Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 305, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148068

RESUMO

BACKGROUND: Phylogeographic studies have gained prominence in linking past geological events to the distribution patterns of biodiversity, primarily in mountainous regions. However, such studies often focus on plant taxa, neglecting the intricate biogeographical patterns of microbes, particularly soil microbial communities. This article explores the spatial distribution of the nematode-trapping fungus Arthrobotrys oligospora, a widespread microorganism, in a tectonically active region at the southeastern edge of the Qinghai-Tibetan Plateau. By analysing the genetic variation of this fungus alongside the historical structure of major river watersheds, we sought to uncover potential connections between the two. Our study involved sampling 149 strains from 116 sites across six major watersheds in the region. RESULTS: The resulting haplotype network revealed five distinct clusters, each corresponding closely to a specific watershed. These clusters exhibited high haplotype diversity and low nucleotide diversity, supporting the notion of watershed-based segregation. Further analysis of haplotypes shared across watersheds provided evidence for three proposed past river connections. In particular, we found numerous shared haplotypes between the Yangtze and Mekong basins, as well as between the Yangtze and the Red basins. Evidence for a Irrawaddy-Salween-Red and a Yangtze-Pearl-Red river connections were also portrayed in our mapping exercise. CONCLUSIONS: These findings emphasize the crucial role of historical geomorphological events in shaping the biogeography of microbial biodiversity, alongside contemporary biotic and abiotic factors. Watershed perimeters emerged as effective predictors of such patterns, suggesting their suitability as analytical units for regional-scale studies. Our study also demonstrates the potential of microorganisms and phylogeographic approaches to complement traditional geological analyses, providing a more comprehensive understanding of past landscape structure and its evolution.


Assuntos
Variação Genética , Haplótipos , Filogenia , Filogeografia , Rios , Microbiologia do Solo , China , Rios/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Biodiversidade , DNA Fúngico/genética
2.
Fungal Biol ; 128(6): 2062-2072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174241

RESUMO

Eucalyptus spp. in plantations are negatively affected by canker and wilt diseases caused by several species of Ceratocystis, particularly those in the Latin American Clade (LAC). Ceratocystis eucalypticola and Ceratocystis manginecans are of particular concern where disease epidemics are reported globally, with recent outbreaks emerging in South African and Indonesian Eucalyptus plantations. Consequently, a rapid screening protocol is required for these pathogens. In this study, a high-resolution melting curve analysis (HRMA) was developed to detect C. eucalypticola and C. manginecans that bypasses time-consuming isolation and post-PCR procedures. Primers targeting a 172 bp region of the cerato-platanin (CP) gene were designed. Using these primers, the accuracy of HRMA to detect and distinguish between these two LAC species was assessed using pure fungal DNA, and DNA extracted directly from Eucalyptus samples naturally infected with C. eucalypticola. The assay accurately detected the presence of C. eucalypticola and C. manginecans and quantifies their DNA, both from cultures, and directly from wood samples. HRMA further differentiated these two species from all other tested LAC individuals. This assay was also able to detect the presence of all the tested LAC species and distinguish seven of these, including C. fimbriata, to species level. Ceratocystis polyconidia was the only non-LAC off-target species detected. Based on these results, the developed assay can be used to rapidly identify C. eucalypticola and C. manginecans directly from infected plant material or fungal cultures, with the potential to also screen for several other LAC species.


