Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.246
Filtrar
1.
Chem Biol Drug Des ; 104(2): e14598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090783

RESUMO

Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1ß to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17ß-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.


Assuntos
Acne Vulgar , Aromatase , Furanos , Lignanas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Furanos/química , Furanos/farmacologia , Camundongos , Lignanas/farmacologia , Lignanas/química , Lignanas/uso terapêutico , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Aromatase/metabolismo , Aromatase/química , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inflamassomos/metabolismo , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Propionibacterium acnes/efeitos dos fármacos , Interleucina-1beta/metabolismo , Modelos Animais de Doenças
2.
PLoS One ; 19(8): e0308168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110703

RESUMO

The ovarian KGN granulosa-like tumour cell line is commonly used as a model for human granulosa cells, especially since it produces steroid hormones. To explore this further, we identified genes that were differentially expressed by KGN cells compared to primary human granulosa cells using three public RNA sequence datasets. Of significance, we identified that the expression of the antioxidant gene TXNRD1 (thioredoxin reductase 1) was extremely high in KGN cells. This is ominous since cytochrome P450 enzymes leak electrons and produce reactive oxygen species during the biosynthesis of steroid hormones. Gene Ontology (GO) analysis identified steroid biosynthetic and cholesterol metabolic processes were more active in primary granulosa cells, whilst in KGN cells, DNA processing, chromosome segregation and kinetochore pathways were more prominent. Expression of cytochrome P450 cholesterol side-chain cleavage (CYP11A1) and cytochrome P450 aromatase (CYP19A1), which are important for the biosynthesis of the steroid hormones progesterone and oestrogen, plus their electron transport chain members (FDXR, FDX1, POR) were measured in cultured KGN cells. KGN cells were treated with 1 mM dibutyryl cAMP (dbcAMP) or 10 µM forskolin, with or without siRNA knockdown of TXNRD1. We also examined expression of antioxidant genes, H2O2 production by Amplex Red assay and DNA damage by γH2Ax staining. Significant increases in CYP11A1 and CYP19A1 were observed by either dbcAMP or forskolin treatments. However, no significant changes in H2O2 levels or DNA damage were found. Knockdown of expression of TXNRD1 by siRNA blocked the stimulation of expression of CYP11A1 and CYP19A1 by dbcAMP. Thus, with TXNRD1 playing such a pivotal role in steroidogenesis in the KGN cells and it being so highly overexpressed, we conclude that KGN cells might not be the most appropriate model of primary granulosa cells for studying the interplay between ovarian steroidogenesis, reactive oxygen species and antioxidants.


Assuntos
Antioxidantes , Aromatase , Enzima de Clivagem da Cadeia Lateral do Colesterol , Células da Granulosa , Humanos , Feminino , Antioxidantes/metabolismo , Aromatase/genética , Aromatase/metabolismo , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Regulação Neoplásica da Expressão Gênica , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Tumor de Células da Granulosa/patologia , Esteroides/biossíntese , Progesterona/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
3.
BMC Biol ; 22(1): 176, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183304

RESUMO

BACKGROUND: Casein kinase 1α (CK1α), expressed in both ovarian germ and somatic cells, is involved in the initial meiosis and primordial follicle formation of mouse oocytes. Using in vitro and in vivo experiments in this study, we explored the function and mechanism of CK1α in estrogen synthesis in mice ovarian granulosa cells. METHODS: A CK1α knockout (cKO) mouse model, targeted specifically to ovarian granulosa cells (GCs), was employed to establish the influence of CK1α on in vivo estrogen synthesis. The influence of CK1α deficiency on GCs was determined in vivo and in vitro by immunofluorescence analysis and Western blot assay. Transcriptome profiling, differentially expressed genes and gene functional enrichment analyses, and computation protein-protein docking, were further employed to assess the CK1α pathway. Furthermore, wild-type female mice were treated with the CK1α antagonist D4476 to elucidate the CK1α's role in estrogen regulation. RESULTS: Ovarian GCs CK1α deficiency impaired fertility and superovulation of female mice; also, the average litter size and the estradiol (E2) level in the serum of cKO female mice were decreased by 57.3% and 87.4% vs. control mice, respectively. This deficiency disrupted the estrous cycle and enhanced the apoptosis in the GCs. We observed that CK1α mediated the secretion of estradiol in mouse ovarian GCs via the cytochrome P450 subfamily 19 member 1 (CYP19A1). CONCLUSIONS: These findings improve the existing understanding of the regulation mechanism of female reproduction and estrogen synthesis. TRIAL REGISTRATION: Not applicable.


