Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.126
Filtrar
1.
J Environ Sci (China) ; 148: 468-475, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095181

RESUMO

Arsenic (As) methylation in soils affects the environmental behavior of As, excessive accumulation of dimethylarsenate (DMA) in rice plants leads to straighthead disease and a serious drop in crop yield. Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security. Here, soils including un-arsenic contaminated (N-As), low-arsenic (L-As), medium-arsenic (M-As), and high-arsenic (H-As) soils were incubated under continuous anoxic, continuous oxic, and consecutive anoxic/oxic treatments respectively, to profile arsenic methylating process and microbial species involved in the As cycle. Under anoxic-oxic (A-O) treatment, methylated arsenic was significantly increased once oxygen was introduced into the incubation system. The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic (A), oxic (O), and oxic-anoxic (O-A) treatments, under which arsenic was methylated slightly and then decreased in all four As concentration soils. In fact, the most plentiful arsenite S-adenosylmethionine methyltransferase genes (arsM) contributed to the increase in As methylation. Proteobacteria (40.8%-62.4%), Firmicutes (3.5%-15.7%), and Desulfobacterota (5.3%-13.3%) were the major microorganisms related to this process. These microbial increased markedly and played more important roles after oxygen was introduced, indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic (flooding) and oxic (drainage) environment. The novel findings provided new insights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.


Assuntos
Arsênio , Oryza , Microbiologia do Solo , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Metilação , Solo/química , Microbiota , Oxirredução , Bactérias/metabolismo
2.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003066

RESUMO

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Assuntos
Arsênio , Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Arsênio/análise , China , Poluentes Químicos da Água/análise , Rios/química , Monitoramento Ambiental/métodos , Modelos Químicos , Modelos Teóricos
3.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003077

RESUMO

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Assuntos
Metalurgia , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Exposição Ambiental/estatística & dados numéricos , Metais/urina , Metais/análise , Medição de Risco , Arsênio/análise , Monitoramento Ambiental , Adulto , Poluentes Ambientais/análise , Pessoa de Meia-Idade
4.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003078

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Assuntos
Arsênio , Cádmio , Carvão Vegetal , Magnésio , Oryza , Poluentes do Solo , Solo , Oryza/química , Cádmio/análise , Cádmio/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Magnésio/química , Ferro/química , Recuperação e Remediação Ambiental/métodos
5.
J Environ Sci (China) ; 149: 278-287, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181642

RESUMO

The arsenic (As) release from sediments in great lakes is affected by various factors. In this study, the characteristics of As release from sediments was investigated, and the As sources and sinks with the strengths in sediments from different areas (grass-type, algae-type, and grass-algae alternation areas) in great shallow lakes (Taihu Lake, China) were analyzed, and the influence of P competition in the process of As release was also studied. The results showed that changing trend of the values of equilibrium As concentration in sediments were consistent with the regional changes (0 to 28.12 µg/L), and the sediments from algae-type areas had the higher values. The sediments from western lake and northwest lake bay were a strong As and a weak P source, and the north lake bay had the opposite trend of these two regions. Intense P source competition with As from the sediments occurred in algae-type areas. The grass-type areas had strong As and P retention capacities, indicating a sink role of sediment with high As and P sorption capacities. The degree of As and P saturation had similar trend in sediments, and the grass-type areas had the higher values, 18.3%-21.4% and 15.31%-20.34%, respectively. Contribution analysis results showed that most of As release contribution was from the bottom (30-50 cm) sediments, and the surface (0-10 cm) sediments from algae-type areas contributed more to the overlying water than other region.


Assuntos
Arsênio , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Fósforo , Poluentes Químicos da Água , Lagos/química , Fósforo/análise , Arsênio/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China , Poaceae
6.
J Hazard Mater ; 479: 135684, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241359

