Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.698
Filtrar
1.
Elife ; 122024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312468

RESUMO

Cell division is fundamental to all healthy tissue growth, as well as being rate-limiting in the tissue repair response to wounding and during cancer progression. However, the role that cell divisions play in tissue growth is a collective one, requiring the integration of many individual cell division events. It is particularly difficult to accurately detect and quantify multiple features of large numbers of cell divisions (including their spatio-temporal synchronicity and orientation) over extended periods of time. It would thus be advantageous to perform such analyses in an automated fashion, which can naturally be enabled using deep learning. Hence, we develop a pipeline of deep learning models that accurately identify dividing cells in time-lapse movies of epithelial tissues in vivo. Our pipeline also determines their axis of division orientation, as well as their shape changes before and after division. This strategy enables us to analyse the dynamic profile of cell divisions within the Drosophila pupal wing epithelium, both as it undergoes developmental morphogenesis and as it repairs following laser wounding. We show that the division axis is biased according to lines of tissue tension and that wounding triggers a synchronised (but not oriented) burst of cell divisions back from the leading edge.


Assuntos
Divisão Celular , Aprendizado Profundo , Drosophila melanogaster , Morfogênese , Asas de Animais , Animais , Epitélio/fisiologia , Epitélio/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Drosophila melanogaster/citologia , Células Epiteliais/fisiologia , Células Epiteliais/citologia , Drosophila/fisiologia , Cicatrização/fisiologia , Imagem com Lapso de Tempo/métodos
2.
PLoS Genet ; 20(9): e1011393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264939

RESUMO

Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos , Mariposas , Animais , Ecdisterona/metabolismo , Epiderme/metabolismo , Epiderme/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Metamorfose Biológica , Muda/genética , Mariposas/crescimento & desenvolvimento , Mariposas/genética , Mariposas/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
3.
PLoS Genet ; 20(9): e1011387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226333

RESUMO

A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogaster wing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.


Assuntos
Dano ao DNA , Drosophila melanogaster , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Apoptose , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Cicatrização/genética , Senescência Celular , Sistema de Sinalização das MAP Quinases , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Ciclo Celular
4.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273046

RESUMO

One of the important genes for eyespot development in butterfly wings is Distal-less. Its function has been evaluated via several methods, including CRISPR/Cas9 genome editing. However, functional inhibition may be performed at the right time at the right place using a different method. Here, we used a novel protein delivery method for pupal wing tissues in vivo to inactivate a target protein, Distal-less, with a polyclonal anti-Distal-less antibody using the blue pansy butterfly Junonia orithya. We first demonstrated that various antibodies including the anti-Distal-less antibody were delivered to wing epithelial cells in vivo in this species. Treatment with the anti-Distal-less antibody reduced eyespot size, confirming the positive role of Distal-less in eyespot development. The treatment eliminated or deformed a parafocal element, suggesting a positive role of Distal-less in the development of the parafocal element. This result also suggested the integrity of an eyespot and its corresponding parafocal element as the border symmetry system. Taken together, these findings demonstrate that the antibody-mediated protein knockdown method is a useful tool for functional assays of proteins, such as Distal-less, expressed in pupal wing tissues, and that Distal-less functions for eyespots and parafocal elements in butterfly wing color pattern development.


Assuntos
Anticorpos , Borboletas , Proteínas de Insetos , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Anticorpos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Pigmentação/genética , Técnicas de Silenciamento de Genes
5.
PLoS Biol ; 22(8): e3002780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186808

RESUMO

In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.


Assuntos
Apoptose , Núcleo Celular , Proteínas de Drosophila , Drosophila melanogaster , Mitose , Proteína Supressora de Tumor p53 , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Núcleo Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Membrana Nuclear/metabolismo , Laminas/metabolismo , Laminas/genética , Proteínas Nucleares
6.
Proc Natl Acad Sci U S A ; 121(36): e2403326121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39213180

RESUMO

Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The cortex locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name ivory, transcribed from the cortex locus, in modulating color patterning in butterflies. Strikingly, ivory expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that ivory mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of Vanessa cardui germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of ivory. In contrast, cortex germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.