Assuntos
Aromatase , Estradiol , Células da Granulosa , Camundongos Knockout , Animais , Feminino , Camundongos , Aromatase/metabolismo , Aromatase/genética , Caseína Quinase Ialfa/metabolismo , Caseína Quinase Ialfa/genética , Estradiol/metabolismo , Células da Granulosa/metabolismo
4.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39158086

RESUMO

Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.


Assuntos
Gonadotropinas , Células da Granulosa , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Camundongos , Gonadotropinas/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Aromatase/genética , Aromatase/metabolismo , Fertilidade/genética , Fertilidade/efeitos dos fármacos , Estradiol/farmacologia
5.
eNeuro ; 11(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39111835

RESUMO

Animal studies consistently demonstrate that testosterone is protective against pain in multiple models, including an animal model of activity-induced muscle pain. In this model, females develop widespread muscle hyperalgesia, and reducing testosterone levels in males results in widespread muscle hyperalgesia. Widespread pain is believed to be mediated by changes in the central nervous system, including the rostral ventromedial medulla (RVM). The enzyme that converts testosterone to estradiol, aromatase, is highly expressed in the RVM. Therefore, we hypothesized that testosterone is converted by aromatase to estradiol locally in the RVM to prevent development of widespread muscle hyperalgesia in male mice. This was tested through pharmacological inhibition of estrogen receptors (ERs), aromatase, or ER-α in the RVM which resulted in contralateral hyperalgesia in male mice (C57BL/6J). ER inhibition in the RVM had no effect on hyperalgesia in female mice. As prior studies show modulation of estradiol signaling alters GABA receptor and transporter expression, we examined if removal of testosterone in males would decrease mRNA expression of GABA receptor subunits and vesicular GABA transporter (VGAT). However, there were no differences in mRNA expression of GABA receptor subunits of VGAT between gonadectomized and sham control males. Lastly, we used RNAscope to determine expression of ER-α in the RVM and show expression in inhibitory (VGAT+), serotonergic (tryptophan hydroxylase 2+), and µ-opioid receptor expressing (MOR+) cells. In conclusion, testosterone protects males from development of widespread hyperalgesia through aromatization to estradiol and activation of ER-α which is widely expressed in multiple cell types in the RVM.


Assuntos
Estradiol , Hiperalgesia , Bulbo , Camundongos Endogâmicos C57BL , Mialgia , Animais , Masculino , Estradiol/farmacologia , Bulbo/metabolismo , Bulbo/efeitos dos fármacos , Hiperalgesia/metabolismo , Camundongos , Feminino , Mialgia/metabolismo , Receptor alfa de Estrogênio/metabolismo , Aromatase/metabolismo , Testosterona/farmacologia , Inibidores da Aromatase/farmacologia
6.
Nat Commun ; 15(1): 6367, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112449

RESUMO

Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.


Assuntos
Aromatase , Transtorno do Espectro Autista , Compostos Benzidrílicos , Encéfalo , Metilação de DNA , Camundongos Knockout , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Aromatase/metabolismo , Aromatase/genética , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Feminino , Fenóis/toxicidade , Gravidez , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Humanos , Metilação de DNA/efeitos dos fármacos , Fenótipo , Modelos Animais de Doenças , Regiões Promotoras Genéticas , Pré-Escolar
7.
Biol Sex Differ ; 15(1): 60, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080808

RESUMO

BACKGROUND: Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-ß signaling. Smad4 and FoxH1 are downstream effectors of TGF-ß signaling and may play important roles in ovarian development in M. albus. METHODS: We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays. RESULTS: We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity. CONCLUSIONS: This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-ß signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.


Assuntos
Aromatase , Enguias , Fatores de Transcrição Forkhead , Ovário , Regiões Promotoras Genéticas , Proteína Smad4 , Animais , Feminino , Ovário/metabolismo , Aromatase/metabolismo , Aromatase/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Enguias/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Hormônio Foliculoestimulante/metabolismo
8.
J Ovarian Res ; 17(1): 151, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039600

