RESUMO
A review of the literature data on the role of imbalance of cellular adhesion proteins (CAP) of the heart in the development of cardiac arrhythmias and heart failure. The CAPS of the intercalated discs belonging to the cadherin and desmin groups provide a mechanical connection of cardiomyocytes, proteins from the connexin group are responsible for the transmission of an electrical impulse. The imbalance of CAP has mainly a hereditary origin and is accompanied by the destruction of intercalated discs, blockage of impulse transmission with the development of electrical instability of the myocardium and cardiac arrhythmias, including ventricular and atrial fibrillation. This is the case with cardiomyopathies, coronary heart disease. Endothelial dysfunction also plays an essential role in atrial fibrillation, which is associated with an imbalance in the CAP of the endothelial lining of the endocardium and blood vessels.
Assuntos
Arritmias Cardíacas , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , AnimaisRESUMO
The effects and mechanisms of cardiac arrhythmias are still incompletely understood and an important subject of cardiovascular research. A major difficulty for investigating arrhythmias is the lack of appropriate human models. Here, we present a protocol for a translational simulation of different types of arrhythmias using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and electric cell culture pacing. The protocol comprises the handling of ventricular and atrial hiPSC-CM before and during in vitro arrhythmia simulation and possible arrhythmia simulation protocols mimicking clinical arrhythmias like atrial fibrillation. Isolated or confluent hiPSC-CM can be used for the simulation. In vitro arrhythmia simulation did not impair cell viability of hiPSC-CM and could reproduce arrhythmia associated phenotypes of patients. The use of hiPSC-CM enables patient-specific studies of arrhythmias, genetic interventions, or drug-screening. Thus, the in vitro arrhythmia simulation protocol may offer a versatile tool for translational studies on the mechanisms and treatment options of cardiac arrhythmias.
Assuntos
Arritmias Cardíacas , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Arritmias Cardíacas/patologia , Diferenciação Celular , Células Cultivadas , Sobrevivência CelularRESUMO
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Assuntos
Relógios Biológicos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Nó Sinoatrial , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , Nó Sinoatrial/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Arritmias Cardíacas/terapia , Arritmias Cardíacas/patologiaRESUMO
Myocarditis is an inflammatory condition of cardiac tissue presenting significant variability in clinical manifestations and outcomes. Its etiology is diverse, encompassing infectious agents (primarily viruses, but also bacteria, protozoa, and helminths) and non-infectious factors (autoimmune responses, toxins, and drugs), though often the specific cause remains unidentified. Recent research has highlighted the potential role of genetic susceptibility in the development of myocarditis (and in some cases the development of inflammatory dilated cardiomyopathy, i.e., the condition in which there is chronic inflammation (>3 months) and left ventricular dysfunction\dilatation), with several studies indicating a correlation between myocarditis and genetic backgrounds. Notably, pathogenic genetic variants linked to dilated or arrhythmic cardiomyopathy are found in 8-16% of myocarditis patients. Genetic predispositions can lead to recurrent myocarditis and a higher incidence of ventricular arrhythmias and heart failure. Moreover, the presence of DSP mutations has been associated with distinct pathological patterns and clinical outcomes in arrhythmogenic cardiomyopathy (hot phases). The interplay between genetic factors and environmental triggers, such as viral infections and physical stress, is crucial in understanding the pathogenesis of myocarditis. Identifying these genetic markers can improve the diagnosis, risk stratification, and management of patients with myocarditis, potentially guiding tailored therapeutic interventions. This review aims to synthesize current knowledge on the genetic underpinnings of myocarditis, with an emphasis on desmoplakin-related arrhythmogenic cardiomyopathy, to enhance clinical understanding and inform future research directions.
Assuntos
Desmoplaquinas , Miocardite , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Desmoplaquinas/genética , Predisposição Genética para Doença , Inflamação/genética , Inflamação/patologia , Mutação , Miocardite/genética , Miocardite/patologia , FenótipoRESUMO
Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.
Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Lamina Tipo A , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuína 1 , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Mutação da Fase de Leitura , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Membrana Nuclear/metabolismo , Mitocôndrias/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genéticaRESUMO
Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.
Assuntos
Cardiomiopatia Hipertrófica , Conexina 43 , Sistema de Condução Cardíaco , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Células Gigantes/metabolismo , Células Gigantes/patologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Potenciais de AçãoRESUMO
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Assuntos
Modelos Animais de Doenças , Animais , Humanos , Peixe-Zebra , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Camundongos , Cardiomiopatias/patologia , Cardiomiopatias/genéticaRESUMO
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.
Assuntos
Desmogleína 2 , Macrófagos , Receptores CCR2 , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 2/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismoRESUMO
Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.
Assuntos
Adipócitos , Tecido Adiposo , Arritmias Cardíacas , Leptina , Miócitos Cardíacos , Neuropeptídeo Y , Pericárdio , Humanos , Animais , Pericárdio/metabolismo , Pericárdio/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neuropeptídeo Y/metabolismo , Leptina/metabolismo , Adipócitos/metabolismo , Masculino , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Trocador de Sódio e Cálcio/metabolismo , Feminino , Receptores de Neuropeptídeo Y/metabolismo , Pessoa de Meia-Idade , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/patologia , Sistema Nervoso Simpático/metabolismo , Camundongos , Tecido Adiposo EpicárdicoAssuntos
Arritmias Cardíacas , Compostos Benzidrílicos , Cardiomiopatia Hipertrófica , Glucosídeos , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/genética , Glucosídeos/uso terapêutico , Glucosídeos/farmacologia , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/patologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologiaRESUMO
BACKGROUND: Hypothermic ischemia-reperfusion arrhythmia is a common complication of cardiothoracic surgery under cardiopulmonary bypass, but few studies have focused on this type of arrhythmia. Our prior study discovered reduced myocardial Cx43 protein levels may be linked to hypothermic reperfusion arrhythmias. However, more detailed molecular mechanism research is required. METHOD: The microRNA and mRNA expression levels in myocardial tissues were detected by real-time quantitative PCR (RT-qPCR). Besides, the occurrence of hypothermic reperfusion arrhythmias and changes in myocardial electrical conduction were assessed by electrocardiography and ventricular epicardial activation mapping. Furthermore, bioinformatics analysis, applying antagonists of miRNA, western blotting, immunohistochemistry, a dual luciferase assay, and pearson correlation analysis were performed to investigate the underlying molecular mechanisms. RESULTS: The expression level of novel-miR-17 was up-regulated in hypothermic ischemia-reperfusion myocardial tissues. Inhibition of novel-miR-17 upregulation ameliorated cardiomyocyte edema, reduced apoptosis, increased myocardial electrical conduction velocity, and shortened the duration of reperfusion arrhythmias. Mechanistic studies showed that novel-miR-17 reduced the expression of Cx43 by directly targeting Gja1 while mediating the activation of the PKC/c-Jun signaling pathway. CONCLUSION: Up-regulated novel-miR-17 is a newly discovered pro-arrhythmic microRNA that may serve as a potential therapeutic target and biomarker for hypothermic reperfusion arrhythmias.
Assuntos
Arritmias Cardíacas , Conexina 43 , MicroRNAs , Proteína Quinase C , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Apoptose/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Conexina 43/metabolismo , Conexina 43/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação para CimaRESUMO
BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca fascicularis , Infarto do Miocárdio , Miócitos Cardíacos , Esferoides Celulares , Animais , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Miócitos Cardíacos/transplante , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Esferoides Celulares/transplante , Regeneração , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Masculino , Transplante de Células-Tronco/métodos , Modelos Animais de DoençasRESUMO
BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
Assuntos
Células-Tronco Pluripotentes Induzidas , Miocardite , Humanos , Camundongos , Animais , Conexina 43/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Miócitos Cardíacos/fisiologia , Junções Comunicantes , Adenoviridae/genética , Morte Súbita CardíacaRESUMO
Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.
