Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.233
Filtrar
1.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39227171

RESUMO

AIMS: This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter). METHODS AND RESULTS: The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores). CONCLUSIONS: A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.


Assuntos
Arabidopsis , Arsênio , Brassica napus , Flavobacterium , Estresse Oxidativo , Arsênio/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Arabidopsis/efeitos dos fármacos , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/efeitos dos fármacos , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Clorofila/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Estresse Fisiológico , Microbiologia do Solo , Giberelinas/metabolismo , Giberelinas/farmacologia , Sideróforos/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Farmacorresistência Bacteriana
2.
J Hazard Mater ; 478: 135633, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182296

RESUMO

Contamination of rice by arsenic represents a significant human health risk. Roxarsone -bearing poultry manure is a major pollution source of arsenic to paddy soils. A mesocosm experiment plus a laboratory experiment was conducted to reveal the role of rainwater-borne H2O2 in the degradation of roxarsone in paddy rice soils. While roxarsone could be degraded via chemical oxidation by Fenton reaction-derived hydroxyl radical, microbially mediated decomposition was the major mechanism. The input of H2O2 into the paddy soils created a higher redox potential, which favored certain roxarsone-degrading and As(III)-oxidizing bacterial strains and disfavored certain As(V)-reducing bacterial strains. This was likely to be responsible for the enhanced roxarsone degradation and transformation of As(III) to As(V). Fenton-like reaction also tended to enhance the formation of Fe plaque on the root surface, which acted as a filter to retain As. The dominance of As(V) in porewater, combined with the filtering effect of Fe plaque significantly reduced the uptake of inorganic As by the rice plants and consequently its accumulation in the rice grains. The findings have implications for developing management strategies to minimize the negative impacts from the application of roxarsone-containing manure for fertilization of paddy rice soils.


Assuntos
Arsênio , Peróxido de Hidrogênio , Oryza , Chuva , Roxarsona , Poluentes do Solo , Oryza/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Roxarsona/metabolismo , Roxarsona/química , Arsênio/metabolismo , Arsênio/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Esterco , Ferro/química , Ferro/metabolismo , Disponibilidade Biológica , Microbiologia do Solo , Biodegradação Ambiental , Solo/química
3.
Ecotoxicol Environ Saf ; 283: 116843, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128449

RESUMO

Fifteen poplar varieties were used in a field trial to investigate the phytoremediation efficiency, stress resistance, and wood property of poplar hybrid varieties with diverse genetic backgrounds under the composite pollution of heavy metals. The coefficient of variation and clone repeatability for growth traits and Cd concentration were large. The Cd accumulation of poplar varieties 107 and QHQ reached 1.9 and 1.7 mg, respectively, followed by QHB, Ti, 69, and Pa, in which Cd accumulation reached 1.3 mg. Most of the intra-specific hybrid varieties (69, QH1, SL4, T3, and ZL46) had low Cd concentrations and small biomass, resulting in weak Cd accumulation and low phytoremediation efficiency for Cd-polluted soil. By contrast, the inter-sectional and inter-specific hybrid varieties exhibited better growth performance and accumulated higher concentrations of heavy metals than the intra-specific hybrids. The bioconcentration factor and translocation factor of Hg, As, and Pb were less than 1, indicating that poplars have low phytoremediation efficiency for these heavy metals. The hybrids between section Aigeiros and Tacamahaca (QHQ and QHB) and the inter-specific hybrid 107 within section Aigeiros were more resistant to composite heavy metal stress than the other poplar varieties were partially because of their high levels of free proline that exceeded 93 µg·g-1 FW. According to the correlation analysis of the concentrations of the different heavy metals, the poplar roots absorbed different heavy metals in a cooperative manner, indicating that elite poplar varieties with superior capacity for accumulating diverse heavy metals can be bred feasibly. Compared with the intra-specific hybrid varieties, the inter-sectional (QHQ and QHB) and inter-specific (107) hybrid varieties had higher pollution remediation efficiency, larger biomass, higher cellulose content, and lower lignin content, which is beneficial for pulpwood. Therefore, breeding and extending inter-sectional (QHQ and QHB) and inter-specific hybrid varieties can improve the phytoremediation of composite pollution.