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) accounts for about 75% of anovulatory infertility. The cause of PCOS is not clear. CircRNAs acting as miRNA sponges mediate the post-transcriptional regulation of multiple genes. CYP19A1 is a limiting enzyme in the ovarian steroidogenesis pathway. However, the mechanism of circRNAs regulating granulosa cell (GC) estradiol secretion in PCOS remains to be elucidated. METHODS: Bioinformatics was used to predict the potential target miRNAs of circ_0043532 and target genes of miR-1270. Target miRNAs and mRNA expression were verified by qRT-PCR in GCs from 45 women with PCOS and 65 non-PCOS. Western blot, ELISA and dual-luciferase reporter assays were applied to confirm the substrate of miR-1270. RESULTS: Circ_0043532 and CYP19A1 were significant up-regulation in GCs from patients with PCOS. The predicted target miRNAs of circ_0053432, miR-1270, miR-576-5p, miR-421 and miR-142-5p, were notably decreased in GCs from patients with PCOS. Mechanistic experiments showed that circ_0043532 specifically binds to miR-1270. MiR-1270 was negatively regulated by circ_0043532. Concomitantly, miR-1270 inhibited CYP19A1 expression and estradiol production, which could be reversed by circ_0043532 over-expression. CONCLUSION: We identified that circ_0043532/miR-1270/CYP19A1 axis contributes to the aberrant steroidogenesis of GCs from patients with PCOS. This study broadens the spectrum of pathogenic factors of PCOS, and circ_0043532 might be a potential therapeutic target for PCOS.


Assuntos
Aromatase , MicroRNAs , Síndrome do Ovário Policístico , RNA Circular , Regulação para Cima , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Aromatase/genética , Aromatase/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Adulto , Células da Granulosa/metabolismo , RNA Endógeno Competitivo
9.
Reprod Fertil ; 5(3)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990713

RESUMO

Abstract: Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary: In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.


Assuntos
Glutationa Peroxidase GPX1 , Glutationa Peroxidase , Células da Granulosa , Feminino , Células da Granulosa/metabolismo , Animais , Bovinos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Selênio/metabolismo , Antioxidantes/metabolismo , Aromatase/metabolismo , Aromatase/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Progesterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estradiol/metabolismo , Folículo Ovariano/metabolismo
10.
Bioorg Chem ; 150: 107601, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991489

RESUMO

A set of novels 2-thiohydantoin derivatives were synthesized and enaminone function was discussed at position 5 using DMFDMA catalyst which result in formation of pyrazole, isoxazole, benzoxazepine by using reagents such as hydrazine, hydroxylamine and 2-aminothiophenol. These newly synthesized compounds were evaluated for their antioxidant and antiproliferative activity. In vitro studies on the effect of 2-thiohydantoin on scavenging 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) confirmed the free radical scavenging and antioxidant activity of 2-thiohydantoin. The synthesized compounds show significant antioxidant activity. The in vitro antitumor activity of 2-thiohydantoin on MCF7 (breast) and PC3 cells (prostate) was evaluated using MTT assay. Some of the synthesized compounds show significant to moderate antiproliferative properties compared to reference drug erlotinib. Among all, compound 4a exhibit potent antitumor properties against MCF7 and PC3 cancer cell lines with IC50 = 2.53 ± 0.09 /ml & with IC50 = 3.25 ± 0.12 µg/ml respectively and has potent antioxidant activity with IC50 = 10.04 ± 0.49 µg/ml.


Assuntos
Antineoplásicos , Antioxidantes , Aromatase , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Simulação de Acoplamento Molecular , Tioidantoínas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Tioidantoínas/farmacologia , Tioidantoínas/química , Tioidantoínas/síntese química , Aromatase/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Catálise , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Termodinâmica , Picratos/antagonistas & inibidores , Hidrazinas , Tioamidas
11.
Cells ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056753

RESUMO

Androgen excess is a key feature of several clinical phenotypes of polycystic ovary syndrome (PCOS). However, the presence of FSH receptor (FSHR) and aromatase (CYP19A1) activity responses to physiological endocrine stimuli play a critical role in the pathogenesis of PCOS. Preliminary data suggest that myo-Inositol (myo-Ins) and D-Chiro-Inositol (D-Chiro-Ins) may reactivate CYP19A1 activity. We investigated the steroidogenic pathway of Theca (TCs) and Granulosa cells (GCs) in an experimental model of murine PCOS induced in CD1 mice exposed for 10 weeks to a continuous light regimen. The effect of treatment with different combinations of myo-Ins and D-Chiro-Ins on the expression of Fshr, androgenic, and estrogenic enzymes was analyzed by real-time PCR in isolated TCs and GCs and in ovaries isolated from healthy and PCOS mice. Myo-Ins and D-Chiro-Ins, at a ratio of 40:1 at pharmacological and physiological concentrations, positively modulate the steroidogenic activity of TCs and the expression of Cyp19a1 and Fshr in GCs. Moreover, in vivo, inositols (40:1 ratio) significantly increase Cyp19a1 and Fshr. These changes in gene expression are mirrored by modifications in hormone levels in the serum of treated animals. Myo-Ins and D-Chiro-Ins in the 40:1 formula efficiently rescued PCOS features by up-regulating aromatase and FSHR levels while down-regulating androgen excesses produced by TCs.


