Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
1.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867210

RESUMO

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Assuntos
Artrópodes , Animais , Artrópodes/fisiologia , Venenos de Artrópodes/química , Evolução Biológica , Transcriptoma , Filogenia
2.
Braz J Biol ; 84: e281588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896730

RESUMO

Terminalia argentea tree, native to Brazil, is widely used in landscaping, recovering degraded areas, its wood, coal production, and the bark or leaf extracts has medicinal use. Despite of its importance, the arthropod fauna associated to this plant and its interspecific relationships still needs further studies. The objectives of this study were to evaluate the arthropods, their ecological indices and the distribution in the leaf faces on T. argentea saplings. The numbers of phytophagous insects (e.g., Cephalocoema sp.), pollinators (e.g., Tetragonisca angustula), and natural enemies (e.g., Oxyopidae), and their ecological indices (e.g., species richness), were higher on the adaxial leaf faces on T. argentea saplings. Aggregated distribution of phytophagous insects (e.g., Aphis spiraecola), pollinators (e.g., Trigona spinipes), and natural enemies (e.g., Camponotus sp.) on T. argentea saplings was observed. Abundance, diversity, and species richness of natural enemies correlated, positively, with those of phytophagous and pollinators insects. Predators and tending ants followed their prey and sucking insects, respectively. Tending ants protected sucking insects against predators, and reduced chewing insects. The high number of Cephalocoema sp. on T. argentea saplings is a problem, because this insect can feed on leaves of this plant, but its preference for the adaxial leaf face favors its control. The aggregation behavior of arthropods on T. argentea saplings favors the control of potential pests of this plant. There seems to be competition between tending ants for space and food resources on T. argentea saplings.


Assuntos
Artrópodes , Folhas de Planta , Terminalia , Animais , Folhas de Planta/parasitologia , Artrópodes/classificação , Artrópodes/fisiologia , Terminalia/classificação , Densidade Demográfica , Biodiversidade , Brasil , Insetos/classificação , Insetos/fisiologia
3.
Sci Rep ; 14(1): 14247, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902417

RESUMO

Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) is an important pest in Vigna unguiculata (L.) Walp. Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) is widely used for control of pest mites and insects worldwide. We evaluated its effect on M. usitatus when predators (N. barkeri) or insecticides (Spinetoram) were applied in the fields. Neoseiulus barkeri Hughes consumed 80% of M. usitatus prey offered within 6 h, and predation showed Type III functional response with prey density. The maximum consumption of N. barkeri was 27.29 ± 1.02 individuals per d per arena (1.5 cm diameter), while the optimal prey density for the predatory mite was 10.35 ± 0.68 individuals per d per arena (1.5 cm diameter). The developmental duration of N. barkeri fed with M. usitatus was significantly shorter than those fed with the dried fruit mite, Carpoglyphus lactis (L.) (Acari: Astigmata). In field trials, the efficiency of N. barkeri against M. usitatus was not significantly different from that of applications of the insecticide spinetoram. Biodiversity of other insects in treated fields was assessed, and there were 21 insect species in garden plots treated with N. barkeri releases. The total abundance (N), Shannon's diversity index (H), Pielou's evenness index (J) and Simpson's diversity index (D) of the garden plots treated with predatory mites were all significantly higher than that in the garden plots treated with spinetoram, where we found no species of predators or parasitoids and 7 herbivores. Our results show that N. barkeri is a potential means to control M. usitatus while preserving arthropod diversity at the level of treated gardens.


Assuntos
Biodiversidade , Ácaros , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Ácaros/fisiologia , Controle Biológico de Vetores/métodos , Inseticidas/farmacologia , Artrópodes/fisiologia , Macrolídeos
4.
Sci Rep ; 14(1): 13094, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849533