Assuntos
Biodegradação Ambiental , Cádmio , Chumbo , Metais Pesados , Populus , Poluentes do Solo , Populus/genética , Populus/efeitos dos fármacos , Populus/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Metais Pesados/análise , Metais Pesados/toxicidade , Cádmio/toxicidade , Cádmio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Biomassa , Arsênio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Mercúrio/análise , Hibridização Genética
4.
BMC Plant Biol ; 24(1): 799, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179967

RESUMO

Bell pepper (Capsicum annuum L.); an important spice crop of the region is a rich source of vitamins and antioxidants having many health benefits. Many biotic and abiotic factors contribute towards growth and yield losses of this crop. Arsenic (As) toxicity is a global issue, but it is particularly critical in developing countries. The current study was designed to evaluate the efficacy of selenium (Se) in mitigating the toxic effects of As in two varieties (HSP-181 A and PS09979325) of Capsicum annuum L. Different concentrations of As (0, 50, and 100 µM) and Se (0, 5, and 10 µM) were tested using 14 days old seedlings of C. annuum L. The As stress caused a significant (P ≤ 0.001) reduction in growth, uptake of nutrients, and eco-physiological attributes in both varieties however, the response was specific. While the overproduction of osmo-protectants and antioxidants intensified the symptoms of oxidative stress. The maximum reduction in shoot length (45%), fresh weight (29%), and dry weight (36%) was observed in under 100 µM As stress. The organic acids exudation from the roots of both cultivars were significantly increased with the increase in As toxicity. The Se treatment significantly (p ≤ 0.001) improved growth, nutrient uptake, gas exchange attributes, antioxidant production, while decreased oxidative stress indicators, and As uptake in the roots and shoots of all the subjects under investigation. It is concluded from the results of this study that Se application increased photosynthetic efficiency and antioxidant activity while decreasing As levels, organic acid exudation, and oxidative stress indicators in plants. Overall, the var. PS09979325 performed better and may be a good candidate for future pepper breeding program.


Assuntos
Antioxidantes , Arsênio , Capsicum , Fotossíntese , Selênio , Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Capsicum/fisiologia , Arsênio/toxicidade , Arsênio/metabolismo , Antioxidantes/metabolismo , Selênio/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
5.
Sci Total Environ ; 951: 175562, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153621

RESUMO

Arsenic (As) is the most prolific contaminant in food, triggering arseniasis primarily via contaminated rice and drinking contaminated water. However, toxicological data for arsenite (As (III)) and arsenate (As (V)) on antioxidant enzyme catalase (CAT) at molecular level is shortage. The interaction mechanism of As (III) and As (V) with CAT was investigated using enzyme activity detection, multi-spectroscopic techniques, isothermal titration calorimetry and computational simulations. Results indicated As (III) and As (V) induced protein skeleton relaxation, secondary structure transformation, fluorescence sensitization and particle alteration of CAT, particularly As (III). Moreover, As (III)/As (V) bound to CAT through hydrogen bonding and hydrophobic. As (III) and As (V) contacted with core residues His 74, Asn 147 and His A74, Trp A357, respectively, thereby inhibiting CAT activity. Overall, As (III) is more aggressive against the structure and physiological function of CAT than As (V). Our findings enhance the understanding of health risk related to dietary As exposure.