Assuntos
Aromatase , Modelos Animais de Doenças , Inositol , Ovário , Síndrome do Ovário Policístico , Receptores do FSH , Feminino , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/tratamento farmacológico , Inositol/farmacologia , Camundongos , Aromatase/metabolismo , Aromatase/genética , Receptores do FSH/metabolismo , Receptores do FSH/genética , Ovário/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células Tecais/metabolismo , Células Tecais/efeitos dos fármacos , Esteroides/biossíntese
12.
Bioorg Chem ; 151: 107607, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002515

RESUMO

Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.


Assuntos
Inibidores da Aromatase , Aromatase , Neoplasias da Mama , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/uso terapêutico , Inibidores da Aromatase/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Aromatase/metabolismo , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade
13.
Aquat Toxicol ; 273: 107004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901218

RESUMO

The extensive use of herbicide metamifop (MET) in rice fields for weeds control will inevitably lead to its entering into water environments and threaten the aquatic organisms. Previous researches have demonstrated that sublethal exposure of MET significantly affected zebrafish development. Yet the long-term toxicological impacts of MET on aquatic life remains unknown. Herein, we investigated the potential effects of MET (5 and 50 µg/L) on zebrafish during an entire life cycle. Since the expression level of male sex differentiation-related gene dmrt1 and sex hormone synthesis-related gene cyp19a1b were significantly changed after 50 µg/L MET exposure for only 7 days, indicators related to sex differentiation and reproductive system were further investigated. Results showed that the transcript of dmrt1 was inhibited, estradiol content increased and testosterone content decreased in zebrafish of both sexes after MET exposure at 45, 60 and 120 dpf. Histopathological sections showed that the proportions of mature germ cells in the gonads of male and female zebrafish (120 dpf) were significantly decreased. Moreover, males had elevated vitellogenin content while females did not after MET exposure; MET induced feminization in zebrafish, with the proportion of females significantly increased by 19.6% while that of males significantly decreased by 13.2% at 120 dpf. These results suggested that MET interfered with the expression levels of gonad development related-genes, disrupted sex hormone balance, and affected sex differentiation and reproductive system of female and male zebrafish, implying it might have potential endocrine disrupting effects after long-term exposure.


Assuntos
Diferenciação Sexual , Vitelogeninas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Diferenciação Sexual/efeitos dos fármacos , Masculino , Feminino , Poluentes Químicos da Água/toxicidade , Vitelogeninas/metabolismo , Vitelogeninas/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Herbicidas/toxicidade , Aromatase/genética , Aromatase/metabolismo , Estradiol , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Testosterona , Gônadas/efeitos dos fármacos , Reprodução/efeitos dos fármacos
14.
Chemosphere ; 362: 142616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906194

RESUMO

The water accommodated fraction (WAF) of spilled crude oil is a severe threat to the health of marine fish. This study was conducted to investigate the effects of short-term embryonic exposure to the WAF on the ovarian development and reproductive capability of F0 adult female marine medaka (Oryzias melastigma). Following embryonic exposure to the WAF with nominal total petroleum hydrocarbon concentrations of 0.5, 5, 50, and 500 µg/L for 7 days, the number of spawned eggs and gonadosomatic indices of F0 adult females were significantly reduced at 130 days postfertilization. In these F0 adult females, the proportion of mature oocytes was significantly lower, the level of 17ß-estradiol was lower, and the level of testosterone was greater than those in control group. The mRNA levels of the follicle-stimulating hormone ß subunit, luteinizing hormone ß subunit, cytochrome P450 aromatase 19b, estrogen receptor α and ß, and androgen receptor α and ß genes were upregulated, while the mRNA level of the salmon-type gonadotropin-releasing hormone was downregulated in F0 adult females exposed to the WAF during the embryonic stage. Additionally, the methylation level of vitellogenin (vtg) in F0 adult females was significantly elevated, this might have, in turn, downregulated the mRNA level of vtg. The mortality rate of the unexposed F1 embryos was significantly increased and the hatching success was significantly reduced. These results collectively indicated the necessity of incorporating and evaluating the effects of short-term early-life exposure to crude oil in the assessment of risks to the reproductive health of marine fish.