RESUMO

Many agricultural landscapes offer few resources for maintaining natural enemy populations and floral plantings have frequently been adopted to enhance biological pest control in crops. However, restored margins may harbour both pests and natural enemies. The aim was to compare the abundance of pests and natural enemies in three types of margins (unmanaged, sown herbaceous floral strips and shrubby hedgerows) as well as in adjacent melon fields. Besides, yield was compared among melon fields as way of testing the effect of the type of margin on biocontrol. The research was carried out during 2 years in twelve melon fields from four different locations in southern Spain. Arthropods were sampled periodically in margins and melon fields by visual inspections and Berlese extraction. Hedgerow and floral strips hosted higher numbers of both pests and predators than unmanaged margins. Besides, hedgerows had a similar or higher number of natural enemies than floral strips but lower number of pests. In just a few occasions, the type of margin had a significant effect on the abundance of pests and natural enemies in melon fields, but rarely there was consistency between the two growing seasons. No differences were found in yield. We hypothesised that the lack of association in the abundances of pests and natural enemies between margins and melon fields could be attributed to the overriding effects of the landscape and/or the internal population dynamics of arthropods in melon fields. Overall, shrubby hedgerows are more recommended than herbaceous floral strips.


Assuntos
Cucurbitaceae , Controle Biológico de Vetores , Animais , Cucurbitaceae/parasitologia , Controle Biológico de Vetores/métodos , Espanha , Comportamento Predatório/fisiologia , Produtos Agrícolas/parasitologia , Artrópodes/fisiologia , Agricultura/métodos
5.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841875

RESUMO

The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.


Assuntos
Aclimatação , Artrópodes , Umidade , Termotolerância , Animais , Regiões Árticas , Aclimatação/fisiologia , Artrópodes/fisiologia , Termotolerância/fisiologia , Temperatura , Temperatura Alta , Mudança Climática
6.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853470

RESUMO

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Assuntos
Artrópodes , Biomassa , Estações do Ano , Temperatura , Animais , Regiões Árticas , Artrópodes/fisiologia , Mudança Climática , Cadeia Alimentar , Charadriiformes/fisiologia , Migração Animal
7.
Sci Total Environ ; 944: 173845, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871314

RESUMO

Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.


Assuntos
Mudança Climática , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Animais , Inseticidas/toxicidade , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Poluentes do Solo/toxicidade , Solo/química , Adaptação Fisiológica , Imidazóis/toxicidade
8.
Chemosphere ; 361: 142448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823429

RESUMO

Chitin synthesis inhibitors (CSIs) are commonly used insecticides compromising cuticle formation and structure in arthropods. Arthropods rely on intact cuticles to maintain water balance and cellular homeostasis to survive in different weather conditions. We hypothesized that physiological impacts of CSIs may make arthropods more vulnerable to harsh environmental conditions, such as extreme heat, cold or drought. The aim of this study was to investigate if pre-exposure to teflubenzuron (a common CSI) would influence Folsomia candida's (Collembola: Isotomidae) sensitivity to natural stressors. Here, we exposed adult collembolans to teflubenzuron through food for two weeks, then survivors were immediately divided into three groups for subsequent acute heat, cold, and drought exposure. After acute exposure to these natural stressors, the collembolans were moved to optimal conditions for a one-week recovery period during which their survival, time to regain reproduction, and egg production were examined. We analyzed the interaction between effects of teflubenzuron and natural stressors using a multiplicative model. No interaction between effects of teflubenzuron and heat was observed in any test endpoints. A synergistic interaction between effects of teflubenzuron and cold was observed in the time to regain reproduction. Both survival and egg production, on the other hand, showed synergistic interaction between effects of teflubenzuron and drought, as well as a tendency for longer reproduction recovery times. Our results suggest that pre-exposure to teflubenzuron reduces drought tolerance in F. candida, while its impact on heat or cold tolerance is minor or absent. This study is among the first to explore the combined effects of CSI and natural stressors on soil arthropods, providing more insight on potential risks posed by such chemicals in the environment.


Assuntos
Artrópodes , Benzamidas , Secas , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Animais , Benzamidas/farmacologia , Benzamidas/toxicidade , Inseticidas/toxicidade , Reprodução/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Quitina , Resistência à Seca
9.
J Insect Physiol ; 155: 104649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754699