Assuntos
Catalase , Catalase/metabolismo , Arsênio/metabolismo
6.
Sci Rep ; 14(1): 18833, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138343

RESUMO

Coix lacryma-jobi L. is a traditional medicinal plant in east Asia and is an important crop in Guizhou province, southwest China, where there are elevated levels of soil mercury and arsenic (As). Exposure to multiple potentially toxic elements (PTEs) may affect plant accumulation of metal(loid)s and food safety in regions with high geological metal concentrations. Field experiments were conducted to study the effects of PTEs on metal(loid) accumulation and physiological response of C. lacryma in different plant parts at three pollution levels. Total root length, number of root tips, number of branches, and number of root crosses increased with increasing pollution level, with increases in highly polluted areas of 44.2, 57.0, 79.6, and 97.2%, respectively, compared to lightly polluted areas. Under multi-element stress the activity of C. lacryma antioxidant oxidase showed an increase at low and medium PTE concentrations and inhibition at high concentrations. The As contents were all below the maximum limit of cereal food contaminants in China (GB 2762-2022, As < 0.5 mg kg-1). The stems had high Tl bioconcentration factors but the translocation factors from stem to grain were very low, indicating that the stems may be a key plant part restricting Tl transport to the grains. C. lacryma increased root retention and reduced the transport effect, thus reducing metal accumulation in the grains. C. lacryma adapted to PTE stress through root remodeling and enhanced antioxidant enzyme activities.


Assuntos
Mineração , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Solo/química , China , Arsênio/toxicidade , Arsênio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Mercúrio/análise
7.
Environ Sci Pollut Res Int ; 31(38): 50243-50260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088178

RESUMO

Concentrations of one metalloid (As) and eight metals (Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) were determined in tissues (muscle, liver, and kidney) of eight snake species (Bothrops neuwiedi, Crotalus durissus, Dipsas mikanii, Epicrates crassus, Helicops modestus, Micrurus carvalhoi, Oxyrhopus guibei, and Oxyrhopus trigeminus) from Lagoa Santa Karst. Except for Cu and Zn, all other analyzed elements were detected in concentrations within the ranges previously reported for snakes inhabiting polluted areas, emphasizing Hg (specific Hg mean concentrations varied from 0.87 to 9.76 µg g-1 d.w). The highest mean concentrations of all elements except Zn were found in muscle samples of the false corals O. guibei (means ranged from 2.01 [Pb] to 9.76 [Hg]). The highest Zn mean concentration (13.77 µg g-1 d.w) was detected in the kidney of the water snake H. modestus. No significant correlation was found between element concentrations and body size for all species. Significant interorgan differences were observed for As, Cr, Cu, Hg, Mn, Pb, and Zn concentrations in the three tissues in H. modestus. Significant interspecific differences were found in at least one organ for all elements. Significant pairwise differences were found between diet specialist species and between these species and broader diet species, while no significant difference was found between the broader diet species. The bioaccumulation of As and metals in snakes from Lagoa Santa Karst could be associated with natural rock dissolution and erosion processes but also with the wide-scale mining in the region and the increased agriculture and urbanization.


Assuntos
Arsênio , Monitoramento Ambiental , Serpentes , Animais , Arsênio/análise , Arsênio/metabolismo , Brasil , Metais/análise , Rim/química , Poluentes Químicos da Água/análise , Fígado/química
8.
J Environ Manage ; 369: 122315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213846