Assuntos
Oryzias , Petróleo , Reprodução , Vitelogeninas , Poluentes Químicos da Água , Animais , Feminino , Oryzias/fisiologia , Poluentes Químicos da Água/toxicidade , Petróleo/toxicidade , Reprodução/efeitos dos fármacos , Vitelogeninas/metabolismo , Vitelogeninas/genética , Estradiol , Embrião não Mamífero/efeitos dos fármacos , Poluição por Petróleo , Aromatase/metabolismo , Aromatase/genética , Ovário/efeitos dos fármacos , Testosterona/metabolismo
15.
Reprod Toxicol ; 128: 108635, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936095

RESUMO

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.


Assuntos
Aromatase , Disruptores Endócrinos , Glândulas Mamárias Animais , Ratos Sprague-Dawley , Compostos de Trialquitina , Animais , Feminino , Compostos de Trialquitina/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Disruptores Endócrinos/toxicidade , Aromatase/metabolismo , Aromatase/genética , Receptor alfa de Estrogênio/metabolismo , Ratos
16.
Food Chem Toxicol ; 191: 114841, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944145

RESUMO

Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.


Assuntos
Nanopartículas Metálicas , Oxirredução , Prata , Testículo , Animais , Masculino , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/administração & dosagem , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ratos , Ratos Endogâmicos F344 , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Antioxidantes/metabolismo , Aromatase/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo
17.
Chem Biodivers ; 21(8): e202400701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829745

RESUMO

Breast cancer remains a major global health issue, particularly affecting women and contributing significantly to mortality rates. Current treatments for estrogen receptor-positive breast cancers, such as aromatase inhibitors, are effective but often come with side effects and resistance issues. This study addresses these gaps by targeting aromatase, an enzyme crucial for estrogen synthesis, which plays a pivotal role in breast cancer progression. The innovative approach involves synthesizing novel bis-triazolopyridopyrimidines, designed to leverage the combined pharmacological benefits of pyridopyrimidine and 1,2,4-triazole structures, known for their potent aromatase inhibition and anti-cancer properties. These compounds were synthesized and characterized using 1H-NMR, 13C-NMR, and MS spectral analyses, and their anticancer efficacy was evaluated through MTT assays against MCF-7 breast cancer cell lines in vitro. Molecular docking analyses revealed strong binding energies with aromatase, particularly for compounds 5 b, 5 c, 10 a, and 10 b, indicating their potential as effective aromatase inhibitors. The study highlights these compounds as promising candidates for further development as therapeutic agents against breast cancer.


Assuntos
Antineoplásicos , Inibidores da Aromatase , Aromatase , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Pirimidinas , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/química , Aromatase/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Células MCF-7 , Curcumina/farmacologia , Curcumina/química , Curcumina/síntese química , Curcumina/análogos & derivados , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
18.
Angew Chem Int Ed Engl ; 63(33): e202406542, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820076

RESUMO

Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.


Assuntos
Aromatase , Oxirredução , Aromatase/metabolismo , Aromatase/química , Humanos , Peróxidos/química , Peróxidos/metabolismo , Animais , Ânions/química , Ânions/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/química , Coelhos , Esteroides/química , Esteroides/metabolismo , Androstenodiona/química , Androstenodiona/metabolismo
19.
Genes (Basel) ; 15(5)2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790265

RESUMO

The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.


Assuntos
Receptor beta de Estrogênio , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Feminino , Masculino , Aromatase/genética , Aromatase/metabolismo , Desenvolvimento Embrionário , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Diferenciação Sexual , Razão de Masculinidade , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Med Chem ; 67(11): 8913-8931, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38809993

RESUMO

Estrogen receptor α (ERα) plays a pivotal role in the proliferation, differentiation, and migration of breast cancer (BC) cells, and aromatase (ARO) is a crucial enzyme in estrogen synthesis. Hence, it is necessary to inhibit estrogen production or the activity of ERα for the treatment of estrogen receptor-positive (ER+) BC. Herein, we present a new category of dual-targeting PROTAC degraders designed to specifically target ERα and ARO. Among them, compound 18c bifunctionally degrades and inhibits ERα/ARO, thus effectively suppressing the proliferation of MCF-7 cells while showing negligible cytotoxicity to normal cells. In vivo, 18c promotes the degradation of ERα and ARO and inhibits the growth of MCF-7 xenograft tumors. Finally, compound 18c demonstrates promising antiproliferative and ERα degradation activity against the ERαMUT cells. These findings suggest that 18c, being the inaugural dual-targeting degrader for ERα and ARO, warrants further advancement for the management of BC and the surmounting of endocrine resistance.


Assuntos
Neoplasias da Mama , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células MCF-7 , Proteólise/efeitos dos fármacos , Camundongos Nus , Descoberta de Drogas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...