Assuntos
Ascomicetos , DNA Fúngico , Eucalyptus , Doenças das Plantas , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Primers do DNA/genética , Temperatura de Transição , Sensibilidade e Especificidade
3.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965478

RESUMO

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Assuntos
DNA Fúngico , Líquens , Micobioma , República da Coreia , Turquia , Líquens/microbiologia , Líquens/classificação , DNA Fúngico/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Parmeliaceae/genética
4.
Fungal Biol ; 128(5): 1968-1981, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059852

RESUMO

Chestnut production is considered one of the most important economic resources of rural mountainous areas in Greece. Lately, producers report a steep rise in the incidence of brown rot disease caused by the fungus Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales), which results in severe chestnut rot. The pathogen is considered an emerging pathogen in many countries worldwide (Italy, France, Switzerland, Australia, New Zealand). This study aimed at (a) exploring the incidence of the brown rot disease in Vria (Regional Unit of Pieria, Region of Central Makedonia, Greece), (b) isolating and identifying the causal agent of the disease, (c) exploring the fungus presence at different phenological stages of the chestnut trees, and (d) implementing species-specific Bar- High Resolution Melting Analysis (HRM) for the early detection of G. smithogilvyi in chestnuts. G. smithogilvyi occurrence in chestnut tissues was more severe in June (59 %), nearly disappeared in July (19 %) and August (7 %) and increased again during harvesting time in September (57 %). This result could be attributed to a sum of different factors, including climate conditions. Moreover, it was demonstrated that G. smithogilvyi can be identified using a Bar-HRM analysis of chestnut tissues (buds, flowers and nuts). Results of this study clearly demonstrate that Bar-HRM can be used for the accurate, rapid and reliable identification of G. smithogilvyi universally on infected samples from different localities.


Assuntos
Ascomicetos , Fagaceae , Flores , Doenças das Plantas , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/classificação , Grécia , Flores/microbiologia , Fagaceae/microbiologia , Incidência
5.
Antonie Van Leeuwenhoek ; 117(1): 109, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083124

RESUMO

The genetic variety and habitats of Camptophora species, generally known as black yeast, have not been clarified. In this study, we re-evaluated Camptophora based on morphological observations and phylogenetic analyses. Because prior investigations on Camptophora only included a few strains/specimens, 24 Camptophora-related strains were newly obtained from 13 leaf samples of various plant species to redefine the genetic and species concepts of Camptophora. Their molecular phylogenetic relationships were examined using small subunit nuclear ribosomal DNA (nSSU, 18S rDNA), the internal transcribed spacer (ITS) rDNA operon, the large subunit nuclear ribosomal DNA (LSU, 28S rDNA), ß-tubulin, the second largest subunit of RNA polymerase II (rpb2), and mitochondrial small subunit DNA (mtSSU). Single- and multi-locus analyses using nSSU-ITS-LSU-rpb2-mtSSU revealed a robust phylogenetic relationship among Camptophora species within Chaetothyriaceae. Camptophora species could be distinguished from other chaetothyriaceous genera by their snake-shaped conidia with microcyclic conidiation and loosely interwoven mycelial masses. Based on the results of phylogenetic analyses, two undescribed lineages were recognized, and Ca. schimae was excluded from the genus. ITS sequence comparison with environmental DNA sequences revealed that the distribution of the genus is restricted to the Asia-Pacific region. Camptophora has been isolated or detected from abrupt sources, and this was attributed to its microcycle. The mechanisms driving genetic diversity within species are discussed with respect to their phyllosphere habitats.


Assuntos
DNA Fúngico , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Esporos Fúngicos/genética , Esporos Fúngicos/citologia , Esporos Fúngicos/classificação , Análise de Sequência de DNA , Folhas de Planta/microbiologia , RNA Polimerase II/genética , Ascomicetos/genética , Ascomicetos/classificação , Tubulina (Proteína)/genética
6.
PLoS One ; 19(7): e0307747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052602

RESUMO

Field peas are grown by smallholder farmers in Ethiopia for food, fodder, income, and soil fertility. However, leaf diseases such as ascochyta blight, powdery mildew, and leaf spots affect the quantity and quality of this crop as well as crop growth. Experts use visual observation to detect field pea disease. However, this approach is expensive, labor-intensive, and imprecise. Therefore, in this study, we presented a transfer learning approach for the automatic diagnosis of field pea leaf diseases. We classified three field pea leaf diseases: Ascochyta blight, leaf spot, and powdery mildew. A softmax classifier was used to classify the diseases. A total of 1600 images of both healthy and diseased leaves were used to train, validate, and test the pretrained models. According to the experimental results, DenseNet121 achieved 99.73% training accuracy, 99.16% validation accuracy, and 98.33% testing accuracy after 100 epochs. we expect that this research work will offer various benefits for farmers and farm experts. It reduced the cost and time needed for the detection and classification of field pea leaf disease. Thus, a fast, automated, less costly, and accurate detection method is necessary to overcome the detection problem.