Assuntos
Borboletas , Pigmentação , RNA Longo não Codificante , Asas de Animais , Animais , Borboletas/genética , Pigmentação/genética , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , RNA Longo não Codificante/genética , Fenótipo , Adaptação Fisiológica/genética
7.
Dev Biol ; 516: 82-95, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39111615

RESUMO

The Myocyte enhancer factor-2 (MEF2) transcription factor plays a vital role in orchestrating muscle differentiation. While MEF2 cannot effectively induce myogenesis in naïve cells, it can potently accelerate myogenesis in mesodermal cells. This includes in Drosophila melanogaster imaginal disc myoblasts, where triggering premature muscle gene expression in these adult muscle progenitors has become a paradigm for understanding the regulation of the myogenic program. Here, we investigated the global consequences of MEF2 overexpression in the imaginal wing disc myoblasts, by combining RNA-sequencing with RT-qPCR and immunofluorescence. We observed the formation of sarcomere-like structures that contained both muscle and cytoplasmic myosin, and significant upregulation of muscle gene expression, especially genes essential for myofibril formation and function. These transcripts were functional since numerous myofibrillar proteins were detected in discs using immunofluorescence. Interestingly, muscle genes whose expression is restricted to the adult stages were not activated in these adult myoblasts. These studies confirm a broad activation of the myogenic program in response to MEF2 expression and suggest that additional regulatory factors are required for promoting the adult muscle-specific program. Our findings contribute to understanding the regulatory mechanisms governing muscle development and highlight the multifaceted role of MEF2 in orchestrating this intricate process.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais , Fatores de Transcrição MEF2 , Desenvolvimento Muscular , Mioblastos , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Desenvolvimento Muscular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Mioblastos/metabolismo , Discos Imaginais/metabolismo , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Diferenciação Celular , Fatores de Regulação Miogênica
8.
Arch Insect Biochem Physiol ; 116(4): e22143, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166352

RESUMO

JH and ecdysone signaling regulate insect metamorphosis through the master transcription factors, Krüppel homolog 1 (kr-h1), Broad-Complex (BR-C), and E93. Ecdysone signaling activates successively expressed ecdysone responsive transcription factors (ERTFs), and the interaction between ERTFs determines the expression profiles of ERTFs themselves. Through the construction of expressed sequence tag (EST) database of Bombyx mori from many tissues, the existence of a large number of cuticular protein (CP) genes was identified in wing disc cDNA library of the 3 days after the start of wandering (W3). From the genomic analysis, 12 types of CP clusters of CP genes were identified. DNA sequences of CP genes revealed the duplication of CP genes, which suggests to reflect the insect evolution. These CP genes responded to ecdysone and ecdysone pulse; therefore, CP genes were applied for the analysis of transcriptional regulation by ERTF. The binding sites of ERTF have been reported to exist upstream of CP genes in several insects, and the activation of CP genes occurred by the binding of ERTFs. Through the analysis, the following were speculated; the successive appearance of ERTFs and the activation of target genes resulted in the successively produced CPs and cuticular layer. The sequence of the ERTF and CP gene expression was the same at larval to pupal and pupal to adult transformation. The involvement of several ERTFs in one CP gene expression was also clarified; BmorCPG12 belongs to group showing expression peak at W3 and was regulated by two ERTFs; BHR3 and ßFTZ-F1, BmorCPH2 belongs to group showing expression peak at P0 and was regulated by two ERTFs; ßFTZ-F1 and E74A. The involvement of BHR39 as a negative regulator of CP gene expression was found. Larval, pupal, and adult cuticular layers were supposed to be constructed by the combination of different and similar types of CPs, through the expressed timing of CP genes.