RESUMO

Investigating natural processes in arsenic (As) polluted areas and plants that have naturally chosen to grow there pose practical restoration recommendations. This study aimed to assess long-term changes in natural As dendroremediation dynamics for Quercus robur L. and Tilia cordata Mill., tree species capable of growing in areas polluted by mining activities. We examined total As and its forms, as well as B, Ca, K, Mg, Na and P, in soil and trees over 5 years. We also characterized pH and EC of soil, examined proline content in tree organs, and calculated Bioconcentration Factor (BCF) and Translocation Factor (TF) for As. Initial As concentrations in soil were 37.0 mg kg⁻1 under Q. robur and 34.7 mg kg⁻1 under T. cordata, significantly decreasing after 5 years to 10.5 mg kg⁻1 and 9.51 mg kg⁻1, respectively. This corresponds to pollution reduction of up to 71.8%. A notable decrease in As(III) and dimethylarsinic acid, along with increase in other organic As forms in soil, was observed. Additionally, concentrations of essential elements in soil, as well as its pH and EC, decreased over time. Both tree species accumulated substantial amounts of As in their organs, but the dynamics of this process were species-specific. During first 4 years, T. cordata accumulated more As and exhibited higher BCF, but in the 5th year, it was clearly surpassed by Q. robur. The highest TF was calculated for Q. robur in year 3, and for T. cordata in years 2 and 3. Generally, limited aboveground movement of As was indicated: BCF >1 were calculated for years 2 and 3, while TF were consistently <1. Proline content increased significantly in all organs, correlating with As, especially in Q. robur. In contrast, Q. robur leaves mapping revealed stable macroelement distributions, but clear variations were observed for T. cordata., which may suggest specific reaction to stress. These findings suggest that both species can effectively restore As-polluted areas, though with different dynamics. The selection of species for dendrorestoration should be based on whether the goal is faster remediation with lesser overall reduction (e.g. T. cordata) or slower remediation with ultimately greater pollution reduction (e.g. Q. robur).


Assuntos
Arsênio , Biodegradação Ambiental , Quercus , Poluentes do Solo , Solo , Tilia , Arsênio/metabolismo , Arsênio/análise , Quercus/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Tilia/metabolismo , Estudos Longitudinais , Árvores/metabolismo
9.
Mar Pollut Bull ; 207: 116866, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216259

RESUMO

Microbiota exposed to pollution provide insights into host physiology and ecosystem disruption. This study evaluated Enterococcus spp. tolerant to arsenic (As), copper (Cu), and mercury (Hg) from red-billed tropicbirds (Phaethon aethereus) and brown boobies (Sula leucogaster), which previously showed these metals in their blood and feathers, and their potential use as bioindicators of metal contamination. Enterococcus casseliflavus (47.9 %), E. faecalis (34.1 %), E. hirae (11.7 %), and E. faecium (5.3 %) were identified. Both seabird species had a high incidence of As-tolerant bacteria (84.0 %), with 40.4 % of these strains containing As efflux system genes (arsA_I and arsA_II). Cu efflux pump gene (tcrB) was detected in 30.9 % of strains, while Hg reductase genes (mer) were not found. As- and Cu-tolerance in enterococci observed in this study underlines their potential as bioindicators in metal-polluted marine environments. Further research may elucidate the role of these metal-tolerant enterococci in seabird gut and their adaptability to polluted environments.


Assuntos
Aves , Enterococcus , Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Enterococcus/genética , Enterococcus/isolamento & purificação , Brasil , Monitoramento Ambiental/métodos , Aves/microbiologia , Arsênio/metabolismo , Cobre , Mercúrio/metabolismo , Metais Pesados
10.
Environ Sci Pollut Res Int ; 31(42): 54618-54633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207620

RESUMO

Chromium and arsenic are among the priority pollutants to be controlled by regulatory and health agencies due to their ability to accumulate in food chains and the harmful effects on health resulting from the ingestion of food contaminated with metals and metalloids. In the present work, four biohybrid membrane systems were developed as alternatives for the removal of these pollutants, three based on polyvinyl alcohol polymeric mesh (PVA, PVA-magnetite, PVA L-cysteine) and one based on polybutylene adipate terephthalate (PBAT), all associated with bioremediation agents. The efficiency of the bioassociation process was assessed through count methods and microscopy. The removal capacity of these systems was evaluated in synthetic liquid medium, both in the absence and in the presence of soybean (Glycine max L.) seedlings. The content of chromium and arsenic was also analyzed in aerial and hypogeous tissues of seedlings grown on contaminated solid substrate. PVA and PVA-magnetite biohybrid membranes showed the highest removal rates, between 57 and 75% of the initial arsenic content and more than 80% of the initial chromium content after 48 h of treatment, when evaluated in synthetic liquid media with initial concentrations of 2.5 ppm of pentavalent arsenic and 5 ppm of hexavalent chromium, both in presence and absence of seedlings. PVA and PBAT promoted a significant reduction of arsenic translocation to the aerial parts, generally edible, of this crop of agronomic interest. The systems tested showed a high potential for biotechnological applications in matrices affected by the presence of arsenic and chromium.