RESUMO

Chemical substances are of utmost importance for the biotic interactions between animals and their predators/parasites; many of these semiochemicals are emitted for defence purposes. One of the most deterrent and toxic biogenic substances we know of is hydrogen cyanide, which can be stored by certain insects, millipedes, centipedes and arachnids in the form of stable and less volatile molecules. The aim of this study was to analyse the biology and chemistry of such a defence mechanism in a geophilomorph centipede (Chilopoda). The cyanogenic secretion of Clinopodes flavidus is discharged from the ventral glands, whose glandular units are located in the space between the cuticle and the trunk muscles and do not extend deep into the segment. In addition to hydrogen cyanide, the ventral secretion contains 2-methylpentanoic acid, benzaldehyde, benzoyl cyanide, 2-methyl branched C-9 carboxylic acid (tentatively identified as 2-methyloctanoic acid), methyl 2-phenylacetate, benzoic acid and mandelonitrile as well as four major proteins with a molecular weight of 150, 66.2, 59 and 55 kDa. The correlation between the presence of ventral glands and guarding with the female's ventral side facing away from the eggs and young indicates a functional link between these two traits. We hope that the specificity of the chemical composition of the ventral secretion could serve as a criterion for chemotaxonomy and that the analysis of more species will help to clarify the phylogenetic relationships within the Geophilomorpha.


Assuntos
Cianeto de Hidrogênio , Animais , Feminino , Cianeto de Hidrogênio/metabolismo , Quilópodes/metabolismo , Masculino , Artrópodes/fisiologia , Feromônios/metabolismo , Feromônios/química
10.
Adv Parasitol ; 124: 57-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754927

RESUMO

For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.


Assuntos
Vetores Artrópodes , Animais , Vetores Artrópodes/fisiologia , Humanos , Artrópodes/fisiologia , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/prevenção & controle , Interações Hospedeiro-Parasita
11.
J Anim Ecol ; 93(7): 943-957, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801060

RESUMO

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Assuntos
Afídeos , Cadeia Alimentar , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Afídeos/fisiologia , França , Grão Comestível , Artrópodes/fisiologia
12.
PLoS One ; 19(5): e0304421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820267

RESUMO

Forest birds respond to a diverse set of environmental factors, including those altered by forest management intensity, such as resource and habitat availability in the form of food or nesting sites. Although resource/habitat availability and bird traits likely mediate responses of bird diversity to global change drivers, no study has assessed the direct and indirect effects of changes in forest management and traits on bird assemblages jointly at large spatial scales. In this context the questions remain whether (1) the birds' response to forest management changes through alterations in structural properties and/or food availability, or (2) if birds' eco-morphological traits act as environmental filters in response to environmental factors. We audio-visually recorded birds at 150 forest plots in three regions of Germany and assessed the forest structure (LiDAR) as well as the diversity of the herbaceous layer and diversity and biomass of arthropods. We further assessed eco-morphological traits of the birds and tested if effects on bird assemblages are mediated by changes in eco-morphological traits' composition. We found that abundance and species numbers of birds are explained best by models including the major environmental factors, forest structure, plants, and arthropods. Eco-morphological traits only increased model fit for indirect effects on abundance of birds. We found minor differences between the three regions in Germany, indicating spatial congruency of the processes at the local and regional scale. Our results suggest that most birds are not specialized on a particular food type, but that the size, diversity and species composition of arthropods are important. Our findings question the general view that bird traits adapt to the resources available.


Assuntos
Artrópodes , Aves , Florestas , Animais , Aves/fisiologia , Alemanha , Artrópodes/fisiologia , Biodiversidade , Ecossistema , Plantas
13.
Ecol Lett ; 27(5): e14427, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698677

RESUMO

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologia
14.
J R Soc Interface ; 21(214): 20230439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807527

RESUMO

We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.


Assuntos
Artrópodes , Locomoção , Locomoção/fisiologia , Animais , Artrópodes/fisiologia , Microscopia/métodos
15.
PLoS One ; 19(5): e0304559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820465

RESUMO

The diversification of macroscopic pelagic arthropods such as caryocaridid archaeostracans was a crucial aspect of the Great Ordovician Biodiversification Event, and the plankton revolution. A pelagic mode of life has been inferred for caryocaridids from their common presence in black graptolitic shales alongside carapace morphologies that appear streamlined. However, the hydrodynamic performance within the group and comparisons with other archaeostracans were lacking. Here we use a computational fluid dynamics approach to quantify the hydrodynamic performance of caryocaridids, and other early Palaeozoic archaeostracans including Arenosicaris inflata and Ordovician ceratiocaridids. We show that streamlining of the carapace was an important factor facilitating a pelagic mode of life in caryocaridids, in reducing the drag coefficient and facilitating a broader range of lift coefficients at different angles of attack. However, comparable hydrodynamic performance is also recovered for some ceratiocaridids. This suggests that alongside carapace streamlining, adaptations to appendages and thinning of the carapace were also important for a pelagic mode of life in Ordovician caryocaridids.