Assuntos
Bombyx , Proteínas de Insetos , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Genoma de Inseto , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica , Metamorfose Biológica/genética
9.
Sci Adv ; 10(32): eadp0860, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121221

RESUMO

How complex 3D tissue shape emerges during animal development remains an important open question in biology and biophysics. Here, we discover a mechanism for 3D epithelial shape change based on active, in-plane cellular events that is analogous to inanimate "shape programmable" materials, which undergo blueprinted 3D shape transformations from in-plane gradients of spontaneous strains. We study eversion of the Drosophila wing disc pouch, when the epithelium transforms from a dome into a curved fold, quantifying 3D tissue shape changes and mapping spatial patterns of cellular behaviors on the evolving geometry using cellular topology. Using a physical model inspired by shape programming, we find that active cell rearrangements are the major contributor to pouch eversion and validate this conclusion using a knockdown of MyoVI, which reduces rearrangements and disrupts morphogenesis. This work shows that shape programming is a mechanism for animal tissue morphogenesis and suggests that patterns in nature could present design strategies for shape-programmable materials.


Assuntos
Morfogênese , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila , Modelos Biológicos , Discos Imaginais/metabolismo , Discos Imaginais/crescimento & desenvolvimento
10.
PLoS Biol ; 22(7): e3002547, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39047051

RESUMO

Despite the deep conservation of the DNA damage response (DDR) pathway, cells in different contexts vary widely in their susceptibility to DNA damage and their propensity to undergo apoptosis as a result of genomic lesions. One of the cell signaling pathways implicated in modulating the DDR is the highly conserved Wnt pathway, which is known to promote resistance to DNA damage caused by ionizing radiation in a variety of human cancers. However, the mechanisms linking Wnt signal transduction to the DDR remain unclear. Here, we use a genetically encoded system in Drosophila to reliably induce consistent levels of DNA damage in vivo, and demonstrate that canonical Wnt signaling in the wing imaginal disc buffers cells against apoptosis in the face of DNA double-strand breaks. We show that Wg, the primary Wnt ligand in Drosophila, activates epidermal growth factor receptor (EGFR) signaling via the ligand-processing protease Rhomboid, which, in turn, modulates the DDR in a Chk2-, p53-, and E2F1-dependent manner. These studies provide mechanistic insight into the modulation of the DDR by the Wnt and EGFR pathways in vivo in a highly proliferative tissue. Furthermore, they reveal how the growth and patterning functions of Wnt signaling are coupled with prosurvival, antiapoptotic activities, thereby facilitating developmental robustness in the face of genomic damage.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Drosophila , Receptores ErbB , Discos Imaginais , Asas de Animais , Via de Sinalização Wnt , Proteína Wnt1 , Animais , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Apoptose/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Transdução de Sinais , Quebras de DNA de Cadeia Dupla , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Drosophila/metabolismo , Drosophila/genética , Fatores de Transcrição
11.
J Insect Physiol ; 157: 104671, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972633

RESUMO

Environmental gradients cause evolutionary and developmental changes in the cellular composition of organisms, but the physiological consequences of these effects are not well understood. Here, we studied experimental populations of Drosophila melanogaster that had evolved in one of three selective regimes: constant 16 °C, constant 25 °C, or intergenerational shifts between 16 °C and 25 °C. Genotypes from each population were reared at three developmental temperatures (16 °C, 20.5 °C, and 25 °C). As adults, we measured thorax length and cell sizes in the Malpighian tubules and wing epithelia of flies from each combination of evolutionary and developmental temperatures. We also exposed flies from these treatments to a short period of nearly complete oxygen deprivation to measure hypoxia tolerance. For genotypes from any selective regime, development at a higher temperature resulted in smaller flies with smaller cells, regardless of the tissue. At every developmental temperature, genotypes from the warm selective regime had smaller bodies and smaller wing cells but had larger tubule cells than did genotypes from the cold selective regime. Genotypes from the fluctuating selective regime were similar in size to those from the cold selective regime, but their cells of either tissue were the smallest among the three regimes. Evolutionary and developmental treatments interactively affected a fly's sensitivity to short-term paralyzing hypoxia. Genotypes from the cold selective regime were less sensitive to hypoxia after developing at a higher temperature. Genotypes from the other selective regimes were more sensitive to hypoxia after developing at a higher temperature. Our results show that thermal conditions can trigger evolutionary and developmental shifts in cell size, coupled with changes in body size and hypoxia tolerance. These patterns suggest links between the cellular composition of the body, levels of hypoxia within cells, and the energetic cost of tissue maintenance. However, the patterns can be only partially explained by existing theories about the role of cell size in tissue oxygenation and metabolic performance.