RESUMO

Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing on monitoring arsenic distribution and porewater characteristics in typical paddy field plots. Soil pH ranged from 4.79 to 7.98, while porewater pH was weakly alkaline, varying from 7.2 to 7.47. Total arsenic content in paddy soils ranged from 6.8 to 17.2 mg/kg, with arsenic concentrations in porewater during rice growth ranging from 2.97 to 14.85 µg/L. Specifically, arsenite concentrations in porewater ranged from 0.48 to 7.91 µg/L, and arsenate concentrations ranged from 0.73 to 5.83 µg/L. Through principal component analysis (PCA) and analysis of redox factors, we identified that arsenic concentration in porewater is predominantly influenced by the interplay of reduction and desorption processes, contributing 43.5 % collectively. Specifically, the reductive dissolution of iron oxides associated with organic carbon accounted for 23.3 % of arsenic concentration dynamics in porewater. Additionally, arsenic release from the soil followed a sequence starting with nitrate reduction, followed by ferric ion reduction, and subsequently sulfate reduction. Our findings provide valuable insights into the mechanisms governing arsenic mobilization within the paddy soil-porewater-rice system. These insights could inform strategies for irrigation management aimed at mitigating arsenic toxicity and associated health risks.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Poluentes Químicos da Água , Oryza/química , Oryza/crescimento & desenvolvimento , Arsênio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Solo/química , Agricultura , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Oxirredução
7.
Huan Jing Ke Xue ; 45(9): 5538-5547, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323170

RESUMO

Considering the extremely high content of soil mineral elements in high geological background areas, it is crucial to understand the transportation and health risks of mineral elements in soil-plant systems. In this study, 30 soil and apple-paired samples were collected from the main apple production areas of Yunnan's high geological background region to determine the contents of mineral elements. The aim was to research the enrichment characteristics, nutritional values, and health risks associated with 12 mineral elements in apples. The results revealed that Cd, As, Pb and Cr contents in soil samples exceeded their corresponding risk screening values with percentages of 50%, 17%, 48%, and 30%, respectively. However, only 13.3% of Pb content in apple samples exceeded the safety limit (0.1 mg·kg-1, fresh fruit). In addition to the toxic elements, apples had higher contents of K, Ca, Mg, Mn, and Zn, with average contents of 1.241 g·kg-1, 0.045 g·kg-1, 0.061 g·kg-1, 0.648 mg·kg-1, and 0.944 mg·kg-1, respectively. The nutritional evaluation results showed that the index (INQ) of K and Cu were higher than 2 through the consumption of apples, suggesting that apple consumption was one of the primary sources of K and Cu intake. The health risk assessment revealed that the target hazard quotient (THQ) of a single heavy metal was: Cu > As > Cr > Pb > Zn > Cd; the hazard index (HI) of all heavy metals was far lower than 1, indicating that apple consumption did not pose significant heavy metal exposure risks. The results of this study will provide a scientific insight into the nutritional aspects and health risks associated with mineral elements in soil-plant systems within high geological background areas.


Assuntos
Malus , Minerais , Poluentes do Solo , Malus/química , China , Medição de Risco , Poluentes do Solo/análise , Minerais/análise , Contaminação de Alimentos/análise , Solo/química , Metais Pesados/análise , Oligoelementos/análise , Arsênio/análise , Frutas/química , Cádmio/análise , Valor Nutritivo , Monitoramento Ambiental , Chumbo/análise
8.
Sci Total Environ ; 953: 176167, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260499

RESUMO

Flooding of paddy fields enhances methane (CH4) emissions and arsenic (As) mobilisation, which are crucial issues for agricultural greenhouse gas emissions and food safety. Birnessite (δ-MnO2) is a common natural oxidant and scavenger for heavy metals. In this study, birnessite was applied to As-contaminated paddy soil. The capacity for simultaneously alleviating CH4 emissions and As mobility was explored. Soil microcosm incubation results indicated that birnessite addition simultaneously reduced CH4 emissions by 47 %-54 % and As release by 38 %-85 %. The addition of birnessite decreased the dissolved organic carbon (DOC) contents and altered its chemical properties. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results showed that birnessite reduced the labile fractions of proteins, carbohydrates, lignins, tannins, and unsaturated hydrocarbons, however, increased the abundance of condensed aromatic structures, suggesting the polymerisation of dissolved organic matter (DOM) by birnessite. The degradation of labile fractions and the polymerisation of DOM resulted in an inventory of recalcitrant DOM, which is difficult for microbes to metabolise, thus inhibiting methanogenesis. In contrast, birnessite addition increased CH4 oxidation, as the particulate methane monooxygenase (pmoA) gene abundance increased by 30 %. The enhanced polymerisation of DOM by birnessite also increased As complexation with organics, leading to the transfer of As to the organic bound phase. In addition, the decrease in ferrous ion [Fe(II)] concentrations with birnessite indicated that the reductive dissolution of Fe oxides was suppressed, which limited the release of arsenite [As(III)] under reducing conditions. Furthermore, birnessite decreased As methylation and shaped the soil microbial community structure by enriching the metal-reducing bacterium Bacillus. Overall, our results provide a promising method to suppress greenhouse gas emissions and the risk of As contamination in paddy soils, although further studies are needed to verify its efficacy and effectiveness under field conditions.