Assuntos
Aprendizado Profundo , Pisum sativum , Doenças das Plantas , Folhas de Planta , Doenças das Plantas/microbiologia , Etiópia , Ascomicetos/classificação
7.
J Food Sci ; 89(8): 4745-4757, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955792

RESUMO

Food fraud is a problematic yet common phenomenon in the food industry. It impacts numerous sectors, including the market of edible mushrooms. Morel mushrooms are prized worldwide for their culinary and medicinal use. They represent a taxonomically complex group in which food fraud has already been reported. Among the methods to evaluate food fraud, some rely on comparisons of genetic sequences obtained from a sample to existing databases. However, the quality and usefulness of the results are limited by the type of comparison tool and the quality of the database used. The Centroid-based approach is applied by SmartGene in a proprietary artificial intelligence-based method for the generation of automatically curated reference databases that can be further expert curated. In this study, using sequences of the ribosomal internal transcribed spacer (ITS) of the genus Morchella (true morels), we compared this approach to the traditional pairwise alignment tool using two other databases: UNITE and Mycobank (MLST). The Centroid-based approach using an expert-curated database was more performant for the identification of 53 representative ITS sequences corresponding to validated species (83% accuracy, compared to 36% and 47% accuracy for UNITE and MLST, respectively). The Centroid method also revealed an inaccurate taxonomic annotation for sequences of commercial cultivars submitted to public databases. Combined with the web-based commercial software IDNS® available at Smartgene, the Centroid-based approach constitutes a valuable tool to ensure the quality of morel products on the market for actors of the food industry. PRACTICAL APPLICATION: The Centroid-based approach can be used by agri-food actors who need to identify true morels down to the species level without any prior taxonomical knowledge. These include routine laboratories of the food industry, food distributors, and public surveillance agencies. This is a reliable method that requires minimal skills and resources, therefore being particularly adapted for nonspecialists.


Assuntos
Ascomicetos , Ascomicetos/genética , Ascomicetos/classificação , DNA Fúngico/genética , Contaminação de Alimentos/análise , DNA Espaçador Ribossômico/genética
8.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849736

RESUMO

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Assuntos
Biodiversidade , Endófitos , Fungos , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Filogenia , Micobioma
9.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38857886

RESUMO

Acrophialophora is implicated in superficial and invasive infections, especially in immunosuppressed individuals. The present study was undertaken to provide clinical, microbiological, phylogenetic, and antifungal susceptibility testing (AFST) profile of Acrophialophora isolated from India. All the isolates identified as Acrophialophora species at the National Culture Collection for Pathogenic Fungi, Chandigarh, India were revived. Phenotypic and molecular characterization was performed, followed by temperature studies, scanning electron microscopy (SEM), and AFST. We also performed systematic review of all the cases of Acrophialophora species reported till date. A total of nine isolates identified as Acrophialophora species were identified by molecular method as A. fusispora (n = 8) and A. levis (n = 1), from brain abscess (n = 4), respiratory tract (n = 3), and corneal scraping (n = 2). All patients but two had predisposing factors/co-morbidities. Acrophialophora was identified as mere colonizer in one. Temperature studies and SEM divulged variation between both species. Sequencing of the internal transcribed spacer ribosomal DNA and beta-tubulin loci could distinguish species, while the LSU ribosomal DNA locus could not. AFST showed the lowest minimum inhibitory concentrations (MICs) for triazoles and the highest for echinocandins. Systematic literature review revealed 16 cases (11 studies), with ocular infections, pulmonary and central nervous system infections, and A. fusispora was common species. All the patients except three responded well. High MICs were noted for fluconazole, micafungin, and caspofungin. This is the first study delineating clinical, phenotypic, and genotypic characteristics of Acrophialophora species from India. The study highlights microscopic differences between both species and emphasizes the role of molecular methods in precise identification. Triazoles appear to be the most effective antifungals for managing patients.