Assuntos
Lipodistrofia Generalizada Congênita , Proteínas de Ligação a RNA , Humanos , Masculino , Feminino , Lipodistrofia Generalizada Congênita/genética , Lipodistrofia Generalizada Congênita/complicações , Lipodistrofia Generalizada Congênita/patologia , Adolescente , Criança , Lactente , Pré-Escolar , Adulto , Adulto Jovem , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/patologiaRESUMO
BACKGROUND: Pathogenic variants in TTN cause a spectrum of autosomal dominant and recessive cardiovascular, skeletal muscle and cardioskeletal disease with symptom onset across the lifespan. The aim of this study was to characterise the genotypes and phenotypes in a cohort of TTN+paediatric patients. METHODS: Retrospective chart review was performed at four academic medical centres. Patients with pathogenic or truncating variant(s) in TTN and paediatric-onset cardiovascular and/or neuromuscular disease were eligible. RESULTS: 31 patients from 29 families were included. Seventeen patients had skeletal muscle disease, often with proximal weakness and joint contractures, with average symptom onset of 2.2 years. Creatine kinase levels were normal or mildly elevated; electrodiagnostic studies (9/11) and muscle biopsies (11/11) were myopathic. Variants were most commonly identified in the A-band (14/32) or I-band (13/32). Most variants were predicted to be frameshift truncating, nonsense or splice-site (25/32). Seventeen patients had cardiovascular disease (14 isolated cardiovascular, three cardioskeletal) with average symptom onset of 12.9 years. Twelve had dilated cardiomyopathy (four undergoing heart transplant), two presented with ventricular fibrillation arrest, one had restrictive cardiomyopathy and two had other types of arrhythmias. Variants commonly localised to the A-band (8/15) or I-band (6/15) and were predominately frameshift truncating, nonsense or splice-site (14/15). CONCLUSION: Our cohort demonstrates the genotype-phenotype spectrum of paediatric-onset titinopathies identified in clinical practice and highlights the risk of life-threatening cardiovascular complications. We show the difficulties of obtaining a molecular diagnosis, particularly in neuromuscular patients, and bring awareness to the complexities of genetic counselling in this population.
Assuntos
Cardiomiopatia Dilatada , Humanos , Criança , Estudos Retrospectivos , Conectina/genética , Cardiomiopatia Dilatada/genética , Músculo Esquelético/patologia , Fenótipo , Arritmias Cardíacas/patologiaRESUMO
The authors describe a case of fetal isolated right atrial enlargement or IDRA (idiopathic dilatations of the right atrium) evident in third trimester, complicated by arrhythmia in the female infant during the 1° month of life with ECG diagnosis of Wolf-Parkinson-White syndrome (WPW). The eldest sister died at 6 years because of an arrhythmia with the same diagnosis of WPW. The review of the literature on IDRA frequently shows a familial genetic aggregation. The pathogenetic mechanism underlying the dilation of the right atrium could consist of a myopathy or electrical conduction disorder. The exclusive involvement of the right atrium may be due to the increased pressure in the fetal right atrium. On the basis of our case and after review of the literature, we must be careful in defining as physiological the enlargement of the right fetal atrium in the third trimester of pregnancy. The ultrasound sign of IDRA may be a fetal prodrome of SIDS (sudden infant death syndrome).