Assuntos
Arsênio , Metano , Óxidos , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Óxidos/química , Solo/química , Inundações , Agricultura/métodos , Oryza , Poluentes Atmosféricos/análise , Microbiologia do Solo
9.
Environ Sci Pollut Res Int ; 31(45): 56697-56717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279023

RESUMO

Alluvial fans and deltas are two environments with different hydrochemical conditions. Their junction zones, as mixing environments, are variably influenced by different processes, leading to variable environmental conditions. The purpose of this study is to investigate groundwater quality in the junction zone of these environments in the northern part of the Jazmourian depression (known as the Rudbar plain) in southeastern Iran to determine the dominant processes, assess arsenic and fluoride health risks, and evaluate irrigation water quality. A total of 33 samples from deep drilled wells were taken, and the concentrations of major ions and elements were determined. Additionally, statistical and hydrochemical analyses were undertaken. The dominant processes in the delta are evaporation and ion exchange, while the dominant process in the fan environment is silicate hydrolysis. Among the samples, 26.7% were mainly affected by the delta, and 73.3% were mainly affected by fan conditions. Although the majority of groundwater samples were suitable for irrigation based on quality standards, a significant portion exceeded the acceptable level for Na%. Non-carcinogenic health risk assessments indicated that arsenic hazard risks exceeded thresholds in 63.3% of cases for children and 36% for adults. Carcinogenic health risks associated with arsenic and fluoride exceeded acceptable levels in 4 and 2 stations, respectively. Elevated As concentrations contribute to a greater average health risk in parts of fans environment.


Assuntos
Arsênio , Monitoramento Ambiental , Fluoretos , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Fluoretos/análise , Arsênio/análise , Poluentes Químicos da Água/análise , Irã (Geográfico) , Irrigação Agrícola , Humanos , Medição de Risco , Clima Desértico
10.
Anal Chim Acta ; 1324: 343098, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218578

RESUMO

BACKGROUND: Arsenic, classified as a priority pollutant and human carcinogen by the IARC, is subject to stringent regulatory limits in food and water. Among various arsenic species found in water samples, arsenite (As(III)) is identified as the most toxic form. Given the limitations of conventional spectroscopic techniques in speciation analysis, there is a crucial need for innovative and sustainable methodologies that enable arsenic speciation. Simplifying these methodologies is essential for widespread applicability and effective environmental monitoring. RESULTS: This study proposes a simple and cost-effective analytical methodology for speciating inorganic arsenic in water samples. The method involves extracting As(III) into a polymer inclusion membrane (PIM) containing the extractant Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid), followed by analysis using energy dispersive X-ray fluorescence (EDXRF) spectrometry. The concentration of arsenate was measured after a reduction step using a thiosulfate/iodide mixture. This simple methodology allows a limit of quantification for trivalent arsenic (2 µg L-1), which is well below the World Health Organization's recommended maximum permissible level of As in drinking water (10 µg L-1). The method that is developed allows the determination of As at trace levels in waters with naturally occurring arsenic. SIGNIFICANCE AND NOVELTY: This study represents a significant advance in the field, providing a novel and efficient methodology for arsenic speciation analysis in water samples. By combining the advantages of polymer inclusion membrane (PIM) extraction with energy dispersive X-ray fluorescence (EDXRF) spectrometry, this study offers a cost-effective and environmentally friendly approach to address the critical issue of arsenic contamination in water sources, thereby contributing to enhanced environmental monitoring and public health protection.


Assuntos
Arsênio , Polímeros , Espectrometria por Raios X , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Polímeros/química , Arsênio/análise , Espectrometria por Raios X/métodos , Membranas Artificiais
11.
Environ Monit Assess ; 196(10): 946, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289191

RESUMO

Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 µg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.


