involvement in the inflammatory process. Although beneficial in combating infection, unregulated neutrophil activation poses a potential threat to lung tissues. Understanding the behavior of neutrophils in Pneumocystis infections is crucial for controlling detrimental reactions and formulating treatments to reduce lung damage, ultimately improving the survival rates of individuals with PjP.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Pneumocystis , Pneumonia por Pneumocystis , Animais , Armadilhas Extracelulares/imunologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Camundongos , Neutrófilos/imunologia , Pneumocystis/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Feminino
18.
Cancer Lett ; 598: 217098, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38969159

RESUMO

Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.


Assuntos
5'-Nucleotidase , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Receptor Notch2 , Evasão Tumoral , Regulação para Cima , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Animais , Humanos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Camundongos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/imunologia , Receptor Notch2/metabolismo , Receptor Notch2/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Masculino , Receptor de Morte Celular Programada 1/metabolismo
19.
Respir Res ; 25(1): 290, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080638

RESUMO

Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.


Assuntos
Asma , Eosinófilos , Armadilhas Extracelulares , Macrófagos , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Asma/imunologia , Asma/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais
20.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062975

RESUMO

Neutrophils, traditionally viewed as first responders to infection or tissue damage, exhibit dynamic and diverse roles in ocular health and disease. This review elaborates on previous findings that showed how neutrophils contribute to ocular diseases. In ocular infections, neutrophils play a pivotal role in host defense by orchestrating inflammatory responses to combat pathogens. Furthermore, in optic nerve neuropathies and retinal degenerative diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR), neutrophils are implicated in neuroinflammation and tissue damage owing to their ability to undergo neutrophil extracellular trap formation (NETosis) and secretion of inflammatory molecules. Targeting neutrophil-dependent processes holds promise as a therapeutic strategy, offering potential avenues for intervention in ocular infections, cancers, and retinal degenerative diseases. Understanding the multifaceted roles of neutrophils in ocular diseases is crucial for developing targeted therapies to improve patient outcomes.


Assuntos
Oftalmopatias , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Oftalmopatias/imunologia , Oftalmopatias/terapia , Animais , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Degeneração Macular/imunologia , Degeneração Macular/patologia , Degeneração Macular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...