We describe clinical, phenotypic, and genotypic characteristics of Acrophialophora species. This species causes mild infection to fatal infection in immunosuppressed individuals. Triazoles are effective in treating such infections.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Micoses , Filogenia , Índia , Humanos , Antifúngicos/farmacologia , Adulto , Masculino , Micoses/microbiologia , Feminino , Pessoa de Meia-Idade , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , Microscopia Eletrônica de Varredura , Fenótipo , Tubulina (Proteína)/genética , Idoso , Adulto Jovem , Criança
10.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876534

RESUMO

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Assuntos
Endófitos , Caules de Planta , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Caules de Planta/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Biodiversidade
11.
Appl Environ Microbiol ; 90(7): e0034224, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899884

RESUMO

Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.


Assuntos
Malus , Penicillium , Metabolismo Secundário , Malus/microbiologia , Penicillium/metabolismo , Penicillium/isolamento & purificação , Penicillium/genética , Fungos/classificação , Fungos/metabolismo , Fungos/genética , Fungos/isolamento & purificação , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/classificação , Metabolômica , Microbiota , Biodiversidade , Micobioma
12.
Mycologia ; 116(4): 498-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848260

RESUMO

Fossil epifoliar fungi are valuable indicators of paleoenvironment and paleoecology. The Meliolaceae, members of which typically inhabit the surface of living plants as biotrophs or pathogens, is one of the largest groups of epifoliar fungi. In this study, we report a novel fossil species of Meliolinites Selkirk (fossil Meliolaceae), Meliolinites tengchongensis, on the lower epidermis of compressed fossil Rhodoleia (Hamamelidaceae) leaves from the Upper Pliocene Mangbang Formation of Tengchong, Yunnan, southwestern China. Meliolinites tengchongensis is characterized by web-like, superficial, brown to dark brown, septate, and branching mycelia bearing 2-celled appressoria and unicellular phialides. The fungal colonies also include ellipsoidal, 5-celled, 4-septate ascospores and dark brown perithecia with suborbicular outline and verrucose surface. The well-preserved vegetative and reproductive organs help us to explore the potential disease process of the new fossil species. Besides, the presence of fungal remains indicates that the fungal taxon might have maintained its host preference since at least the Late Pliocene. Furthermore, the occurrence of both fossil fungi and their host plants in Tengchong indicate a subtropical-tropical, warm, and humid climate during the Late Pliocene, whereas the distribution pattern of the fungi on the host leaves suggests that Rhodoleia may have been a part of the middle-upper canopies in the Tengchong Late Pliocene multilayered forest.


Assuntos
Fósseis , Folhas de Planta , Folhas de Planta/microbiologia , China , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Esporos Fúngicos
13.
Microb Pathog ; 193: 106756, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901752