Assuntos
Evolução Biológica , Tamanho Celular , Drosophila melanogaster , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Asas de Animais/crescimento & desenvolvimento , Temperatura , Túbulos de Malpighi , Masculino , Feminino , Hipóxia
12.
Dev Biol ; 514: 37-49, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885804

RESUMO

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Assuntos
Proteínas de Drosophila , Receptores Notch , Transdução de Sinais , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Asas de Animais/metabolismo , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Olho/embriologia , Olho/metabolismo , Olho/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila/embriologia , Polaridade Celular , Peptídeos e Proteínas de Sinalização Intracelular
13.
Cell Rep ; 43(7): 114398, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935502

RESUMO

Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.


Assuntos
Células Epiteliais , Canais Iônicos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Animais , Tamanho do Órgão , Células Epiteliais/metabolismo , Camundongos , Proliferação de Células , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Apoptose , Humanos , Epitélio/metabolismo
14.
Nature ; 630(8016): 466-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839952

RESUMO

Histone acetylation regulates gene expression, cell function and cell fate1. Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid ß-oxidation, which is also increased in the rim. Inhibition of fatty acid ß-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.


Assuntos
Acetilcoenzima A , Núcleo Celular , Cromatina , Drosophila melanogaster , Animais , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Transporte Biológico , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Histonas/química , Histonas/metabolismo , Discos Imaginais/citologia , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Lisina/metabolismo , Oxirredução , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
15.
Elife ; 122024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842917

RESUMO

The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.


Assuntos
Caderinas , Ciclo Celular , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Caderinas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proliferação de Células , Moléculas de Adesão Celular
16.
Genetics ; 227(4)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805187

RESUMO

The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report posttranscriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid-mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla luciferase reporter significantly reduced the activity of the Luciferase, whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity, but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid-mRNA between the 2 transgenes, with and without the 3'UTR, indicating the absence of posttranscriptional regulation of mid in MP2. Moreover, while elevated mid-RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Overexpression of the 2 transgenes resulted in MP2-lineage defects at about the same frequency. These results indicate a translational/posttranslational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid-RNA and the protein had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell- and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the 2 transgenes.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Drosophila , Proteínas com Domínio T , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Estabilidade de RNA/genética , Drosophila melanogaster/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Processamento Pós-Transcricional do RNA , Especificidade de Órgãos , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Linhagem Celular , Drosophila/genética , Drosophila/metabolismo
17.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790181

RESUMO

Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.


Assuntos
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Asas de Animais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética
18.
PLoS Biol ; 22(5): e3002629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805504

RESUMO

Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Epigênese Genética , Proteínas de Choque Térmico HSP90 , Histonas , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Memória Epigenética , Fatores de Transcrição
19.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38775023

RESUMO

Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.


Assuntos
Proteínas de Drosophila , Ecdisona , Regeneração , Asas de Animais , Animais , Ecdisona/metabolismo , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/crescimento & desenvolvimento , Transdução de Sinais , Drosophila , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
20.
Commun Biol ; 7(1): 533, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710747

RESUMO

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Asas de Animais , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Apoptose , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...