Assuntos
Arsênio , Cromo , Glycine max , Plântula , Glycine max/metabolismo , Arsênio/metabolismo , Cromo/química , Biodegradação Ambiental
11.
Environ Pollut ; 359: 124725, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142427

RESUMO

Cadmium (Cd) and arsenic (As) have contrasting biogeochemical behaviors in paddy soil, which posed an obstacle for reducing their accumulation in rice (Oryza sativa L.) simultaneously. In this study, selenate exhibited a more effective ability than selenite on simultaneous alleviation of Cd and As accumulation in rice under Cd-As co-exposure, and the mechanisms need to be further investigated. The results showed that selenate significantly decreased the root Cd and As contents by 59%-83% and 43%-72% compared to Cd-As compound exposure, respectively. Correspondingly, it significantly down-regulated the expression of uptake-related genes OsNramp5 (87.1%) and OsLsi1 (95.5%) in rice roots. Decreases in Cd (64.5%) and As (16.2%) contents in shoots were also found after selenate addition. Moreover, selenate may promoted the reduction of As(V) to As(Ⅲ) and As(III) efflux to the external medium, resulting in decreased As accumulation and As(Ⅲ) proportion in rice shoots and roots. In addition, selenate could promote the binding of Cd (by 14%-24%) and As (by 9%-15%) in the cell wall, and significantly reduced the oxidative stress by elevating levels of antioxidant enzymes (by 10%-105%) and thiol compounds (by 6%-210%). Additionally, selenate significantly down-regulated the expression of OsNramp1 (49.3%) and OsLsi2 (82.1%) associated with Cd and As transport in rice. These findings suggest selenate has the potential to be an effective material for the simultaneous reduction of Cd and As accumulation in rice under Cd-As co-contamination.


Assuntos
Arsênio , Cádmio , Oryza , Ácido Selênico , Poluentes do Solo , Oryza/genética , Oryza/metabolismo , Cádmio/metabolismo , Arsênio/metabolismo , Ácido Selênico/metabolismo , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
J Hazard Mater ; 477: 135322, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39079291

RESUMO

Arsenic-hyperaccumulator Pteris vittata exhibits remarkable absorption ability for chromium (Cr) while beneficial element selenium (Se) helps to reduce Cr-induced stress in plants. However, the effects of Se on the Cr uptake and the associated mechanisms in P. vittata are unclear, which were investigated in this study. P. vittata plants were grown for 14 days in 0.2-strength Hoagland solution containing 10 (Cr10) or 100 µM (Cr100) chromate (CrVI) and 1 µM selenate (Se1). The plant biomass, malondialdehyde contents, total Cr and Se contents, Cr speciation, expression of genes associated with Cr uptake, and Cr subcellular distribution in P. vittata were determined. P. vittata effectively accumulated Cr by concentrating 96-99% in the roots under Cr100 treatment. Further, Se substantially increased its Cr contents by 98% to 11,596 mg kg-1 in the roots, which may result from Se's role in reducing its oxidative stress as supported by 27-62% reduction in the malondialdehyde contents. Though supplied with CrVI, up to 98% of the Cr in the roots was reduced to insoluble chromite (CrIII), with 83-89% being distributed on root cell walls. Neither Cr nor Se upregulated the expression of sulfate transporters PvSultr1;1-1;2 or phosphate transporter PvPht1;4, indicating their limited role in Cr uptake. P. vittata effectively accumulates Cr in the roots mainly as CrIII on cell walls and Se effectively enhances its Cr uptake by reducing its oxidative stress. Our study suggests that Se can be used to enhance P. vittata Cr uptake and reduce its oxidative stress, which may have application in phytostabilization of Cr-contaminated soils.