Assuntos
Arsênio , Quitosana , Ferro , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Arsênio/análise , Arsênio/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Ferro/química , Polímeros/química
12.
Sci Total Environ ; 952: 175896, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39222818

RESUMO

Rice is a staple food for a significant portion of the global population. Arsenic (As) accumulated in rice grains influences rice quality which threatens human health. In this study, we used three machine learning models to predict arsenic accumulation in rice based on over 300 surveys. The prediction results of soil arsenic indicate that high-arsenic soil areas are mainly distributed in South and Southeast Asia such as India, China, and Thailand. In addition, higher bioaccumulation factors (BAF), associated with higher temperature, are predominantly observed in eastern India and southern Myanmar. However, arsenic content in soil is relatively lower in these areas. About 5.5 billion population may be threatened by the consumption of high-arsenic rice. It can be concluded that temperatures may influence the BAF except for soil arsenic, and soil physicochemical properties. Further research on the relationship between climate parameters and BAF should be conducted to address and adapt to future climate change. Additionally, understanding the mechanism of arsenic accumulation under different climatic conditions is crucial for developing agricultural technologies to reduce arsenic accumulation in rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Solo/química , Índia , Monitoramento Ambiental , Contaminação de Alimentos/análise , China , Mudança Climática , Agricultura
13.
Environ Sci Pollut Res Int ; 31(43): 55251-55262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39225932

RESUMO

The present paper deals with an analysis of total arsenic concentration using ICP-MS/MS and an analysis of concentration of several arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonate (MMA), dimethylarsenite (DMA), and trimethylarsine oxide (TMAO), using HPLC-ICP-MS/MS in the PM10 fraction of airborne urban aerosol. The samples were collected during two campaigns, in the autumn of 2022 and in the winter of 2023, at three locations within the central European city of Brno, with the aim to evaluate the seasonal and spatial variations in the PM10 composition. The results confirmed only the seasonal variability in the content of the methylated arsenic species in PM10 influenced by biomethylation processes. To gain better understanding of the possible arsenic origin, a supplementary analysis of the total arsenic concentrations was performed in samples of different size fractions of particulate matter collected using ELPI + . Local emissions, including industrial activities and heating during the winter season, were suggested as the most likely predominant source contributing to the total As content in PM10.


Assuntos
Poluentes Atmosféricos , Arsênio , Monitoramento Ambiental , Material Particulado , Estações do Ano , Arsênio/análise , Material Particulado/análise , República Tcheca , Poluentes Atmosféricos/análise , Cidades
14.
Wei Sheng Yan Jiu ; 53(5): 805-810, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39308113

RESUMO

OBJECTIVE: To investigate the pollution status of lead, cadmium, total arsenic and total mercury in commercially available cereal-based complementary foods in infants and toddlers in Jiangxi Province, and to evaluate dietary exposure and their potential health risks. METHODS: A total of 648 samples of cereal-based complementary foods in for infants and toddlers were randomly collected in circulation in Jiangxi Province, the contents of lead and cadmium were determined by graphite furnace atomic absorption spectrophotometry, and total arsenic and mercury were determined by atomic fluorescence spectrometry. The dietary exposure of lead, cadmium, total arsenic and total mercury was calculated by point estimate model. Margin of exposure(MOE) and tolerable intake(TI) were used to assess the health risks. RESULTS: The average values of lead, cadmium, total arsenic and total mercury in cereal-based complementary foods in Jiangxi Province were 0.039, 0.062, 0.080 and 0.0016 mg/kg, the average detection rates are 81.2%, 94.6%, 89.4% and 73.4%. There were no exceedance samples for lead, total arsenic and total mercury. There were partial exceedances of the cadmium standard in 2015-2018, and cadmium exceedances improved significantly in 2019. The MOE values of lead and total arsenic were greater than 1 in different years, total mercury exposure accounted for 0.71%-2.13% of the provisional tolerable weekly intake(PTWI), cadmium exposure accounted for 43.5%-62.3% of the provisional tolerable monthly intake(PTMI) in 2015-2018, decreasing to7.91%-9.23% of the PTMI in 2019. CONCLUSION: Lead, total arsenic and total mercury contamination in cereal-based complementary foods in Jiangxi Province monitored from 2015 to 2019 was relatively light, cadmium contamination has improved significantly and the health risk of heavy metal intake through cereal-based complementary foods for infants and young children was at an acceptable level.