RESUMO

Eucalyptus spp. are undoubtedly one of the most favored plantation trees globally. Accurately identifying Eucalyptus pathogens is therefore crucial for timely disease prevention and control. Recently, symptoms of a leaf blight disease were observed on Eucalyptus trees in plantations at Jhajjar and Karnal in the state of Haryana, northern India. Asexual morphs resembling the features of the Botryosphaeriaceae were consistently isolated from the symptomatic leaves. Morphological features coupled with DNA sequence analysis confirmed a novel species, which is described and illustrated here as Botryosphaeria eucalypti sp. nov. Conidia of the new taxon are longer and wider than those of its phylogenetic neighbors. A distinct phylogenetic position for the new taxon was established through combined analysis of the internal transcribed spacer (ITS), partial translation elongation factor-1α (tef1) and partial ß-tubulin (tub2) regions. Recombination analysis provided additional support for the new species hypothesis. The pathogenicity of the novel species was proved on Eucalyptus leaves, and Koch's postulates were fulfilled. The discovery of new Botryosphaeria species is important because it will help in understanding the species diversity, host range, possible threats and disease control in the long run.


Assuntos
Ascomicetos , DNA Fúngico , Eucalyptus , Filogenia , Doenças das Plantas , Folhas de Planta , Análise de Sequência de DNA , Tubulina (Proteína) , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , Folhas de Planta/microbiologia , Índia , DNA Fúngico/genética , Tubulina (Proteína)/genética , Fator 1 de Elongação de Peptídeos/genética , Esporos Fúngicos/genética , DNA Espaçador Ribossômico/genética
14.
Front Cell Infect Microbiol ; 14: 1367673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707512

RESUMO

Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.


Assuntos
Ascomicetos , DNA Fúngico , Filogenia , Análise de Sequência de DNA , DNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Uzbequistão , DNA Ribossômico/genética , Doenças das Plantas/microbiologia
15.
BMC Genomics ; 25(1): 518, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802743

RESUMO

Morchella spongiola is a highly prized mushroom for its delicious flavor and medical value and is one of the most flourishing, representative, and dominant macrofungi in the Qilian Mountains of the Qinghai-Tibet Plateau subkingdoms (QTPs). However, the understanding of M. spongiola remains largely unknown, and its taxonomy is ambiguous. In this study, we redescribed a unique species of M. spongiola, i.e., micromorphology, molecular data, genomics, and comparative genomics, and the historical biogeography of M. spongiola were estimated for 182 single-copy homologous genes. A high-quality chromosome-level reference genome of M. spongiola M12-10 was obtained by combining PacBio HiFi data and Illumina sequencing technologies; it was approximately 57.1 Mb (contig N50 of 18.14 Mb) and contained 9775 protein-coding genes. Comparative genome analysis revealed considerable conservation and unique characteristics between M. spongiola M12-10 and 32 other Morchella species. Molecular phylogenetic analysis indicated that M. spongiola M12-10 is similar to the M. prava/Mes-7 present in sandy soil near rivers, differentiating from black morels ~ 43.06 Mya (million years ago), and diverged from M. parva/Mes-7 at approximately 12.85 Mya (in the Miocene epoch), which is closely related to the geological activities in the QTPs (in the Neogene). Therefore, M. spongiola is a unique species rather than a synonym of M. vulgaris/Mes-5, which has a distinctive grey-brown sponge-like ascomata. This genome of M. spongiola M12-10 is the first published genome sequence of the species in the genus Morchella from the QTPs, which could aid future studies on functional gene identification, germplasm resource management, and molecular breeding efforts, as well as evolutionary studies on the Morchella taxon in the QTPs.


Assuntos
Genoma Fúngico , Genômica , Filogenia , Genômica/métodos , Evolução Molecular , Ascomicetos/genética , Ascomicetos/classificação
16.
Emerg Infect Dis ; 30(6): 1232-1235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782016

RESUMO

A 3-year-old patient in India experiencing headaches and seizures was diagnosed with a fungal infection, initially misidentified as Cladophialophora bantiana. Follow-up sequencing identified the isolate to be Fonsecaea monophora fungus. This case demonstrates the use of molecular methods for the correct identification of F. monophora, an agent of fungal brain abscess.