Assuntos
Cromo , Raízes de Plantas , Pteris , Selênio , Poluentes do Solo , Pteris/metabolismo , Pteris/efeitos dos fármacos , Cromo/metabolismo , Cromo/toxicidade , Selênio/metabolismo , Selênio/farmacologia , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Biodegradação Ambiental , Cromatos/toxicidade , Cromatos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
13.
Chemosphere ; 363: 142891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025312

RESUMO

Omnipresent in terrestrial ecosystems, microplastics (MPs) represent a hazard to soil biota and human health, while their relationship with other environmental contaminants remains poorly acknowledged. This study investigated MPs prevalence in (sub)urban soils of Serbia and its impact on Cd, As, and Pb mobility in the soil-medicinal plant Capsella bursa-pastoris (L.) Medik system. Soil physicochemical parameters (pH, Eh, SOM, and texture) were analyzed alongside the Cd, As, and Pb pseudo-total (aqua regia) and phytoavailable (EDTA) contents. Toxic elements' concentrations in soil fractions and C. bursa-pastoris roots and shoots were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Pseudo-total Cd, As, and Pb contents in soils ranged from 0.16 to 2.23 µg g-1, 2.00-36.92 µg g-1, and 0.18-65.54 µg g-1, respectively. Using an optimized density separation method with 30% H2O2 and 5% NaClO, we found an average abundance of 489 MPs per kg of soil. ATR-FTIR spectroscopy confirmed the presence of seven polymer types, whereby the main contributors were polystyrene (PS) - 28.57% and cardanol prepolymer (PCP) - 23.81%. The dominant associated pollution sources were road networks and industrial activities. Spearman correlation analysis revealed the interconnection among soil MPs, physicochemical variables, and Cd, As, and Pb mobility. We identified significant positive correlations between MPs' abundance and phytoavailable concentrations of Cd, As, and Pb (ρ = 0.82, 0.95, and 0.63). Moreover, soil MPs strongly positively correlated with Cd contents in roots (ρ = 0.61) and shoots of C. bursa-pastoris (ρ = 0.65). These findings underscore the synergistic effects of MPs and toxic metals in urban environmental pollution, with possible implications for human health. Further research is required to deepen our understanding of the impact of MPs on element mobility in complex plant-soil systems and to elucidate the broader consequences of induced alterations.


Assuntos
Cádmio , Monitoramento Ambiental , Chumbo , Microplásticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Sérvia , Chumbo/metabolismo , Chumbo/análise , Cádmio/metabolismo , Cádmio/análise , Microplásticos/metabolismo , Microplásticos/análise , Solo/química , Arsênio/metabolismo , Arsênio/análise
14.
Chemosphere ; 363: 142903, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029704

RESUMO

Selenium (Se) fortification is witnessed to simultaneously inhibit absorbing Cadmium (Cd) and Arsenic (As) by rice plants, but the mechanism is unclear. Here, the effects of Se on the root morphology, iron plaque (IP) content, soil Fe2+ content, radial oxygen loss (ROL), and enzyme activities of the rice plants in the soil contaminated by Cd and As were intensively investigated through the hydroponic and soil experiments. Se effectively alleviated the toxic effects of Cd and As on the plants and the dry weight, root length, and root width were increased by 203.18%, 33.41%, and 52.81%, respectively. It also elucidated that ROL was one of the key factors to elevate IP formation by Se and the specific pathways of Se enhancing ROL were identified. ROL of the plants in the experiment group treated by Se was increased 36.76%, and correspondingly IP was magnified 50.37%, compared to the groups with Cd and As. It was owing to Se significantly increased the root porosity (62.11%), facilitating O2 transport to the roots. Additionally, Se enhanced the activities of catalase (CAT) and superoxide dismutase (SOD) to promote the catalytic degradation of ROS induced by Cd and As stress. It indirectly increased O2 release in the rhizosphere, which benefit to form more robust IP serve as stronger barrier to Cd and As. The results of our study provide a novel molecular level insight for Se promoting root IP to block Cd and As uptake by the rice plants.