Assuntos
Arsênio , Cádmio , Exposição Dietética , Grão Comestível , Contaminação de Alimentos , Chumbo , Mercúrio , Metais Pesados , Humanos , Lactente , Grão Comestível/química , Contaminação de Alimentos/análise , Metais Pesados/análise , Chumbo/análise , Cádmio/análise , Mercúrio/análise , China , Exposição Dietética/análise , Arsênio/análise , Pré-Escolar , Alimentos Infantis/análise , Feminino , Masculino
15.
Environ Sci Pollut Res Int ; 31(43): 55410-55421, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39230812

RESUMO

The transfer of arsenic (As) from soil to plant could be significantly influenced by soil parameters through regulating soil As bioavailability. To distinguish the bioavailable As provided by soil and the As uptaken by plants, herein two different soil bioavailable were defined, namely potential soil bioavailable As (evaluated through the bioavailable fraction of As) and actual soil bioavailable As (assessed through plant bioaccumulation factor, BF, and BFavailable). To identify the dominant soil parameters for the two soil bioavailable As forms, soil and plant samples were collected from a former As mine site. The results showed that the potential bioavailable As only accounted for 1.77 to 11.43% in the sampled soils, while the BF and BFavailable in the sampled vegetables ranged from 0.00 to 1.01 and 0.01 to 17.87, respectively. Despite a similar proportion of As in the residual fraction, soil with higher pH and organic matter (OM) content and lower iron (Fe) content showed a higher potential soil bioavailable As. Correlation analysis indicated a relationship between the soil pH and potential soil bioavailable As (r = 0.543, p < 0.01) and between the soil Fe and actual soil bioavailable As (r = - 0.644, p < 0.05, r = - 0.594, p < 0.05). Stepwise multiple linear regression (SMLR) analysis was employed to identify the dominant soil parameters and showed that soil pH and phosphorus (P) content could be used to predict the potential soil bioavailable As (R2 = 0.69, p < 0.001). On the other hand, soil Fe and OM could be used to predict the actual soil bioavailable As (R2 = 0.18-0.86, p < 0.001-0.015, in different vegetables). These results suggest that different soil parameters affect potential and actual soil bioavailable As. Hence, soil Fe and OM are the most important parameters controlling As transfer from soil to plant in the investigated area.


Assuntos
Arsênio , Ferro , Mineração , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Solo/química , China , Plantas , Monitoramento Ambiental
16.
Environ Health ; 23(1): 77, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304890

RESUMO

Groundwater arsenic poisoning has posed serious health hazards in the exposed population. The objective of the study is to evaluate the arsenic ingestion from breastmilk among pediatric population in Bihar. In the present study, the total women selected were n = 513. Out of which n = 378 women after consent provided their breastmilk for the study, n = 58 subjects were non-lactating but had some type of disease in them and n = 77 subjects denied for the breastmilk sample. Hence, they were selected for the women health study. In addition, urine samples from n = 184 infants' urine were collected for human arsenic exposure study. The study reveals that the arsenic content in the exposed women (in 55%) was significantly high in the breast milk against the WHO permissible limit 0.64 µg/L followed by their urine and blood samples as biological marker. Moreover, the child's urine also had arsenic content greater than the permissible limit (< 50 µg/L) in 67% of the studied children from the arsenic exposed regions. Concerningly, the rate at which arsenic is eliminated from an infant's body via urine in real time was only 50%. This arsenic exposure to young infants has caused potential risks and future health implications. Moreover, the arsenic content was also very high in the analyzed staple food samples such as rice, wheat and potato which is the major cause for arsenic contamination in breastmilk. The study advocates for prompt action to address the issue and implement stringent legislative measures in order to mitigate and eradicate this pressing problem that has implications for future generations.


Assuntos
Arsênio , Exposição Materna , Leite Humano , Poluentes da Água , Humanos , Leite Humano/química , Arsênio/análise , Arsênio/sangue , Arsênio/toxicidade , Arsênio/urina , Índia , Poluentes da Água/toxicidade , Poluentes da Água/urina , Recém-Nascido , Lactente , Alimentos , Oryza/química , Triticum/química , Solanum tuberosum/química
17.
Curr Oncol ; 31(9): 5472-5483, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39330033

RESUMO

Prostate cancer is a common cancer among males in the US, but little is known about its risk factors, including trace elements. The primary aim of this study was to examine prostate cancer and its association with arsenic and selenium in toenails. We conducted a small, nested case-control study of men residing in Iowa within the Agricultural Health Study cohort, where we also collected toenail samples to test for arsenic and other trace elements. Toenail samples were sent for neutron activation analysis aimed at long-lived trace elements, including arsenic. Logistic regression was used to estimate odds ratios (ORs) for trace element exposures and prostate cancer. A total of 66 prostate cancer cases and 173 healthy controls returned questionnaires, over 99% of which included toenail samples. An increased risk was seen for the highest levels of arsenic (OR = 3.4 confidence interval (CI) of 1.3-8.6 and OR = 2.2, 95% CI of 0.9-5.6) and the highest level of selenium (2.0, 95% CI of 1.0-4.0). These data also show detectable levels of over 50% for 14 of 22 elements detected in the toenails. The association seen here with arsenic and prostate cancer further supports ecological studies finding an association with community levels of arsenic and prostate cancer incidence and mortality.