Assuntos
Morte Súbita do Lactente , Gravidez , Humanos , Feminino , Dilatação/efeitos adversos , Prognóstico , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/complicações , Átrios do Coração/diagnóstico por imagem , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologiaRESUMO
One of the causes of sudden cardiac death is arrhythmia after acute myocardial ischemia. After ischemia, endogenous orphanin (N/OFQ) plays a role in the development of arrhythmias. It is discussed in this paper how nonpeptide orphanin receptor (ORL1) antagonists such as J-113397, SB-612111 and compound-24 (C-24) affect arrhythmia in rats following acute myocardial ischemia and what the optimal concentrations for these antagonists are. The electrocardiogram of the rat was recorded as part of the experiment. The concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the myocardium were measured following euthanasia. Following the use of three antagonists, we found the lowest inflammatory factor concentrations and the smallest number of ischemic arrhythmia episodes. All of them had a small impact on cardiac function. LF/HF values were significantly reduced in all three antagonist groups, suggesting that they are involved in the regulation of sympathetic nerves. In conclusion, pretreatment with the three antagonist groups can effectively reduce the concentration of TNF-α and IL-1ß, and the occurrence of arrhythmias after ischemia can also be significantly reduced. Inflammation and sympathetic activity may be related to the mechanism of action of antagonists.
Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Ratos , Animais , Fator de Necrose Tumoral alfa , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Miocárdio/patologia , Isquemia/patologiaRESUMO
Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.
Assuntos
Arritmias Cardíacas , Cardiomiopatias , Átrios do Coração , Hipertensão , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Fibrilação Atrial , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Serina Endopeptidases/sangue , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , IrmãosRESUMO
Fibroblasts in scar tissue elicit myocyte excitation and promote arrhythmia in mouse hearts.
Assuntos
Arritmias Cardíacas , Cicatriz , Acoplamento Excitação-Contração , Fibroblastos , Miócitos Cardíacos , Animais , Camundongos , Arritmias Cardíacas/patologia , Cicatriz/patologia , Fibroblastos/patologia , Junções Comunicantes , Miócitos Cardíacos/patologia , Infarto do Miocárdio/patologiaRESUMO
BACKGROUND: Brugada syndrome (BrS) is a cardiac channelopathy that can result in sudden cardiac death (SCD). SCN5A is the most frequent gene linked to BrS, but the genotype-phenotype correlations are not completely matched. Clinical phenotypes of a particular SCN5A variant may range from asymptomatic to SCD. Here, we used comparison of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from a SCN5A mutation-positive (D356Y) BrS family with severely affected proband, asymptomatic mutation carriers (AMCs) and healthy controls to investigate this variation. METHODS: 26 iPSC lines were generated from skin fibroblasts using nonintegrated Sendai virus. The generated iPSCs were differentiated into cardiomyocytes using a monolayer-based differentiation protocol. FINDINGS: D356Y iPSC-CMs exhibited increased beat interval variability, slower depolarization, cardiac arrhythmias, defects of Na+ channel function and irregular Ca2+ signaling, when compared to controls. Importantly, the phenotype severity observed in AMC iPSC-CMs was milder than that of proband iPSC-CMs, an observation exacerbated by flecainide. Interestingly, the iPSC-CMs of the proband exhibited markedly decreased Ca2+ currents in comparison with control and AMC iPSC-CMs. CRISPR/Cas9-mediated genome editing to correct D356Y in proband iPSC-CMs effectively rescued the arrhythmic phenotype and restored Na+ and Ca2+ currents. Moreover, drug screening using established BrS iPSC-CM models demonstrated that quinidine and sotalol possessed antiarrhythmic effects in an individual-dependent manner. Clinically, venous and oral administration of calcium partially reduced the malignant arrhythmic events of the proband in mid-term follow-up. INTERPRETATION: Patient-specific and genome-edited iPSC-CMs can recapitulate the varying phenotypic severity of BrS. Our findings suggest that preservation of the Ca2+ currents might be a compensatory mechanism to resist arrhythmogenesis in BrS AMCs. FUNDING: National Key R&D Program of China (2017YFA0103700), National Natural Science Foundation of China (81922006, 81870175), Natural Science Foundation of Zhejiang Province (LD21H020001, LR15H020001), National Natural Science Foundation of China (81970269), Key Research and Development Program of Zhejiang Province (2019C03022) and Natural Science Foundation of Zhejiang Province (LY16H020002).