Assuntos
Ascomicetos , Abscesso Encefálico , Abscesso Encefálico/microbiologia , Abscesso Encefálico/diagnóstico , Abscesso Encefálico/tratamento farmacológico , Humanos , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/classificação , Pré-Escolar , Masculino , Micoses/microbiologia , Micoses/diagnóstico , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Filogenia , DNA Fúngico/genética
17.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789974

RESUMO

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Assuntos
Fungicidas Industriais , Filogenia , China , Fungicidas Industriais/farmacologia , Agaricales/genética , Agaricales/efeitos dos fármacos , Agaricales/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Triazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
18.
Fungal Biol ; 128(3): 1735-1741, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796257

RESUMO

In the present manuscript, we describe and illustrate a novel foliicolous fossil-species of Zygosporium Mont. (Zygosporiaceae: Xylariales: Sordariomycetes) on compressed monocot leaf recovered from the Middle Siwalik sediments (Late Miocene) of Himachal Pradesh, western Himalaya. The new fossil-species characterized by macronematous, dark brown, unbranched or occasionally branched conidiophores with a chain of up to four integrated dark brown, curved, thick-walled, swollen, hook-like, alternately or sub-oppositely arranged vesicles is described here as Zygosporium himachalensis sp. nov. This is the first fossil evidence of Zygosporium having stacked chained vesicular conidiophores and is so significant data for both paleomycologists and mycologists. The in-situ occurrence of Z. himachalensis on monocot leaf cuticles suggests a possible host-saprophyte relationship that might have existed in the ancient forest of Himachal Pradesh during the Miocene.


Assuntos
Ascomicetos , Fósseis , Índia , Fósseis/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Esporos Fúngicos/citologia , Folhas de Planta/microbiologia
19.
Fungal Biol ; 128(3): 1742-1750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796258

RESUMO

Even though the records of Tetraploa spores from Mesozoic and Cenozoic sedimentary strata along with spore-pollen assemblages are numerous and well documented, no foliicolus Tetraploa macroconidia have been reported to date. Here, we report the first occurrence of conidia assignable to modern Tetraploa Berk. & Broome (Tetraplosphaeriaceae: Pleosporales: Dothideomycetes) on cuticular fragments of compressed monocot leaf recovered from the middle Siwalik sediments (Late Miocene; 12-8 Ma) of Himachal Himalaya, India. We determine their taxonomic position based on detailed macromorphological comparison with similar modern and fossil taxa and discuss their palaeoecological significance in terms of the present-day ecological conditions of modern analogues. This finding also represents an essential data source for understanding Tetraploa's evolution and diversification in deep time.


Assuntos
Fósseis , Folhas de Planta , Folhas de Planta/microbiologia , Índia , Esporos Fúngicos , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Filogenia , Sedimentos Geológicos/microbiologia
20.
Fungal Biol ; 128(3): 1790-1799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796263

RESUMO

Species in the Melastomataceae (Myrtales) include trees and woody shrubs that are amongst the most common hosts of Chrysoporthe and related fungi. These fungi cause stem cankers, branch death and in extreme cases, kill their hosts. Chrysoporthe-like fungi were observed on Miconia spp. and Rhynchanthera grandiflora (Melastomataceae) plants during tree disease surveys in south-eastern Brazil including the states of Minas Gerais and Rio de Janeiro. The aims of this study were to isolate and identify the fungi utilising morphological characteristics and phylogenetic analyses. This led to the identification of a new species of Chrysoporthe described here as Chrysoporthe brasilensis sp.nov. Inoculations were conducted on R. grandiflora and M. theaezans, showing that C. brasiliensis is an aggressive pathogen. This study adds to a growing number of reports of new and pathogenic species of Chrysoporthe that potentially threaten native Myrtales globally, including important trees such as Eucalyptus, both in natural ecosystems and in planted forests.


Assuntos
Melastomataceae , Filogenia , Doenças das Plantas , Brasil , Melastomataceae/microbiologia , Doenças das Plantas/microbiologia , DNA Fúngico/genética , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , DNA Ribossômico/genética , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...