Assuntos
Arsênio , Unhas , Neoplasias da Próstata , Selênio , Oligoelementos , Humanos , Masculino , Neoplasias da Próstata/epidemiologia , Unhas/química , Selênio/análise , Arsênio/análise , Pessoa de Meia-Idade , Estudos de Casos e Controles , Oligoelementos/análise , Idoso , Praguicidas/análise , Fatores de Risco , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
18.
Environ Sci Pollut Res Int ; 31(39): 52306-52325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143385

RESUMO

Potentially toxic elements (PTEs), especially arsenic in drinking water, pose significant global health risks, including cancer. This study evaluates the groundwater quality in Giresun province on the Black Sea coast of Türkiye by analyzing twelve groundwater resources. The mean concentrations of macronutrients (mg/L) were: Ca (10.53 ± 6.63), Na (6.81 ± 3.47), Mg (3.39 ± 2.27), and K (2.05 ± 1.10). The mean levels of PTEs (µg/L) were: Al (40.02 ± 15.45), Fe (17.65 ± 14.35), Zn (5.63 ± 2.59), V (4.74 ± 5.85), Cu (1.57 ± 0.81), Mn (1.02 ± 0.76), As (0.93 ± 0.73), Cr (0.75 ± 0.57), Ni (0.41 ± 0.18), Pb (0.36 ± 0.23), and Cd (0.10 ± 0.05). All PTE levels complied with WHO drinking water safety guidelines, and overall water quality was excellent. The heavy metal evaluation index (HEI < 10) and heavy metal pollution index (HPI < 45) indicate low pollution levels across all stations. Irrigation water quality was largely adequate, as shown by the magnesium hazard (MH), sodium adsorption ratio (SAR), Na%, and Kelly's ratio (KR). The total hazard index (THI) values consistently remained below 1, indicating no non-carcinogenic health risks. However, at station 10 (city center), the cancer risk (CR) for adults due to arsenic was slightly above the threshold (1.44E-04). Using principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping, the study determined that most PTEs originated from natural geological formations or a combination of natural and human sources, with minimal impact from human activities. These findings highlight the safety and reliability of the groundwater sources studied, emphasizing their potential as a long-term, safe water supply for nearby populations.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Medição de Risco , Poluentes Químicos da Água/análise , Metais Pesados/análise , Mar Negro , Humanos , Água Potável/química , Arsênio/análise
19.
Sci Total Environ ; 951: 175531, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147056

RESUMO

Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.


Assuntos
Recuperação e Remediação Ambiental , Medição de Risco , Recuperação e Remediação Ambiental/métodos , Poluentes Ambientais , Metais Pesados/análise , Metaloides/análise , Mercúrio/análise , Arsênio/análise , Monitoramento Ambiental , Poluição Ambiental , Humanos , Antimônio/análise
20.
Sci Total Environ ; 951: 175500, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151637

RESUMO

Arsenic pollution in paddy fields has become a public concern by seriously threatening rice growth, food security and human health. In this review, we delve into the biogeochemical behaviors of arsenic in paddy soil-rice system, systemically revealing the complexity of its migration and transformation processes, including the release of arsenic from soil to porewater, uptake and translocation of arsenic by rice plants, as well as transformation of arsenic species mediated by microorganism. Especially, microbial processes like reduction, oxidation and methylation of arsenic, and the coupling of arsenic with carbon, iron, sulfur, nitrogen cycling through microbes and related mechanisms were highlighted. Environmental factors like pH, redox potential, organic matter, minerals, nutrient elements, microorganisms and periphyton significantly influence these processes through different pathways, which are discussed in this review. Furthermore, the current progress in remediation strategies, including agricultural interventions, passivation, phytoremediation and microbial remediation is explored, and their potential and limitations are analyzed to address the gaps. This review offers comprehensive perspectives on the complicated behaviors of arsenic and influence factors in paddy soil-rice system, and provides a scientific basis for developing effective arsenic pollution control strategies.


Assuntos
Arsênio , Biodegradação Ambiental , Oryza , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Solo/química , Agricultura/métodos , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...