Assuntos
Arsênio , Cádmio , Ferro , Oryza , Raízes de Plantas , Selênio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Oryza/metabolismo , Oryza/efeitos dos fármacos , Arsênio/metabolismo , Arsênio/toxicidade , Selênio/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Solo/química , Catalase/metabolismo , Rizosfera , Espécies Reativas de Oxigênio/metabolismo
15.
J Hazard Mater ; 477: 135244, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032176

RESUMO

The co-contamination of arsenic (As) and cadmium (Cd) in rice fields presents a global imperative for resolution. However, understanding the complex microbially driven geochemical processes and network connectivity crucial for As and Cd bioavailability under the frequent redox transitions in rice fields remains limited. Here, we conducted a series of microcosm experiments, using flooding and drainage, alongside fertilization treatments to emulate different redox environment in paddy soils. Soil As significantly reduced in drained conditions following applications of biochar or calcium-magnesium-phosphate (CMP) fertilizers by 26.3 % and 31.2 %, respectively, with concurrent decreases in Cd levels. Utilizing geochemical models, we identified the primary redox cycles dynamically altering during flooding (Fe and S cycles) and drainage (Fe, Mn, and N cycles). PLS-SEM elucidated 76 % and 61 % of the variation in Cd and As through Mn and N cycles. Functional genes implicated in multi-element cycles were analyzed, revealing a significantly higher abundance of assimilatory N reduction genes (nasA, nirA/B, narB) in drained soil, whereas an increase in ammonia-oxidizing genes (amoA/B) and a decrease in nitrate reduction to ammonium genes were observed after CMP fertilizer application. Biochar application led to significant enrichment of the substrate-binding protein of the Mn transport gene (mntC). Moreover, Fe transport genes were enriched after biochar or CMP application compared to drained soils. Among 40 high-quality metagenome-assembled genomes (MAGs), microbial predictors associated with low Cd and As contents across different treatments were examined. Bradyrhizobacea harbored abundant Mn and FeIII transport genes, while Nitrososphaeraceae carried nitrification-related genes. Two MAGs affiliated with Caulobacteraceae, carrying diverse Fe transport genes, were enriched in biochar-applied soils. Therefore, applying CMP fertilizer or biochar in aerobic rice fields can synergistically reduce the bioavailability of Cd and As by specifically enhancing the circulation of essential elements.


Assuntos
Arsênio , Cádmio , Fertilizantes , Ferro , Manganês , Oryza , Microbiologia do Solo , Poluentes do Solo , Arsênio/metabolismo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Manganês/química , Ferro/química , Ferro/metabolismo , Nitrogênio/metabolismo , Nitrogênio/química , Carvão Vegetal/química , Bactérias/metabolismo , Bactérias/genética , Oxirredução , Água/química , Solo/química
16.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954064

RESUMO

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Assuntos
Bacteroidetes , Epsilonproteobacteria , Firmicutes , Proteobactérias , Microbiologia do Solo , Ecossistema , Itália , Solo/química , Metagenoma , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Epsilonproteobacteria/metabolismo , Metano/metabolismo , Oxirredução , Carbono/metabolismo , Hidrogenase/análise , Nitrogênio/metabolismo , Enxofre/metabolismo , Ferro/metabolismo , Arsênio/metabolismo
17.
Arch Microbiol ; 206(8): 362, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066800