Assuntos
Hidrodinâmica , Animais , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Fósseis , Exoesqueleto/anatomia & histologia
16.
Commun Biol ; 7(1): 552, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720028

RESUMO

Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.


Assuntos
Artrópodes , Biodiversidade , Animais , Artrópodes/classificação , Artrópodes/fisiologia , Geografia , Análise Espaço-Temporal
17.
Ecol Lett ; 27(5): e14428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685715

RESUMO

Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.


Assuntos
Ecossistema , Animais , Artrópodes/fisiologia , Modelos Biológicos , Plantas , Fatores de Tempo , Herbivoria , Comportamento Competitivo , Aptidão Genética
18.
Mar Environ Res ; 198: 106502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608336

RESUMO

In this study, we analyzed the biological descriptors and functional traits of the benthic community inhabiting the water/bottom layer in the surf zones of three sandy beaches: a tide-dominated flat, and two intermediate beaches, from tide-modified to wave-dominated. Samples were collected seasonally in the inner surf zone by hand-towing a benthic sledge equipped with two nets, one above the other, across transects parallel to the shore, capturing the benthic community in two levels, close to the seafloor. A total of 116 species were collected, with a total of 327,678 specimens. Arthropods were 99.63% of all individuals caught across the three beaches, mainly represented by peracarid crustaceans. An important species turnover was detected along the shore, with a significant change in community composition. The biological descriptors and some functional traits vary among beaches: the total density, the density of individuals of small (5-10 mm length) and very small sizes (<5 mm length), the density of larval forms, and the presence of colonial species were higher in the tide-dominated flat (sometimes also in the tide-modified beach). More arthropods and more mobile individuals were found in those beaches, while mollusks and sedentary individuals were found in high number in the wave-dominated beach. Stratification was present across the three studied beaches, with higher densities in the near-bottom layer. In the tide-dominated beach, there was also a higher richness in this layer, with a nested community between levels. In the wave-dominated beach, similar richness was registered between levels, with a different community composition (and some differences in functional traits), indicating that some species can maintain their position close to the bottom despite the turbulent conditions experienced on this beach. Differences in wave conditions among beach types could be an important factor driving the biological descriptors and functional traits of the benthic community in surf zone ecosystems. Therefore, acknowledging their role is crucial in deciphering global patterns in surf zone biodiversity.


Assuntos
Praias , Biodiversidade , Ecossistema , Monitoramento Ambiental , Animais , Organismos Aquáticos/fisiologia , Artrópodes/fisiologia , Invertebrados/fisiologia , Crustáceos/fisiologia
19.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509643

RESUMO

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Assuntos
Aranhas , Animais , Aranhas/fisiologia , Suíça , Besouros/fisiologia , Tamanho Corporal , Urbanização , Ecossistema , Secas , Artrópodes/fisiologia , Florestas
20.
J Exp Zool A Ecol Integr Physiol ; 341(4): 357-363, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38318929

RESUMO

The extreme low humidity and temperatures in Antarctica make it one of the harsher areas for life on our planet. In a global change context, environmental barriers that prevented the arrival of alien species in Antarctica are weakening. Deception Island, one of the four active volcanoes of Antarctica, is especially vulnerable to the impacts of alien species. Geothermal areas (GA) in this Island offer unique microclimatic conditions that could differentially affect native and alien soil arthropods. Here we explore the desiccation tolerance of a native (Cryptopygus antarcticus) and an alien (Proisotoma minuta) springtail (Collembola) species to these extreme environmental conditions. GA and non-geothermal areas (NGA) were selected to evaluate intra- and interspecific variation in desiccation tolerance. Populations of P. minuta from GA had greater desiccation tolerance than populations from NGA. However, desiccation tolerance of C. antarcticus did not differ between GA and NGA. This native species had greater desiccation tolerance than the alien P. minuta, but also greater body size. Our findings show that the alien P. minuta responds differently to environmental conditions than the native C. antarcticus. Furthermore, body size may influence desiccation tolerance in these two springtail species.


Assuntos
Artrópodes , Dessecação , Animais , Regiões Antárticas , Artrópodes/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...