RESUMO

Mercury (Hg) is one of the most potent toxic heavy metals that distresses livestock, humans, and ecological health. Owing to uncontrolled exposure to untreated tannery industrial effluents, metals such as Hg are increasing in nature and are, therefore, becoming a global concern. As a result, understanding the thriving microflora in that severe condition and their characteristics becomes immensely important. During the course of this study, two Hg-resistant bacteria were isolated from tannery wastewater effluents from leather factories in Kolkata, India, which were able to tolerate 2.211 × 10- 3 M (600 µg/ml) Hg. 16 S rDNA analysis revealed strong sequence homology with Citrobacter freundii, were named as BNC22A and BNC22C for this study. In addition they showed high tolerance to nickel (Ni) and Chromium (Cr) at 6.31 × 10- 3 M (1500 µg/ml) and 6.792 × 10- 3 M (2000 µg/ml) respectively. However, both the isolates were sensitive to arsenic (As) and cadmium (Cd). Furthermore, their antibiotic sensitivity profiles reveal a concerning trend towards resistance to multiple drugs. Overuse and misuse of antibiotics in healthcare systems and agriculture has been identified as two of the main reasons for the decline in efficacy of antibiotics. Though their ability to produce lipase makes them industrially potent organisms, their competence to resist several antibiotics and metals that are toxic makes this study immensely relevant. In addition, their ability to negate heavy metal toxicity makes them potential candidates for bioremediation. Finally, the green mung bean seed germination test showed a significant favourable effect of BNC22A and BNC22C against Hg-stimulated toxicity.


Assuntos
Antibacterianos , Citrobacter freundii , Farmacorresistência Bacteriana Múltipla , Resíduos Industriais , Mercúrio , Testes de Sensibilidade Microbiana , Águas Residuárias , Citrobacter freundii/isolamento & purificação , Citrobacter freundii/efeitos dos fármacos , Citrobacter freundii/genética , Índia , Mercúrio/metabolismo , Mercúrio/farmacologia , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Resíduos Industriais/análise , Curtume , RNA Ribossômico 16S/genética , Metais Pesados/toxicidade , Cádmio/farmacologia , Arsênio/metabolismo
18.
J Am Chem Soc ; 146(31): 21214-21219, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052934

RESUMO

Arsinothricin is a potent antibiotic secreted by soil bacteria. The biosynthesis of arsinothricin was proposed to involve a C-As bond formation between trivalent As and the 3-amino-3-carboxypropyl (ACP) group of S-adenosyl-l-methionine (SAM), which is catalyzed by the protein ArsL. However, ArsL has not been characterized in detail. Interestingly, ArsL contains a CxxxCxxC motif and thus belongs to the radical SAM enzyme superfamily, the members of which cleave SAM and generate a 5'-deoxyadenosyl radical. Here, we found that ArsL cleaves the Cγ,Met-S bond of SAM and generates an ACP radical that resembles Dph2, a noncanonical radical SAM enzyme involved in diphthamid biosynthesis. As Dph2 does not contain the CxxxCxxC motif, ArsL is a unique radical SAM enzyme that contains this motif but generates a noncanonical ACP radical. Together with the methyltransferase ArsM, we successfully reconstituted arsinothricin biosynthesis in vitro. ArsL has a conserved RCCLKC motif in the C-terminal sequence and belongs to the RCCLKC-tail radical SAM protein subfamily. By truncation and mutagenesis, we showed that this motif plays an important role in binding to the substrate arsenite and is highly important for its activity. Our results suggested that ArsL has a canonical radical SAM enzyme motif but catalyzes a noncanonical radical SAM reaction, implying that more noncanonical radical SAM chemistry may exist within the radical SAM enzyme superfamily.


Assuntos
S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Arsênio/metabolismo , Arsênio/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
19.
BMC Plant Biol ; 24(1): 667, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997682

RESUMO

Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.


Assuntos
Arsênio , Cobre , Elymus , Metabolômica , Micorrizas , Poluentes do Solo , Arsênio/metabolismo , Cobre/metabolismo , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Elymus/metabolismo , Elymus/efeitos dos fármacos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
20.
J Environ Sci (China) ; 146: 81-90, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969464

RESUMO

Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.


Assuntos
Arsênio , Carpas , Eutrofização , Microcystis , Poluentes Químicos da Água , Microcystis/metabolismo , Animais , Carpas/metabolismo , Arsênio/metabolismo , Arsênio/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...